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In this paper, we develop a reconstructed discontinuous Galerkin hyperbolic Navier-Stokes method based on the
Galerkin formulation with a full basis matrix used as a test function. In the hyperbolic discontinuous Galerkin method
for model equations, the formulation with a full basis matrix is known to be robust and leads to accurate explicit
time-stepping schemes. Its extensions to a hyperbolic Navier-Stokes system, however, present a challenge in express-
ing derivatives of the conservative variables in terms of the gradient variables (corresponding to the gradients of the
primitive variables) and their derivatives. To overcome the difficulty, we propose defining polynomial approximations
in the primitive variables, and performing the weak formulation for the conservative system with pseudo/physical
time derivatives expressed in terms of the primitive variables. This approach greatly simplifies the Galerkin formu-
lation for the hyperbolic Navier-Stokes system. The resulting discretization is further improved by the reconstructed
discontinuous Galerkin methodology, i.e., higher-order without introducing extra degrees of freedom.

1. Introduction
This paper reports further progress in the development of the hyperbolic reconstructed discontinuous Galerkin

(rDG) for the Navier-Stokes (NS) equations. The hyperbolic rDG method is an efficient discretization method that
combines the hyperbolic diffusion/viscous formulation and the rDG discretization methods. The hyperbolic diffu-
sion/viscous formulation is a first-order system formulation of diffusion/viscous terms with extra variables, called the
gradient variables, added to form a system and with pseudo time terms added to render the system hyperbolic [1, 2].
The rDG method is a general framework for constructing efficient high-order schemes with reconstruction techniques,
having the finite-volume (FV) and discontinuous Galerkin (DG) methods as special cases [3, 4]. As we have shown in
our previous developments [5, 6, 7, 8, 9], the two approaches can be combined systematically to simplify the discretiza-
tion of diffusion/viscous terms, improve gradient accuracy, accelerate iterative convergence, and achieve higher-order
accuracy with fewer numbers of degrees of freedom than DG methods. These advantages have been demonstrated
for diffusion with scalar and tensor diffusion coefficients [5, 6], nonlinear diffusion [7] advection-diffusion equations
[8], and the NS equations [9]. In Ref.[9], we developed a new hyperbolic Navier-Stokes (HNS) system, HNS20G,
with the gradients of the primitive variables as the gradient variables in order to simplify high-order discretizations.
The new system enables straightforward high-order primitive-variable reconstruction with the gradient variables, and
led to high-order FV discretizations of up to fourth-order accuracy in the inviscid limit. In this paper, we extend
the methodology to the rDG discretization method based on the Galerkin formulation in such a manner as to allow
extensions to arbitrary order of accuracy.

The hyperbolic rDG method consists of two steps: hyperbolic DG and rDG. In the hyperbolic DG, high-order
derivatives in the polynomials of the primary variables are replaced by the gradient variables and their derivatives, and
all cross derivatives are unified (i.e., a single unknown to represent equivalent cross derivatives). This step eliminates
all discrete equations for high-order derivatives of the primary polynomials. Moreover, the gradients of the gradi-
ent variables can be used to build even higher-order polynomials for the primary variables. This unique polynomial
construction couples discrete variables and generates a matrix of basis functions for the solution polynomial represen-
tation. Further improvement comes in the next rDG step. The polynomials used in the flux and source evaluations
are upgraded by reconstructing higher-order derivatives from the underlying DG polynomials. The resulting hyper-
bolic rDG schemes are known to outperform conventional DG schemes of the same number of discrete unknowns:
higher-order inviscid and gradient accuracy and stiffness due to second-derivative viscous terms completely eliminated
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[5, 6, 7, 8, 9]. However, since the HNS system has the conservative variables as the primary variables and the gradi-
ents of the primitive variables as the gradient variables, the derivative replacement in the hyperbolic DG can be quite
complicated, especially for higher-order discretizations [10]. Currently, only P0-based hyperbolic rDG schemes have
been developed for the HNS system [9], which are nothing but high-order FV schemes.

The hyperbolic DG method is based on a weak formulation. The Galerkin formulation corresponds to choosing
the basis matrix as a test function. A simplified approach is possible: choose a simplified version of the basis matrix
such as the diagonal part of of basis matrix, which is a Petrov-Galerkin-type formulation. In the previous papers, the
Petrov-Galerkin was employed for diffusion in Refs.[5, 6], and later, the Galerkin formulation was found to be more
robust for advection-diffusion problems [8]. Further later, it was discovered that the Galerkin formulation enables
accurate unsteady advection-diffusion computations by explicit time-stepping schemes [11]. For the HNS system,
only the Petrov-Galerkin formulation based on a P0 solution representation has been considered so far because of the
complication in expressing the derivatives of the conservative variables in terms of the derivatives of the primitive
variables. This approach generates only FV schemes and cannot realize the full potential of embracing the whole
hierarchy of the rDG methods. In this paper, we overcome this limitation by defining polynomial approximations
exclusively for the primitive variables, and performing the Galerkin formulation for the conservative HNS system with
pseudo/physical time derivatives expressed in terms of the primitive variables. This formulation paves the way for a
systematic construction of a wide range of rDG schemes of arbitrary order. A slight complication arises in the solution-
dependent mass matrices for the time derivatives. We will discuss how they can be efficiently evaluated to minimize
the overhead. Numerical results are presented for verification with manufactured solutions and realistic viscous flow
problems to demonstrate improved robustness and high-order accuracy.

The paper is organized as follows. In Section 2, we review the target HNS system. In Section 3, the hyperbolic rDG
discretization based on the consistent Galerkin discretization is discussed. In Section 4, time integration schemes used
for unsteady simulations is described. In Section 6, numerical results are presented for verification with manufactured
solutions, and realistic viscous flow problems. In Section 5, boundary conditions implemented for the presented
method are discussed. Finally, the paper concludes with remarks.

2. Hyperbolic Navier-Stokes System: HNS20G
Consider the compressible NS equations:

∂U

∂t
+
∂Fk
∂xk

=
∂Gk

∂xk
, (2.1)

where k indicates the coordinate direction, F1 = Fx, F2 = Fy , F3 = Fz , x1 = x, x2 = y, and x3 = z,

U =


ρ
ρu
ρv
ρw
ρe

 , Fx =


ρu

ρu2 + p
ρuv
ρuw

u(ρe+ p)

 , Fy =


ρv
ρuv

ρv2 + p
ρvw

v(ρe+ p)

 , Fz =


ρw
ρuw
ρvw

ρw2 + p
w(ρe+ p)

 , (2.2)

Gx =


0
τxx
τyx
τzx

uτxx+vτxy+wτxz−qx

 , Gy =


0
τxy
τyy
τzy

uτyx+vτyy+wτyz−qy

 , Gz =



0

τxz

τyz

τzz

uτzx+vτzy+wτzz−qz


,

(2.3)
v = (u, v, w) is the velocity vector, t is the physical time, ρ is the density, p is the pressure, and e is the specific total
energy. The viscous stress tensor τ and the heat flux q are given, under Stokes’ hypothesis, by

τ =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 = −2

3
µ(div v)I + µ

(
grad v + (grad v)T

)
, q =


qx

qy

qz

 = − µ

Pr(γ − 1)
gradT, (2.4)

where I is the identity matrix, T is the temperature, γ is the ratio of specific heats, Pr is the Prandtl number, µ is the
viscosity defined by Sutherland’s law, and the superscript T denotes the transpose.
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In the hyperbolic method, the NS equations are discretized in the form of a first-order hyperbolic system. A
hyperbolic NS system was first introduced in Ref.[12], with the viscous stresses and the heat fluxes as the gradient
variables. The system involves 14 unknowns, and is called the HNS14 system. Later, a third-order edge-based scheme
was developed based on HNS14, but limitations were pointed out, i.e. lower-order accuracy in the velocity gradients
and the density gradient [13]. New systems, HNS17 and HNS20, were then introduced in Ref.[14] to overcome
these limitations. HNS17 uses the velocity gradients scaled by the viscosity, instead of the viscous stresses, as the
gradient variables. However, HNS17 by itself does not guarantee the same order of accuracy in the velocity and the
velocity gradients. The problem lies in a weaker coupling in the velocity and its gradients in the discrete level, and
the idea of an artificial hyperbolic dissipation was introduced to bring the strong coupling in the discrete equations
and achieve the same order of accuracy [14]. Yet there is another drawback in the HNS17 system: it does not lead
to accurate density gradients, and thus high-order reconstruction for all the primitive variables cannot be performed.
To ensure high-order accuracy on the gradients of all primitive variables, which in turn leads to higher-order inviscid
approximations, the HNS20 system was constructed with the density gradient introduced as additional variables in
the form of an artificial mass diffusion in the continuity equation [14]. In HNS20, however, the gradients of the
primitive variables are obtained not directly but by dividing the gradient variables by the local viscosity, except for
the density. This scaling causes complications in getting higher-order derivatives of the primitive variables [10]. For
arbitrarily high-order discretizations in the framework of the rDG method, it is desirable to directly carry the gradients
of the primitive variables as the gradient variables, instead of those scaled by the viscosity and the heat fluxes. For
this purpose, the HNS20G system was introduced in Ref.[9] with the gradients of the primitive variables used as the
gradient variables. In this study, we discretize the HNS20G system [9]:

P−1
∂U

∂τ
+
∂Fk
∂xk

= S (2.5)

where U and Fk are redefined here as

U = [ρ, ρv, ρe,gu,gv,gw,h, r]T , (2.6)

F =



ρvT − νρrT
ρv ⊗ v + pI− µvτ̃̃τ̃τ

vT (ρe+ p)− (µvτ̃̃τ̃τv)T − µh
γ(γ − 1)

h

−uI
−vI
−wI
−T I
−ρI


(2.7)

and
τ̃̃τ̃τ =

3

4
(g + gT )− 1

2
tr(g)I, µv =

4

3
µ, µh =

γ

Pr
µ, (2.8)

S = [0 0 0 − gu − gv gw − h − r]T (2.9)

P = diag

(
1, 1, 1, 1, 1,

1

Tv
,

1

Tv
,

1

Tv
,

1

Tv
,

1

Tv
,

1

Tv
,

1

Tv
,

1

Tv
,

1

Tv
,

1

Th
,

1

Th
,

1

Th
,

1

Tr
,

1

Tr
,

1

Tr

)
, (2.10)

T = diag (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) . (2.11)

Note that the HNS20G system is equivalent to the NS equations (2.1) in the pseudo steady state or as soon as the pseudo
time term is dropped, and the gradient variables (gu,gv,gw,h, r) are equivalent to the gradients of the primitive
variables:

r = ∇ρ = (ρx, ρy, ρz), (2.12)

g = [gTu ,g
T
v ,g

T
w]T = [(∇u)T , (∇v)T , (∇w)T ]T =

gux guy guz
gvx gvy gvz
gwx gwy gwz

 , (2.13)

h = ∇T = (hx, hy, hz). (2.14)
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The preconditioned conservative system simplifies the construction of a conservative scheme and a numerical flux
[12], and the viscous system is now hyperbolic in the pseudo time [9]. The relaxation times Tr, Tv , and Th are defined
as

Tr =
L2
r

νρ
, Tv =

ρL2
r

µv
, Th =

ρL2
r

µh
, (2.15)

where the length scale Lr is defined as in Refs.[15, 16], and νρ is an artificial viscosity associated with the artificial
hyperbolic mass diffusion added to the continuity equation [2, 14]. In this paper, we focus on steady problems, and
therefore ignore the physical time derivative in the rest of the paper.

3. Hyperbolic Reconstructed Discontinuous Galerkin Discretization
3.1. DG Formulation by Primitive Variables

Consider the weak formulation with a test function Ψ over an element Ωe with a boundary Γe: multiply the
HNS20G system by Ψ, and integrate by parts over the element to get∫

Ωe

ΨP−1
dUh

dτ
dΩ =

∫
Ωe

[
∂Ψ

∂xk
Fk(Uh) + ΨS(Uh)

]
dΩ−

∫
Γe

ΨFk(Uh)nkdΓ, ∀Ψ ∈ V ph . (3.1)

In the previous work, we define Uh to be a set of cell averages, i.e., P0 approximation, and separately define higher-
order polynomials for the primitive variables

W = [ρ,v, T,gu,gv,gw,h, r]T , (3.2)

for evaluating the flux and source terms. In this approach, it is not simple to perform the hyperbolic DG construc-
tion, where derivatives of the conservative variables need to be expressed in terms of the derivatives of the primitive
variables. In this study, we overcome the difficulty by working only with high-order polynomials of the primitive
variables, and thus define the numerical approximation Wh in the broken Sobolev space V nh :

Wh ∈ V ph , V ph = {vh ∈ [L2(Ω)]k : vh|Ωi
∈ [V kp ]∀Ωi ∈ Ω}, (3.3)

where k is the dimension of the unknown vector and Vp is the space of all polynomials of degree ≤ p. To avoid the
conservative variables, we perform the weak formulation in the following form of HNS20G:

P−1
∂U

∂W

∂W

∂τ
+
∂Fk
∂xk

= S, (3.4)

which leads to∫
Ωe

ΨP−1
∂U

∂W

dWh

dτ
dΩ =

∫
Ωe

[
∂Ψ

∂xk
Fk(Wh) + ΨS(Wh)

]
dΩ−

∫
Γe

ΨFk(Wh)nkdΓ, ∀Ψ ∈ V ph . (3.5)

The solution is expressed as a polynomial of the form:

Wh(x, y, z, τ, t) = C(x, y, z)V(τ, t), (3.6)

where C is a basis matrix, and V is a vector of unknown polynomial coefficients. In the hyperbolic DG/rDG methods,
C is not diagonal, but a square matrix with nonzero off-diagonal elements as we will discuss later. In the Galerkin
discretization, the basis matrix C is used as a test function, which results in

Mp
dV

dτ
= R (Wh) , (3.7)

where
Mp =

∫
Ωe

CTP−1
∂U

∂W
C dΩ, (3.8)

and

R (Wh) =

∫
Ωe

[
∂CT

∂xk
Fk(Wh) + CTS(Wh)

]
dΩ−

∫
Γe

CTFk(Wh)nk dΓ, (3.9)

where the integrals are evaluated by Gaussian quadrature formulas of appropriate orders and the interface flux is
evaluated by the sum of HLLC-inviscid and the upwind HNS20G viscous flux as described in Ref.[9]. It is important
to note that this formulation is different from that in Ref.[9] in that the volume integral will not vanish here and
equations are coupled in the integrands due to the effect of nonzero off-diagonal terms. Although this formulation
requires only the primitive variables as desired, the mass matrices now involve the Jacobian matrix ∂U/∂W and the
preconditioning matrix P−1, and thus depend on the solution. First, we discuss the hyperbolic DG and rDG methods.
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3.2. Efficient Hyperbolic Discontinuous Galerkin: Hyperbolic DG
The hyperbolic DG method is an efficient construction that reduces the number of discrete unknowns by sharing

common unknowns, or equivalently that builds higher-order polynomials for the primitive variables by using the
gradient variables and their derivatives to represent the higher-order terms. Suppose we have P0 approximations for
all the primitive variables:

V =
(
ρ,v, T ,∆xgx,∆ygy,∆zgz,∆xhx,∆yhy,∆zhz,∆xrx,∆yry,∆zrz

)T
, (3.10)

where the overbar indicates a cell-averaged quantity. Then, we can construct a linear polynomial for the density by
using the density gradient variables, (rx, ry, rz): :

ρ
rx
ry
rz


h

=


B1 B2 B3 B4

0 1
∆x 0 0

0 0 1
∆y 0

0 0 0 1
∆z




ρ
rx∆x
ry∆y
rz∆z

 , (3.11)

where
B1 = 1, B2 =

x− xc
∆x

, B3 =
y − yc

∆y
, B4 =

z − zc
∆z

.

Similarly, for the x-velocity, we have
u
gux
guy
guz


h

=


B1 B2 B3 B4

0 1
∆x 0 0

0 0 1
∆y 0

0 0 0 1
∆z




u
gux∆x
guy∆y
guz∆z

 , (3.12)

and for the temperature, 
T

hx

hy

hz


h

=


B1 B2 B3 B4

0 1
∆x 0 0

0 0 1
∆y 0

0 0 0 1
∆z




T

hx∆x

hy∆y

hz∆z

 , (3.13)

It follows from these examples that the basis matrix C is a block diagonal matrix:

C =


C4×4

C4×4

C4×4

C4×4

C4×4

 , (3.14)

where

C4×4 =


B1 B2 B3 B4

0 1
∆x 0 0

0 0 1
∆y 0

0 0 0 1
∆z

 , (3.15)

for V reordered as follows:

V = (ρ1,u1,v1,w1,T1)
T
, (3.16)

where

ρ1 = (ρ, rx∆x, ry∆y, rz∆z), u1 = (u, gux∆x, guy∆y, guz∆z), v1 = (v, gvx∆x, gvy∆y, gvz∆z), (3.17)

w1 = (w, gwx∆x, gwy∆y, gwz∆z), T1 = (T , hx∆x, hy∆y, hz∆z). (3.18)
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Note that this basis matrix C is used as a test function in the DG discretization, in contrast to the method in Ref.[9],
where the diagonal part is used as a test function and thus it results in FV schemes. Due to the off-diagonal elements,
the resulting discretization will not be FV schemes, with coupling among the discrete equations and the non-vanishing
volume integrals. In the case of the unsteady equations, it will generate physical time derivative terms in a consistent
manner and enables the use of explicit time-stepping schemes for time-accurate computations [11].

The above construction is called HNS(P0P1+P0). It involves 20 discrete unknowns, and achieves second-order
accuracy for the inviscid terms, and first-order accuracy for the viscous terms and the gradients. This scheme is com-
parable to a conventional DG(P1) scheme applied to the NS equations, which also involves 20 discrete unknowns.
However, HNS(P0P1+P0) has one-order lower order of accuracy in viscous dominated regions, e.g., first-order accu-
rate in a boundary-layer, as already pointed out for advection-diffusion problems in Ref.[8]. The efficient hyperbolic
DG method can be extended systematically to higher-order, such as HNS(P0P2+P1), HNS(P0P3+P2), and so on.
However, the order of approximation to the viscous terms will always be one-order lower than the corresponding
conventional DG schemes.

In this work, we do not pursue higher-order hyperbolic DG schemes. Instead, we employ the rDG method to
upgrade the overall accuracy without increasing the discrete unknowns any further.

3.3. Efficient Hyperbolic Reconstructed Discontinous Galerkin: Hyperbolic rDG
In the rDG method, higher-order accuracy is achieved by upgrading the order of the polynomial used to evaluate

the flux and source terms through higher-order derivative reconstructions. The efficient construction in the previous
section is, in fact, a variant of the rDG method, but no reconstruction techniques were needed because the derivatives
are directly available from the gradient variables. To further improve accuracy, we now consider reconstructing higher-
order derivatives by a reconstruction technique, and construct a higher-order reconstructed polynomial WR

h :

WR
h (x, y, z, τ, t) = CR(x, y, z)VR(τ, t), (3.19)

where CR is a basis matrix, and VR is the unknown coefficient vector containing reconstructed derivatives, which is
then used to evaluate the residual:

R
(
WR

h

)
=

∫
Ωe

[
∂CT

∂xk
Fk(WR

h ) + CTS(WR
h )

]
dΩ−

∫
Γe

CTFk(WR
h )nk dΓ. (3.20)

For example, if the second derivatives ρcxx, ρcyy , ρczz , ρcxy , ρcxz , ρcyz are reconstructed from the gradient variables rx, ry ,
and rz at the centroid as indicated by the superscript, then we can construct a higher-order polynomial for the density
and the density gradient variables as follows:


ρ
rx
ry
rz


R

h

=


B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

0 1
∆x 0 0 B2

∆x 0 0 B3

∆x
B4

∆x 0

0 0 1
∆y 0 0 B3

∆y 0 B2

∆y 0 B4

∆x

0 0 0 1
∆z 0 0 B4

∆z
B2

∆z 0 B3

∆z





ρ
rx∆x

ry∆y

rz∆z

ρcxx∆x2

ρcyy∆y2

ρczz∆z
2

ρcxy∆x∆y

ρcxz∆x∆z

ρcyz∆y∆z



. (3.21)

where

B5 =
1

2
B2

2 −
1

Ωe

∫
Ωe

1

2
B2

2dΩ, B6 =
1

2
B2

3 −
1

Ωe

∫
Ωe

1

2
B2

3dΩ, B7 =
1

2
B2

4 −
1

Ωe

∫
Ωe

1

2
B2

4dΩ,

B8 = B2B3 −
1

Ωe

∫
Ωe

B2B3dΩ, B9 = B2B4 −
1

Ωe

∫
Ωe

B2B4dΩ, B10 = B3B4 −
1

Ωe

∫
Ωe

B3B4dΩ.
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Scheme DoF/Cell Inviscid Viscous Gradient
DG(P1) 20 O(h2) O(h2) O(h)
DG(P2) 50 O(h3) O(h3) O(h2)
HNS(P0P1+P0) 20 O(h2) O(h) O(h)
HNS(P0P2+P0P1(VR)) 20 O(h3) O(h2) O(h2)

Table 1. Comparison of the HNS schemes and conventional DG schemes for the 3D NS equations. DoF/Cell is the degrees of freedom within
each cell.

The density is now represented by a quadratic polynomial, and the corresponding gradient variables by linear polyno-
mials. Applying a similar reconstruction to other primitive variables, we arrive at the following basis matrix:

WR
h (x, y, z) =


C4×10

C4×10

C4×10

C4×10

C4×10

VR, (3.22)

where

C4×10 =


B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

0 1
∆x 0 0 B2

∆x 0 0 B3

∆x
B4

∆x 0

0 0 1
∆y 0 0 B3

∆y 0 B2

∆y 0 B4

∆x

0 0 0 1
∆z 0 0 B4

∆z
B2

∆z 0 B3

∆z

 , (3.23)

for VR defined by

VR = (ρ2,u2,v2,w2,T2)
T
, (3.24)

where

ρ2 = (ρ, rx∆x, ry∆y, rz∆z, ρ
c
xx∆x2, ρcyy∆y2, ρczz∆z

2, ρcxy∆x∆y, ρcxz∆x∆z, ρcyz∆y∆z), (3.25)

and similarly for other variables.
For the derivative reconstruction, we employ the variational reconstruction for computing the derivatives [17, 18].

The variational reconstruction for computing the gradient of a function is denoted by P0P1(VR), and it is applied to
the gradient variables here to obtain their gradients that are equivalent to the second derivatives of the density. The
resulting scheme is called HNS(P0P2+P0P1(VR)), which now outperforms the conventional second-order P1 DG: it
has the same 20 degrees of freedom, and achieves third-order accuracy in the inviscid terms, second-order in the
viscous terms, and second-order in the gradients.

Compare it with a conventional DG(P1) scheme, which requires 20 degrees of freedom for second- and first-order
accurate solutions and gradients, respectively; or a conventional DG(P2), which requires 50 degrees of freedom for
third- and second-order accurate solutions and gradients, respectively.

Table 1 shows the comparison between the HNS-rDG schemes and conventional DG schemes applied to the origi-
nal NS system. Note that the HNS-rDG schemes developed in this paper and those in Ref.[9] are different. The former
are based on the Galerkin formulation, and the latter are based on the Petrov-Galerkin formulation with a diagonal
part of the basis matrix. HNS(P0P1+P0) is comparable to the conventional DG(P1) scheme, but has a lower order
of accuracy in the viscous terms. This is improved by HNS(P0P2+P0P1(VR)), which increases the order of accuracy
by one order for all while keeping the same 20 degrees of freedom: one-order higher accuracy for the inviscid and
gradients, and matching the second-order accuracy in the viscous terms with the conventional DG(P1) scheme.

4. Pseudo Time Integration Scheme (Nonlinear Solver)
To solve the semi-discrete pseudo-time equation 3.7:

Mp
dV

dτ
= R̂(V), (4.1)
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we perform an implicit time discretization as

Mp

∆τ

(
Vm+1 −Vm

)
= R̂

(
Vm+1

)
, (4.2)

where m denotes the pseudo-time level, ∆τ the pseudo-time step, and the residual R̂ is a nonlinear function of V.
Linearize the residual will give

Mp

∆τ

(
Vm+1 −Vm

)
= R̂ (Vm) +

∂R̂

∂V
|m
(
Vm+1 −Vm

)
. (4.3)

The fully discretized form can be written as(
Mp

∆τ
− ∂R̂

∂V

)
|m
(
Vm+1 −Vm

)
= R̂ (Vm) . (4.4)

The Jacobian matrix ∂R̂
∂V is estimated using an automatic differentiation toolkit TAPENADE. Note that if ∆τ tends

to infinity, the scheme reduces to the standard Newton’s method with a property of quadratic convergence for solving
a system of nonlinear equations. In this work, in order to guarantee the robustness of implicit solver, we begin with
a small ∆τ with a few time steps then increase it to an infinite number. By using an edge-based data structure, the
left-hand-side matrix is stored in upper, lower and diagonal forms, which can be expressed as

U = −∂R̂(Vi,Vj , nij)

∂Vj
, L = −∂R̂(Vi,Vj , nij)

∂Vi
, D =

M

∆t
−
∑
j

∂R̂(Vi,Vj , nij)

∂Vi
. (4.5)

where U, L and D represent the upper, lower and diagonal matrix, respectively. Since the reconstruction is not taken
into consideration for the Jacobian matrix, this makes the implicit method suitable for parallelization. The linear
system is relaxed by the symmetric Gauss-Seidel relaxation schemes.

5. Boundary Conditions
The boundary conditions implemented for real flow problems are presented in this chapter.

Φjb = Φ (Vj ,Vb) , (5.1)

where Φ denotes the numerical flux, j the element adjacent to the boundary, and b denotes the ghost state of the
boundary.

5.1. Free stream

Vb = [ρ∞, u∞, v∞, w∞, p∞,g∞,h∞, r∞] . (5.2)

5.2. Subsonic outflow

Vb = [ρj , uj , vj , wj , p∞,g∞,h∞, r∞] . (5.3)

5.3. Symmetric boundary

Vb = [ρj ,vj − 2(vj · njb)njb, pj ,gj − 2(gj · njb)njb,hj − 2(hj · njb)njb, rj − 2(rj · njb)njb] . (5.4)

5.4. No-slip viscous adiabatic wall

Vb = [ρj , 0, 0, 0, pj , (gj · njb)njb,hj − hj · njb, r] . (5.5)
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6. Results
A manufactured solution for Navier-Stokes equation is first tested here for verification. The laminar flow past a

sphere is also presented to verify that feasibility of the new method when it comes to real flow problems with real
boundary conditions.

6.1. Accuracy Verification
We verify the HNS-rDG schemes implemented in a 3D code by methods of manufactured solutions for 2D prob-

lems on hexahedral and highly distorted prismatic mesh. The second levels of each set of meshes are shown in Figure
1. The following functions are made the exact solutions by introducing source terms into the Navier-Stokes equations:

ρ = cr0 + crs · sin(crx · x+ cry · y),
u = cu0 + cus · sin(cux · x+ cuy · y),
v = cv0 + cvs · sin(cvx · x+ cvy · y),

w = 0,
p = cp0 + cps · sin(cpx · x+ cpy · y),

(6.1)

A constant viscosity µ = ρinfvinfL/Re is used here for a verification purpose. The subscript denotes the free stream
values. The free stream state is taken as ρinf = cr0 and vinf = sqrt(cu02 + cv02) here. cr0, crs, crx, cry, cu0,
cus, cux, cuy, cv0, cvs, cvx, cvy, cp0, cps, cpx and cpy are all taken as constants to generate a smooth solution over
the domain. The Reynolds number is taken as 10 and 105. The artificial mass diffusion coefficient νρ is taken as h4,
where h =

√
1/nelem for 2D problem and Lr is taken as 1/2π. The order of convergence is shown in Figures 2

and 3, from which we can see that Re = 10, the HNS(P0P1+P0) method gives first-order of convergence for both
primary variables and their gradients, and the HNS(P0P2+P0P0(VR)) gives second-order. However, when it comes
to Re = 105, the order of convergence of the gradients remains the same, one-order higher of convergence can be
expected for primitive variables. The result is consistent with Table 1.

X

Y

Z

a) Hexadral mesh

X

Y

Z

b) Highly distorted prismatic mesh

Figure 1. Second level of each set of mesh used for manufactured solution
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a) Order of convergence for density b) Order of convergence for velocity

c) Order of convergence for temperature

Figure 2. Order of convergence for primitive variables
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a) Order of convergence for the gradients of density b) Order of convergence for the gradients of velocity

c) Order of convergence for the gradients of temperature

Figure 3. Order of convergence for gradients

6.2. Laminar Flow Past a Sphere
We verify the HNS-rDG schemes implemented in a 3D code on the flow past a sphere at Reynolds number of 100.

This is a benchmark for bluff-body flows and has been investigated numerically and experimentally by other authors.
The Mach number is taken as 0.5. The mesh is composed of 200, 416 tetrahedral elements, as is shown in FIgure 4.
The residual of the momentum equation is shown in 5, from where we can see that the presented method converges
faster than DG(P1) for the first 250 iteration steps. However, the residual of HNS(P0P1+P0) method stops dropping
further after 250 iteration step. The residual of HNS(P0P2+P0P1(VR)) method, however, keeps dropping due to a
more accurate approximation of the right-hand-side resulted from the reconstruction.
Mach contours are compared in Figure 6. Although no big difference can be observed from the Mach contours, we
can see the diffence when it comes to the recirculation bubble length, as is shown in Table 2. Our result shows that
HNS(P0P2+P0P1(VR)) gives the closest result to the result in [19] with a relative error of 8.26%. The drag coefficient
is compared in Table 3. As we can seen from the table, the HNS(P0P2+P0P1(VR)) gives a closest to Ruben et al.’s
results of 1.178 [20] with an relative error of 1.93%. The comparison of pressure coefficient is shown in Figure 7. Our
results are in good agreement with the result in [21].
When the Reynolds number is increased to Re = 250, a non-axisymmetric flow occurs but the flows remains steady
[22]. A comparision of the streamlines is shown in Figure 8, from where a good agreement can be observed.
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Figure 4. Mesh used for flow past a sphere

Figure 5. The residual of momentum equation versus iteration for flow past a sphere
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X

Y

0 1 2

1

0.5

0

0.5

1

Mach Number: 0.020 0.100 0.180 0.260 0.340 0.420 0.500

a) DG(P1)

X

Y

0 1 2

1

0.5

0

0.5

1

Mach Number: 0.020 0.100 0.180 0.260 0.340 0.420 0.500

b) HNS(P0P1+P0))

X

Y

0 1 2

1

0.5

0

0.5

1

Mach Number: 0.020 0.100 0.180 0.260 0.340 0.420 0.500

c) HNS(P0P2+P0P1(VR))

Figure 6. Mach contours for flow past a sphere
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Xs/D for Re = 100
DG(P1) 1.0781
HNS(P0P1+P0) 1.0283
HNS(P0P2+P0P1(VR)) 0.9678
Gilmanov et al. (2003) 0.894
Ruben et al. (2009) 0.85

Table 2. Comparison of the recirculation bubble length.

Cd for Re = 100
DG(P1) 0.9985
HNS(P0P1+P0) 1.1433
HNS(P0P2+P0P1(VR)) 1.2007
Gilmanov et al. (2003) 1.153
Ruben et al. (2009) 1.178

Table 3. Comparison of the drag coefficient.
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Figure 7. Pressure distribution for flow past a sphere
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a) Reference [19]

b) HNS(P0P2+P0P1(VR))

Figure 8. Streamlines for flow past a sphere at Re=250

7. Concluding Remarks
A reconstructed discontinuous Galerkin hyperbolic Navier-Stokes method based on the Galerkin formulation with

a full matrix is implemented. A manufactured solution is tested to show that the presented method gives consistent
order of convergence to our previous study on model equations. The laminar flow past a sphere is also tested to verify
the feasibility of our method when it comes to real flow problems. This work will later be extended to unsteady flows.
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