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This paper presents high-order reconstructed Discontinuous Galerkin (rDG) methods
for nonlinear diffusion equations based on the first-order hyperbolic system (FOHS) for-
mulation. Following the previous efforts, efficient high-order schemes are developed by
replacing/unifying the derivatives of the primal variable by the gradient variables and
their derivatives. However, an existing FOHS formulation for nonlinear equations leads to
algorithmic complications since the gradient variables represent diffusive fluxes, not solu-
tion gradients, which would require derivatives of a solution-dependent diffusion coefficient.
To avoid such complications, a new formulation based on solution gradients is presented
and demonstrated for nonlinear diffusion problems. This formulation allows straightfor-
ward construction of the efficient hyperbolic rDG schemes for nonlinear equations, but a
complication arises in the construction of an upwind diffusion flux. We address this is-
sue and propose a practical simplification. The new formulation and the simplified flux
construction are demonstrated numerically for a set of nonlinear diffusion problems.

I. Introduction

Motivated by the need for efficient diffusion/viscous algorithms in the context of the discontinuous
Galerkin (DG) methods and highly-accurate derivative predictions on unstructured grids, we have devel-
oped the reconstructed DG methods based on the first-order hyperbolic system (FOHS) formulation.8,9 The
FOHS formulation introduces additional variables such as solution gradients in order to form a pseudo-time
hyperbolic system, and thus allows a straightforward construction of a diffusion/viscous operator by meth-
ods for hyperbolic systems.12 The additional variables are then used to replace high-order derivatives in the
polynomial of the primary solution variables to minimize the total degrees of freedom in the discretization.
The resulting high-order rDG schemes have been shown to achieve higher-order accuracy with a less number
of degrees of freedom over conventional DG methods despite the fact that additional equations are intro-
duced in the partial-differential-equation level.8,9 Extensions to nonlinear systems are possible but requires
a change in the FOHS formulation to simplify the construction of numerical schemes. In Ref.,14 a new FOHS
formulation suitable for nonlinear systems was proposed, where the additional variables are defined as the
viscous stresses and heat fluxes for the compressible Navier-Stokes equations. This formulation has been
further generalized in Ref.16 by including the density gradient, so that the gradients of all primitive variables
can be obtained from the additional variables. Later, it was extended to three dimensions as presented in
Ref.6,11 In Ref.,6 a new construction of a third-order edge-based scheme (Scheme-IQ) was presented, where
the second-derivatives of the primitive variables are obtained by the gradients of the viscous stress and heat
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flux variables. Although feasible, extensions of this procedure to higher-order solution derivatives would be
highly complicated because it will involve high-order derivatives of the viscosity. This presents a challenge
in extending the hyperbolic rDG method to the compressible Navier-Stokes equations and other complex
nonlinear system.

To address this issue, we consider a new formulation for nonlinear equations, where the additional vari-
ables are taken as solution gradients. This formulation allows us to obtain high-order derivatives of primary
variables from the additional variables and their derivatives in a straightforward manner. However, as we will
discuss in details, it introduces nonlinear diffusion coefficients in the fluxes. Therefore, the eigen-structure
analysis will involve the differentiation of the nonlinear diffusion coefficient, which would introduce complica-
tions in the construction of an upwind diffusion flux. To develop a simple and practical scheme, we propose
an approximate construction of the upwind dissipation matrix. As will be illustrated, this simplification is
similar to the simplification proposed in Ref.15 for an advection-diffusion equation.

The objective of the effort discussed in the present work is to develop high-order hyperbolic rDG methods
for solving nonlinear diffusion equations. Different reconstruction scheme, including hybrid least-squares
(LS)1 and variational reconstruction (VR),5,18 has been implemented in the study. By combining FOHS
and rDG methods, the presented methods can provide high-order results in both primary variables and
the derivatives efficiently. The hyperbolic rDG method is a general framework, including finite-volume
methods and the method in Ref.10 as special cases. A number of nonlinear diffusion problems are presented,
indicating the developed hyperbolic rDG method is a cost-effective high-order scheme, and has the potential
to ultimately be applied to nonlinear systems such as the compressible Navier-Stokes equations on fully
irregular, adaptive, anisotropic, unstructured grids.

The outline of the rest of this paper is organized as follows. A FOHS formulation for a nonlinear
diffusion equation is described in Section II. The rDG methods for solving the hyperbolic diffusion equations
are presented in Section III. Numerical flux is described in Sections IV. Several numerical experiments are
reported in Section V. Concluding remarks and a plan of future work are given in Section VI.

II. Nonlinear Diffusion Equation and Hyperbolic Formulations

A. Nonlinear Diffusion Equation

Consider the following model nonlinear diffusion equation in two dimensions.

0 =
∂

∂x

(
ν(ϕ)

∂ϕ

∂x

)
+

∂

∂y

(
ν(ϕ)

∂ϕ

∂y

)
+ f(x, y), (1)

where ϕ denotes a scalar function that can be referred to as velocity potential, ν is a positive diffusion
coefficient, which depends on the solution ϕ, and f(x, y) is a source term.

In the hyperbolic method, we introduce additional variables to form a pseudo-time hyperbolic system.
The previous papers considered linear diffusion equations and the additional variables were chosen as

u =
∂ϕ

∂x
, v =

∂ϕ

∂y
, (2)

in the pseudo steady state. For nonlinear equations, however, this choice has not been employed in the
past works since it leaves the nonlinear diffusion coefficient in the fluxes and complicates the eigen-structure
analysis. To simplify it, the following choice has been employed for nonlinear equations:

u = ν
∂ϕ

∂x
, v = ν

∂ϕ

∂y
. (3)

This choice has been successfully used for the compressible Navier-Stokes equations in the edge-based dis-
cretization up to third-order accuracy. However, this introduces complications in the hyperbolic rDG method,
where u, v, and their high-order moments are used to construct a high-order polynomial of ϕ; or equivalently
the derivatives of ϕ are used to represent the polynomials of u and v. As we will discuss below, the high-order
derivatives of u and v will involve high-order derivatives of ν for a nonlinear coefficient, and thus obtaining
high-order derivatives of ϕ from those of u and v will be a very complicated procedure. In the next section,
we begin by considering the latter to further illustrate the point.
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B. FOHS Formulations for Nonlinear Diffusion

1. Formulation I

A hyperbolic formulation suitable for nonlinear equations has been proposed and demonstrated for the two-
dimensional compressible Navier-Stokes equations in Ref.,14 and later extended to three dimensions.11 A
hyperbolic viscous system is constructed by introducing the viscous stresses and heat fluxes as additional
variables. For the nonlinear diffusion equation (1), it corresponds to the following system:

∂ϕ

∂τ
=
∂u

∂x
+
∂v

∂y
+ f(x, y)

∂u

∂τ
=

ν

Tr

(
∂ϕ

∂x
− u

ν

)
∂v

∂τ
=

ν

Tr

(
∂ϕ

∂y
− v

ν

) , (4)

where the additional variable u and v is chosen as the diffusive fluxes, i.e.,

u = ν
∂ϕ

∂x
, v = ν

∂ϕ

∂y
, (5)

and Tr is a relaxation time defined by

Tr =
L2
r

ν
, Lr =

1

2π
. (6)

Note that Tr is a function of u since ν = ν(ϕ).
In this formulation, the gradient variables are equivalent to the diffusive fluxes in the pseudo steady state.

The gradient of ϕ can be easily obtained as

∂ϕ

∂x
=
u

ν
,

∂ϕ

∂y
=
v

ν
. (7)

However, to obtain higher-order derivatives of the solution ϕ from (u, v), we would need to differentiate the
diffusion coefficient. For example, ∂xxϕ can be obtained as follows:

∂u

∂x
=

∂

∂x

(
ν
∂ϕ

∂x

)
=
∂ν

∂x

∂ϕ

∂x
+ ν

∂2ϕ

∂x2
, (8)

and thus

∂2ϕ

∂x2
=

1

ν

[
∂u

∂x
− ∂ν

∂x

∂ϕ

∂x

]
=

1

ν

[
∂u

∂x
− u∂ν

∂x

]
, (9)

and ∂xxxϕ is given by

∂3ϕ

∂x3
= − 1

ν2

∂ν

∂x

[
∂u

∂x
− u∂ν

∂x

]
+

1

ν

[
∂2u

∂x2
− ∂u

∂x

∂ν

∂x
− u∂

2ν

∂x2

]
. (10)

As one can easily imagine, it gets more and more complicated for higher-order derivatives. In the next
section, we consider an alternative hyperbolic formulation, which simplifies the process.

2. Formulation II

To simplify the process of obtaining higher-order derivatives, we consider the choice:

u =
∂ϕ

∂x
, v =

∂ϕ

∂y
. (11)

In this case, the gradient of ϕ is directly obtained as (u, v), and thus higher-order derivatives of ϕ can be
easily obtained as

∂2ϕ

∂x2
=
∂u

∂x
,

∂2ϕ

∂y2
=
∂v

∂y
,

∂2ϕ

∂x∂y
=
∂u

∂y
=
∂v

∂x
, (12)
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∂3ϕ

∂x3
=
∂2u

∂x2
,

∂3ϕ

∂y3
=
∂2v

∂y2
,

∂3ϕ

∂x2∂y
=

∂2u

∂x∂y
=
∂2v

∂x2
,

∂3ϕ

∂x∂y2
=
∂2u

∂y2
=

∂2v

∂x∂y
, (13)

where all terms on the right hand side in each equation are directly available from the polynomials of u and
v. Therefore, once the polynomials are defined for all variables, high-order moments of ϕ can be readily
expressed by those of u and v to reduce the total number of discrete unknowns as demonstrated in the
previous studies for the hyperbolic rDG method. However, a complication arises in the evaluation of the
flux Jacobian as discussed below.

This choice (11) leads to the following hyperbolic formulation:

∂ϕ

∂τ
=
∂(νu)

∂x
+
∂(νv)

∂y
+ f(x, y)

∂u

∂τ
=

1

Tr

(
∂ϕ

∂x
− u
)

∂v

∂τ
=

1

Tr

(
∂ϕ

∂y
− v
) , (14)

where Tr and Lr are still given by Equation (6). In the vector form, we can write

P−1 ∂U

∂τ
+
∂Fx

∂x
+
∂Fy

∂y
= S, (15)

where

P−1 =


1 0 0

0 Tr 0

0 0 Tr

 , U =


ϕ

u

v

 , F =


−νu

−ϕ

0

 , G =


−νv

0

−ϕ

 , S =


0

−u

−v

 . (16)

The flux projected along an arbitrary vector n = (nx, ny) is given by

Fn = Fxnx + Fyny =


−ν(unx + vny)

−ϕnx

−ϕny

 . (17)

Note that the flux now has the diffusion coefficient, and therefore ν needs to be differentiated to obtain the
flux Jacobian. The preconditioned flux Jacobian is then given by

PAn = P
∂Fn

∂U
=


−(∂ν/∂ϕ)(unx + vny) −νnx −νny

−nx/Tr 0 0

−ny/Tr 0 0

 . (18)

It is interesting to note that this matrix is very similar to the one for the hyperbolic advection-diffusion
system.13 It becomes the advection-diffusion Jacobian if we replace −(∂ν/∂ϕ)(unx + vny) by anx + bny,
where (a, b) is the advective vector. Eigenvalues and eigenvectors can be obtained and the dissipation matrix
can be constructed as in Ref.,13 but extensions to more complex systems such as the Navier-Stokes equations
would be difficult.

Following the strategy suggested in Refs.,14,15 where inviscid and viscous Jacobians are treated separately,
we propose to split the preconditioned Jacobian into two parts:

PAn = PAL
n + PAN

n =


0 −νnx −νny

−nx/Tr 0 0

−ny/Tr 0 0

+


−(∂ν/∂ϕ)(unx + vny) 0 0

0 0 0

0 0 0

 . (19)
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The first term PAL
n corresponds to the linearized-diffusion Jacobian, and the second term PAN

n accounts for
the effect of the nonlinear diffusion coefficient. Likewise, the dissipation matrix can be constructed separately
for PAL

n and PAN
n , and added together to yield

|PAn| ≈
∣∣PAL

n

∣∣+
∣∣PAN

n

∣∣ =

√
ν

Tr


1 0 0

0 n2
x nxny

0 nxny n2
y

+


|(∂ν/∂u)(unx + vny)| 0 0

0 0 0

0 0 0

 . (20)

The second term is considered as a nonlinear correction.
In this paper, Formulation II is explored for nonlinear diffusion equations, and demonstrated with the

above simplified approach for the dissipation matrix construction.

III. Reconstruction Discontinuous Galerkin Methods

In this section, we describe the rDG discretization of the hyperbolic formulation. We assume that the
domain Ω is subdivided into a collection of non-overlapping arbitrary elements Ωe, and then introduce the
following broken Sobolev space V n

h

V n
h =

{
vh ∈

[
L2(Ω)

]k
: vh|Ωe

∈
[
V k
n

]
∀Ωe ∈ Ω

}
, (21)

which consists of discontinuous vector polynomial functions of degree n, and where k is the dimension of
the unknown vector and Vn is the space of all polynomials of degree ≤ n. To formulate the discontinuous
Galerkin method, we introduce the following weak formulation, which is obtained by multiplying Eq. (14)
by a test function Wh, integrating over an element Ωe, and then performing an integration by parts: find
Uh ∈ V p

h such as

d

dτ

∫
Ωe

WhP
−1

e UhdΩ +

∫
Γe

WhFknkdΓ−
∫

Ωe

∂Wh

∂xk
FkdΩ =

∫
Ωe

WhSdΩ, ∀Wh ∈ V n
h , (22)

where F = [Fx,Fy], Uh and Wh are represented by piecewise polynomial functions of degrees p, which are
discontinuous between the cell interfaces, and nk the unit outward normal vector to the Γe: the boundary

of Ωe. Note in particular that the matrix P
−1

e has been evaluated at a local value with the cell-average
solution and taken as constant within an element. Besides, with the dimensionless modal DG formulation,
the cell-average solution is handily available, which make the construction of the preconditioning matrix
P very straightforward. This simplification does not have any impact on accuracy because the solution is
sought in the pseudo steady state.

The standard DG solution Uh within the element Ωe can be expressed as

Uh(x, y, τ) = C(x, y)V(τ), (23)

where C is a basis matrix, and V is a vector of unknown polynomial coefficients. If we set the test function
Wh as the transpose of the basis matrix C, then the following equivalent system would be arrived.

d

dτ

∫
Ωe

CTP
−1

e CVdΩ +

∫
Γe

CTFknkdΓ−
∫

Ωe

∂CT

∂xk
FkdΩ =

∫
Ωe

CTSdΩ. (24)

This scheme is called discontinuous Galerkin method of degree n, or in short notation DG(Pn) method.
By simply increasing the degree n of the polynomials, the DG methods of corresponding higher order are
obtained. In the rDG method, inspired by methods from Dumbser et al. PnPm scheme,2–4 a higher-order
solution is reconstructed from the underlying solution polynomials. For rDG(PnPm) method with m > n, a
higher-order reconstructed numerical solution can be obtained:

UR
h (x, y, τ) = CR(x, y)VR(τ), (25)

where higher-order derivatives (higher than n-th and up to m-th) are reconstructed from the underlying Pn

solution. There are three approaches to the reconstruction. One is a least-squares reconstruction method,
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and another is a variational reconstruction method. The last option, which is unique in the FOHS formulation
considered here, is to directly use the gradient variables and their moments to evaluate these derivatives. Or
equivalently, this approach can be thought of as defining the solution as Pm, and use higher-order moments
to represent the gradient variables in the FOHS formulation. In the former two approaches, the method is
expressed by rDG(PnPm), and the latter approach by DG(P0Pm) since high-order derivatives are already
available and no explicit reconstruction is required. This higher order numerical solution UR

h would be used
for flux and source term computation.

By moving the second and third terms to the right-hand-side (r.h.s.) in Eq. (24), we will arrive at a
system of ordinary differential equations (ODEs) in time, which can be written in semi-discrete form as

M
dV

dt
= R(UR

h ), (26)

where M is the mass matrix,

M =

∫
Ωe

CTP
−1

e CdΩ, (27)

and R is the residual vector, defined as

R =

[∫
Ωe

∂CT

∂xk
Fk(UR

h ) + CTS(UR
h )dΩ−

∫
Γe

CTFk(UR
h )nkdΓ

]
. (28)

In this study,GMRES+LU-SGS and GCR+SGS(k) have been developed to solve the linear system, where
LU-SGS/SGS(k) serve as the preconditioner, where k is the number of relaxations.

Based on different rDG methods, some effective discretization hyperbolic rDG methods will be presented
to deal with the derived FOHS. The format A + B is used to indicate the discretization method for the
system, where A refers to the discretization method for ϕ and B refers to the discretization method for its
derivatives. Different choices and combinations for A and B are compared in the authors’ previous work.7

To minimize the memory and storage cost of the developed methods, one can apply DG(Pn) or rDG(PnPm)
methods only on the derivative variables. With the handily information of the derivatives, a higher order of
polynomial for ϕ can be constructed with only one degree of freedom. Therefore, in this paper, we would
focus on DG(P0Pn+1)+DG(Pn) and DG(P0Pm+1)+rDG(PnPm) methods. Further details can be found in
the previous papers.

IV. Numerical Flux

For the preconditioned system, the numerical flux is constructed as

Fij(UL,UR) =
1

2
[Fn(UL) + Fn(UR)]− 1

2
P−1 |PAn| (UR −UL) , (29)

where An is the flux Jacobian. The construction of the dissipation matrix follows a standard technique in
the local-preconditioning method.17 As discusses earlier, we employ a simplified approach and construct the
absolute Jacobian as

Fij(UL,UR) =
1

2
[Fn(UL) + Fn(UR)]− 1

2
P−1

(∣∣PAL
n

∣∣+
∣∣PAR

n

∣∣) (UR −UL) , (30)

where
∣∣PAL

n

∣∣+∣∣PAR
n

∣∣ is given by Equation (20). The dissipation matrix depends on the solution for nonlinear
equations, and it is evaluated by the arithmetic average: (UL + UR)/2.

V. Numerical Results

A steady model nonlinear diffusion problem in a unit square is considered in this section, i.e.,

∂ϕ

∂t
=

∂

∂x

(
ν(ϕ)

∂ϕ

∂x

)
+

∂

∂y

(
ν(ϕ)

∂ϕ

∂y

)
+ f(x, y) (31)

with the exact solution, the diffusion coefficient and the source term given by

ϕ(x, y) = sin(πx) sin(πy), (32)
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ν = ν(ϕ) = ϕ2 + 1, (33)

and
f(x, y) = 2π2ϕ

(
3 cos2(πx) cos2(πy)− 2 cos2(πx)− 2 cos2(πy) + 2

)
. (34)

In this paper, three sets of meshes are used in the test, namely regular, irregular and heterogeneous grids.
The sample of each type of grids are shown in Figure 1.

The grid refinement study has been carried out using the developed hyperbolic rDG methods. The results
are shown for each type of mesh in Table 1 and Figure 2 to 4.

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1: The sample mesh of each type, i.e., 17× 17 regular grid (left), 17× 17 irregular grid (middle), and
23× 21 heterogeneous grid (right).

Table 1: Order of accuracy on different type of grids.

Regular grids Irregular grids Heterogeneous grids

ϕ vx ϕ vx ϕ vx

DG(P0P1)+DG(P0) 0.93 1.00 0.93 0.97 1.00 1.00

DG(P0P2)+DG(P1) 1.93 1.88 1.80 1.56 1.82 1.86

DG(P0P3)+DG(P2) 3.76 2.73 3.84 2.77 3.82 2.72

DG(P0P2)+rDG LS(P0P1) 2.28 2.07 2.14 2.02 1.93 1.91

DG(P0P3)+rDG LS(P1P2) 3.83 3.02 3.84 2.89 3.40 2.77

DG(P0P2)+rDG VR(P0P1) 1.97 1.99 1.96 1.91 1.82 1.89

DG(P0P3)+rDG VR(P0P2) 3.94 3.35 4.02 3.47 3.34 2.60

DG(P0P3)+rDG VR(P1P2) 3.83 3.02 3.76 3.00 3.53 2.41

DG(P0P4)+rDG VR(P1P3) 4.02 3.85 4.01 3.79 3.96 4.33
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Figure 2: Grid refinement study on regular grids.
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Figure 3: Grid refinement study on irregular grids.
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Figure 4: Grid refinement study on heterogeneous grids.
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Overall, the hyperbolic rDG methods delivered the designed order of accuracy for the case shown
above. Note that several presented schemes like DG(P0P3)+rDG LS(P1P2), DG(P0P3)+rDG VR(P0P2),
and DG(P0P3)+rDG VR(P1P2) are able to deliver 4th order in ϕ and 3rd order in gradients in all the
grids very effectively. Note that these results are better than expected since the hyperbolic scheme typ-
ically achieves the same order of accuracy (based on the lowest order of polynomials) for all variables,
e.g., DG(P0Pm+1)+rDG(P0Pm) is expected to yield (m + 1)-th order of accuracy for all variables. As for
DG(P0P4)+rDG VR(P1P3) can obtain fourth order of accurate gradients. Additionally, one can find that
variational reconstruction based rDG schemes are more stable than the least-squares rDG counterpart. Both
DG(P0P2)+rDG LS(P0P1) and DG(P0P3)+rDG LS(P1P2) are unable to deliver stable results for the finest
heterogeneous grids without any limiter. On the contrary, the counterparts with variational reconstruction
are stable and can deliver the desired order of accuracy for all the grids. Meanwhile, for variational recon-
struction, one can have global stencil with compact data structure, thus to resolve the stability issue and
make the extension to higher order reconstruction more straightforward. Also, boundary condition can be
ignored for using variational reconstruction. The numerical results indicate that the presented hyperbolic
rDG schemes are attractive and worth further investigation.

VI. Conclusions and Outlook

High order reconstructed discontinuous Galerkin (rDG) methods based on first-order hyperbolic system
(FOHS) for nonlinear diffusion equations have been developed and presented in the study. With FOHS
formulation, an equivalent hyperbolic system, which would yield at the same steady solution, is generated.
Instead of using the diffusive fluxes as the additional variables in the FOHS, the developed new formulation
adopts the gradients of the primary variables as the auxiliary variables, leading to a straightforward approach
for obtaining arbitrary high-order moments of the primary variable. The numerical examples showed in the
paper illustrate the capability and the potential of the developed methods, indicating that the hyperbolic
rDG methods provide attractive alternatives to solve nonlinear diffusion equations. A ongoing effort is being
taken for the time-dependent problems. Future work would also be focused on extending the hyperbolic rDG
method to Navier-Stokes equation on fully 3D unstructured grids.
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