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This paper reports a new finding that time-accurate explicit time-stepping schemes can
be constructed by the reconstructed discontinuous Galerkin method applied to a hyperbolic
diffusion formulation that is consistent with a diffusion equation only in the steady state.
A naive discretization of the hyperbolic diffusion system is known to be time inconsistent,
but a special Galerkin discretization with a matrix basis used as a test function is found
to yield a time-accurate semi-discrete system that can be integrated in time by explicit
time-stepping schemes. The mechanism behind the unexpected property is discussed. The
presented schemes are more efficient than conventional discontinuous Galerkin schemes
with higher-order accuracy achieved with a fewer degrees of freedom. Two reconstruc-
tion techniques are considered for the efficient construction: least-squares reconstruction
and variational reconstruction. Unsteady computations for pure diffusion problems and
advection-diffusion problems are presented to assess accuracy and performance of the newly
developed high-order explicit hyperbolic reconstructed discontinuous Galerkin schemes.
Numerical experiments demonstrate that the explicit hyperbolic reconstructed discontin-
uous Galerkin schemes achieve the designed optimal order of accuracy for both solutions
and their derivatives on regular and irregular grids for unsteady problems.

I. Introduction

This paper presents explicit time-accurate high-order hyperbolic reconstructed discontinuous Galerkin
(rDG) schemes. The hyperbolic rDG method is a special discretization method that combines the hyperbolic
diffusion formulation [1] and the rDG discretization methods [2–7]. The hyperbolic diffusion formulation is
a first-order system form of a diffusion equation with extra variables, called the gradient variables, added to
form a system and with pseudo time terms added to render the system hyperbolic. The rDG method is a
general framework for constructing efficient high-order schemes with reconstruction techniques, having the
finite-volume (FV) and DG schemes as special cases. As we have shown in our previous developments [8–12],
the two approaches can be combined in a systematic manner to simplify the discretization of diffusion terms,
improve gradient accuracy, accelerate iterative convergence, and achieve higher-order accuracy than DG
methods with fewer numbers of degrees of freedom. Specifically, we have developed hyperbolic rDG schemes
for diffusion with scalar and tensor diffusion coefficients [8, 9], nonlinear diffusion [10] advection-diffusion
equations [11], and the Navier-Stokes equations [12]. For unsteady problems, we followed Refs.[13, 14], and
employed implicit time-stepping schemes. The major reason for implicit-time stepping lies in the fact that
the hyperbolic diffusion formulations rely on the equivalent to the original diffusion/viscous equations in the
pseudo steady state, and therefore are not necessarily time-accurate when the pseudo time is treated as the
physical time. However, as a matter of fact, the hyperbolic method is a method for spatial discretizations:
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form a first-order diffusion system with a pseudo time term such that the system is hyperbolic in the pseudo
time, discretize it by upwind schemes, and drop the pseudo time term to obtain a spatial discretization.
Seemingly, then, it can be combined with any time-stepping scheme. However, as we will discuss later, the
resulting schemes would lose the coupling among the variables in the discrete equations if explicit time-
stepping schemes are used. In effect, such schemes reduce to conventional diffusion schemes, and lose all the
benefits of the hyperbolic method. To keep the coupling in the discrete level, implicit-time stepping schemes
needed to be employed, where a steady solver is used for solving fully coupled unsteady residual equations.
In this paper, we report a quite remarkable finding that time-accurate explicit time-stepping schemes arise
automatically from the rDG or DG method applied to the hyperbolic diffusion formulation.

The hyperbolic diffusion formulation [1] is similar to the classical hyperbolic heat equations of Catta-
neo [15] and Vernotte [16], with a relaxation time parameter, Tr. These classical equations establish the
equivalence to the original second-order diffusion equation in the limit Tr → 0, thus resulting in a system
with stiff source terms. On the other hand, the hyperbolic method considered here is different from these
classical models in that the hyperbolic formulation is constructed with a pseudo time term and designed to
be equivalent to the diffusion term in the pseudo steady state for arbitrary relaxation time. The relaxation
time can be taken as O(1), designed to optimize iterative convergence [1], and thus there are no stiff source
terms. Because of the large relaxation time, the hyperbolic formulation will not be time-accurate when the
pseudo-time term treated as the physical-time term. It is possible to recover time accuracy by taking a
very small relaxation time, and it is useful to be able to employ explicit time-stepping schemes, which are
simpler and computationally inexpensive compared with implicit counterparts, especially when problems are
not stiff, e.g., no boundary layers are involved. In this regard, Toro and Montecinos [17] analyzed a similar
hyperbolic diffusion system and derived an upper bound on Tr, below which time accuracy can be obtained
with explicit schemes. Specifically, they derived the upper bound as Tr = O(h1+r/2), where h is a mesh
spacing and r is the accuracy order (e.g., r = 2 for second-order accurate schemes), and demonstrated its
validity for schemes up to seventh-order accuracy.

In this paper, we show that explicit time-accurate hyperbolic schemes can be constructed without any
careful adjustment to the relaxation time. Rather surprisingly, we have found that the rDG or DG dis-
cretization applied to the hyperbolic diffusion formulation is automatically time-accurate with explicit time-
stepping, with arbitrary relaxation time of O(1). As will be shown, the rDG/DG formulation automatically
generates appropriate time derivatives for the gradient variables, and creates a semi-discrete system that can
be accurately integrated in time with explicit schemes. It is also demonstrated that the resulting explicit
hyperbolic rDG schemes can yield the same order of accuracy for the primal solution and its gradients on ir-
regular grids. This is one of the unique features of the hyperbolic method, as demonstrated in many previous
papers, and would be highly desired for unstructured-grid applications with both explicit and implicit time-
stepping schemes. For reconstruction, both hybrid least-squares (LS) [18] and variational reconstruction (VR)
[19] are considered. As demonstrated in Ref.[11], the developed schemes are more efficient than the underly-
ing DG schemes. Unsteady computations are presented for pure diffusion problems and advection-diffusion
equations. Numerical results demonstrate that the hyperbolic rDG method is a cost-effective high-order
method, and encourage applications to the incompressible and compressible Navier-Stokes equations.

The paper is organized as follows. The difficulty in the construction of explicit hyperbolic diffusion
schemes is illustrated in Section II. The fact that it is not at all difficult in the case of the hyperbolic rDG
schemes is discussed in Section III. Numerical experiments are reported in Section IV. Concluding remarks
and a plan of future work are given in Section V.

II. Difficulity in Explicit Hyperbolic Diffusion Schemes

Consider the time-dependent diffusion equation

∂ϕ

∂t
= ν

∂2ϕ

∂x2
, (1)
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where ϕ denotes a scalar function that can be referred to as velocity potential, and ν is a constant. A
classical hyperbolic diffusion formulation [15,16] is given by

∂ϕ

∂t
= ν

∂vx
∂x

,

∂vx
∂t

=
1

ε

(
∂ϕ

∂x
− vx

)
,

(2)

where ε is a small constant and vx is an additional variable denoted as the gradient of the primary variable
ϕ. This system is equivalent to the original diffusion equation for a sufficiently small ε. Montecinos and Toro
[17, 20] derived an upper bound of ε, which preserves a design order of accuracy, and developed high-order
schemes for the hyperbolic formulation. In this formulation, explicit time integration schemes can be easily
employed because the hyperbolic formulation is equivalent to the diffusion equation in the partial-differential-
equation level. However, improved accuracy in the solution gradients on irregular grids, as demonstrated in
Ref.[21], is not confirmed in this approach.

In the hyperbolic method [1], the same hyperbolic system is employed:
∂ϕ

∂t
= ν

∂vx
∂x

,

∂vx
∂t

=
1

Tr

(
∂ϕ

∂x
− vx

)
,

(3)

but the relaxation time Tr is defined as

Tr =
L2
r

ν
, Lr =

1

2π
, (4)

which has been derived by requiring Fourier modes to propagate for fast steady convergence [1]. As discussed
in Ref.[1], this relaxation time is too large to ensure the consistency with the original diffusion equation, but
the equivalence is guaranteed in the steady state. The steady equivalence is the key idea in the hyperbolic
method, by which spatial discretizations with special features (e.g., higher-order accuracy in the gradient
and convergence acceleration) can be constructed. In the hyperbolic method, time-accurate schemes are
constructed based on the following form:

∂ϕ

∂τ
+
∂ϕ

∂t
= ν

∂vx
∂x

,

∂vx
∂τ

=
1

Tr

(
∂ϕ

∂x
− vx

)
,

(5)

where τ is a pseudo time variable. In the pseudo steady state (or as soon as the pseudo time derivatives
are dropped), we recover the equivalence with the original usteady diffusion equation. The system being
hyperbolic in τ , we can discretize the spatial part by upwind methods, and drop the pseudo time derivatives
to obtain: 

dϕh
dt

= ν

(
∂vx
∂x

)
h

,

0 =
1

Tr

(
∂ϕ

∂x
− vx

)
h

,

(6)

where the subscript h indicates the discrete approximation. Then, time-accurate schemes are constructed
by implicit time-integration schemes, e.g., by the backward Euler scheme:

ϕn+1
h − ϕnh

∆t
= ν

(
∂vx
∂x

)n+1

h

,

0 =
1

Tr

(
∂ϕ

∂x
− vx

)n+1

h

,

(7)

where ∆t is a time step, and n indicates the time level. These equations are fully coupled and need to be
solved simultaneously at every time step to obtain ϕn+1

h and (vx)n+1
h . The variable coupling is essential
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to ensuring the properties of hyperbolic schemes: same order of accuracy for ϕ and vx, and fast iterative
convergence in solving the unsteady residual equations.

On the other hand, if the forward Euler scheme is employed, we have
ϕn+1
h − ϕnh

∆t
= ν

(
∂vx
∂x

)n
h

,

0 =
1

Tr

(
∂ϕ

∂x
− vx

)n
h

.

(8)

In this case, the equations are decoupled: ϕn+1
h is immediately updated by the first equation alone, and there

is no update scheme for the other variable (vx)n+1
h . In effect, the second equation has become redundant.

One may solve (∂xϕ− vx)n+1
h = 0 for (vx)n+1

h , but this is simply a gradient reconstruction and therefore the
equal order of accuracy for ϕ and vx, which is one of the advantages of the hyperbolic method, is likely to
be lost on irregular grids. In short, this is just a conventional diffusion scheme with gradient reconstruction.

The above argument explains why implicit time integration schemes have been employed exclusively in
the hyperbolic method in all previous papers. Below, it is discussed that explicit time-stepping schemes can
be constructed in a rather straightforward manner in the hyperbolic DG method.

III. Explicit Hyperbolic Reconstruction Discontinuous Galerkin Methods

A. DG Discretization

Consider the hyperbolic diffusion system in the vector form:

∂U

∂τ
+ T

∂U

∂t
+
∂Fx
∂x

= S, (9)

where

U =

(
ϕ

vx

)
, T =

(
1 0

0 0

)
, Fx =

(
−νvx

−ϕ/Tr

)
, S =

(
0

−vx/Tr

)
. (10)

We begin by formulating the DG method for the hyperbolic diffusion system. We assume that the domain
Ω is subdivided into a collection of non-overlapping arbitrary elements Ωe, and then introduce the following
broken Sobolev space V nh :

V nh =
{
vh ∈

[
L2(Ω)

]k
: vh|Ωe

∈
[
V kn
]
∀Ωe ∈ Ω

}
, (11)

which consists of discontinuous vector polynomial functions of degree n, and where k is the dimension of
the unknown vector and Vn is the space of all polynomials of degree ≤ n. To formulate the DG method, we
introduce the following weak formulation, which is obtained by multiplying Eq. (9) by a test function Wh,
integrating over an element Ωe, and then performing an integration by parts: find Uh ∈ V ph such as

∂

∂τ

∫
Ωi

WhUhdΩ +
∂

∂t

∫
Ωi

WhTUhdΩ +

∫
Γi

WhFknkdΓ

−
∫

Ωi

∂Wh

∂xk
FkdΩ =

∫
Ωi

WhSdΩ, ∀Wh ∈ V nh ,
(12)

where Uh and Wh are represented by piecewise polynomial functions of degrees p, which are discontinuous
between the cell interfaces, and nk the unit outward normal vector to the Γi: the boundary of Ωi. The
standard DG solution Uh within the element Ωi can be expressed as

Uh(x, t, τ) = C(x)V(t, τ), (13)

where C is a basis matrix, and V is a vector of unknown polynomial coefficients. In the implementation of
the DG methods in this paper, modal based DG methods are adopted. The numerical polynomial solutions
are represented using a Taylor series expansion at the cell center and normalized to improve the conditioning
of the system matrix. For instance, according to the Taylor expansion in 1D, one would have

ϕh = ϕ+ ϕcx∆xB2 + ϕcxx∆x2B3 + ϕcxxx∆x3B4 + · · · , (14)
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where the ϕ represents the averaged quantity of ϕ, and the superscript c stands for the central values. The
basis functions are given as follows

B1 = 1, B2 =
x− xc

∆x
,B3 =

1

2

(
B2

2 −
1

Ωe

∫
Ωe

B2
2dΩ

)
, B4 =

1

6

(
B3

2 −
1

Ωe

∫
Ωe

B3
2dΩ

)
, (15)

where
∆x = 0.5(xmax − xmin) = 0.5h. (16)

A more efficient construction can be devised [11], in which the basis functions form a matrix C. A further
discussion about C and V will be given later in the next section. If we set the test function Wh as the
transpose of the basis matrix C, then we obtain the following:

∂

∂τ

∫
Ωi

CTCVdΩ +
∂

∂t

∫
Ωi

CTTCVdΩ +

∫
Γi

CTFknkdΓ−
∫

Ωi

∂CT

∂xk
FkdΩ =

∫
Ωi

CTSdΩ. (17)

The integrals are evaluated by Gaussian quadrature rules of appropriate orders, and the flux at the interface
will be computed art each quadrature point for a given set of solution values obtained from the polynomials
defined on two elements sharing the interface. In this paper, the following upwind flux is employed for the
diffusion term [22]:

Fi+1/2 =
1

2
(FL + FR)− 1

2

√
ν

Tr
(UR −UL), (18)

where i + 1/2 indicates an interface, and the subscripts L and R indicate the solutions at the interface
evaluated by the polynomials on the left and right elements, respectively. The resulting scheme is a DG
method of degree n, or in short notation DG(Pn). By simply increasing the degree n of the polynomials, the
DG methods of corresponding higher order are obtained.

B. Efficient Hyperbolic rDG Discretization

Compared with reconstructed FV methods, the DG methods would require more degrees of freedom, ad-
ditional domain integration, and more Gauss quadrature points for the boundary integration, which leads
to more computational costs and storage requirements. Inspired by the reconstructed DG methods from
Dumbser et al. in the frame of PnPm scheme[23–25], termed rDG(PnPm) in this paper, least-squares based
and variational reconstruction based rDG methods are designed to achieve high order of accuracy while
reducing the computational cost. The rDG method is a general framework that contains the FV and DG
methods as special cases, thus allowing for a direct efficiency comparison. For rDG(PnPm) method with
m > n, a higher-order reconstructed numerical solution is constructed over an element Ωi:

UR
h (x, t, τ) = CR(x)VR(t, τ), (19)

where the superscript R indicates reconstructed polynomials, and higher-order derivatives (higher than n-
th and up to m-th) are reconstructed from the underlying Pn polynomial. This higher-order numerical
solution UR

h is used for flux and source term computations in order to raise the order of accuracy. There
are three approaches to the reconstruction. One is a least-squares reconstruction method, and another is
a variational reconstruction method. The variational reconstruction generates a globally coupled system
of equations for gradients by minimizing jumps in the solution and derivatives at element interfaces [19].
The resulting linear system is iteratively solved along with the solution iteration, and therefore the cost
is comparable to a least-squares reconstruction. See Ref.[19] for details. The method based on the least-
squares/variational reconstruction is expressed by rDG(PnPm). The third approach, which is unique in the
hyperbolic diffusion formulation considered here, is to directly use the gradient variables and their moments
to evaluate the higher-order derivatives in the primary solution polynomial. Or equivalently, this approach
can be thought of as defining the primary solution as Pm, and use the higher-order moments to represent
the gradient variables in the hyperbolic diffusion formulation. This is the key idea to effectively reducing the
number of discrete unknowns despite the increase in the variables in the hyperbolic diffusion formulation.
The method based on this approach is expressed by DG(P0Pm). Naturally, rDG(PnPm) and DG(P0Pm)
can be combined to generate efficient schemes as we will discuss later. Below, we describe this efficient
construction of hyperbolic rDGV schemes for the combination of DG(P0P1) and DG(P0) in one dimension
as an example. Further details can be found in Ref.[11].
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By moving the third and fourth terms to the right-hand-side (r.h.s.) in Eq. (17), we arrive at

Mτ
∂V

∂τ
+ Mt

∂V

∂t
= R(UR

h ), (20)

where Mτ and Mt are the mass matrices defined as,

Mτ =

∫
Ωi

CTCdΩ, Mt =

∫
Ωi

CTTCdΩ, (21)

and R is the residual vector, defined as

R =

∫
Ωi

∂CT

∂xk
Fk(UR

h ) +

∫
Ωi

CTS(UR
h )dΩ−

∫
Γi

CTFk(UR
h )nkdΓ. (22)

The mass matrix Mt holds the key to the construction of explicit time-accurate schemes as we will discuss
later. Boundary conditions are enforced weakly through the numerical flux in a similar manner as in the
previous work [26]. Based on different rDG methods, effective hyperbolic rDG schemes can be constructed.
The format A + B is used to indicate the discretization method for the system, where A refers to the
discretization method for ϕ and B refers to the discretization method for its derivatives. Various choices
and combinations for A and B are compared in Ref.[11]. As an example, consider DG(P0P1)+DG(P0) with

V =

(
ϕ

ϕx∆x

)
, (23)

C =

(
B1 B2

0 B1∆x−1

)
. (24)

As we can see here, the basis matrix C has a off-diagonal term to include the connection between ϕ and
its derivatives, leading to a coupled system. Note that the derivatives of ϕ are determined as solutions
to the hyperbolic diffusion system, whereas conventional P1 DG methods determine them as solutions to
discrete equations derived by the weak formulation. See Ref.[11] for various other high-order schemes and
the corresponding non-diagonal basis matrices.

C. Explicit Hyperbolic rDG Scheme

We now show that the hyperbolic rDG method leads to a semi-discrete system, for which explicit time-
stepping schemes can be applied. Dropping the pseudo time terms in Eq.(20), we obtain the following
system of ordinary differential equations in the physical time:

Mt
dV

dt
= R(UR

h ), (25)

where the mass matrix Mt is given, for DG(P0P1)+DG(P0), as

Mt =

∫
Ωi

CTTCdΩ =

∫
Ωi

(
B2

1 B1B2

B1B2 B2
2

)
dΩ =

(
h 0

0 h3/12

)
. (26)

Remarkably, a nonzero entry has been created in Mt(2, 2), from T with T(2, 2) = 0, due to the non-diagonal
entry in C. That is, a physical time derivative has been created in the second equation for the gradient
variable. The system can be integrated in time by explicit time-stepping schemes; the solution and gradient
variables are both updated with their own right hand sides. This is a time-accurate semi-discrete system
because the pseudo time term has been dropped. Apparently, the time accurate discrete equation for the
gradient variable has been derived automatically by the DG differentiation: multiply the first equation (i.e.,
the diffusion equation) by B2, and then integrate it. The process is equivalent to differentiation, and it
generates a discrete approximation to the spatial derivative of the diffusion equation. But that is not the
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whole story. To see what is going on, we fully discretize the semi-discrete system (25) on a uniform grid
with a spacing h, using Simpson’s rule for the volume integral:

dϕi
dt

=
ν

h

[
(vx)i+1/2 − (vx)i−1/2

]
, (27)

d(vx)i
dt

= ν
(vx)i+1/2 − 2(vx)i + (vx)i−1/2

(h/2)2
+

12

h2Tr

[
ϕi+1/2 − ϕi−1/2

h
− (vx)j

]
, (28)

where Vi = (ϕi, (vx)i), the subscripts i − 1/2 and i + 1/2 indicate the left and right interfaces of a cell i
and values from the numerical flux (18). In the second equation, the time derivative and the first term on
the right hand side are the approximation to the spatial derivative of the diffusion equation created by the
DG differentiation. However, the second term on the right hand side is the one that dominates because of
the factor 1/h2. Therefore, the semi-discrete system is, in fact, a consistent approximation to the following
system: 

∂ϕ

∂t
= ν

∂vx
∂x

,

∂vx
∂t

=
1

ε

(
∂ϕ

∂x
− vx

)
,

(29)

where

ε =
h2Tr
12

= O(h2), (30)

which is small enough to preserve up to second-order accuracy [17,20], and thus the resulting discrete scheme
is time accurate.

A few remarks are in order. First, the DG differentiation part is equivalent to a conventional P1 DG
scheme applied to the scalar diffusion equation, and therefore the same order of accuracy cannot be expected
for both ϕi and (vx)i on irregular grids; (vx)i would be one order lower. The same order of accuracy observed

in numerical experiments supports the above argument: the leading term is not ν∂xxvx but 1
ε

(
∂ϕ
∂x − vx

)
.

In other words, the strong coupling in the differential-equation-level is retained in the discrete level, and the
scheme is solving the hyperbolic diffusion system with a sufficiently small relaxation parameter ε. Although
similar, the above scheme is different from those of Montecinos and Toro [17,20] in the numerical flux (18),
where our Tr is O(1) while their Tr is O(h1+r/2). The latter makes the dissipation coefficient O(1/h) for
second-order schemes, and it looks very much like conventional diffusion schemes. Secondly, the time accurate
semi-discrete system is a feature unique to the rDG/DG methods; it cannot happen in FV methods nor in
the schemes of Montecinos and Toro [17,20], which is not based on the weak formulation (thus the relaxation
time needed to be adjusted directly). Furthermore, it is a unique feature coming from using the non-diagonal
basis matrix C that arises from the efficient construction as a test function, where the gradient variable is
used to form a higher-order polynomial for ϕ [11]. The feature may be lost if a different test function is
chosen, e.g., the diagonal part of C. Finally, the above argument is specific to DG(P0P1)+DG(P0), and it
remains to be extended to higher-order schemes. In this paper, the time consistency of the semi-discrete
system (25) in higher-order schemes is verified by numerical experiments.

To demonstrate the semi-discrete system (25) for unsteady problems, in this paper, we employ the
following explicit three-stage third-order TVD Runge-Kutta scheme [27,28](TVDRK3) for time integration:

V(1) = Vn + ∆tMt
−1R(Vn),

V(2) =
3

4
Vn +

1

4
[U(1) + ∆tMt

−1R(V(1))],

Vn+1 =
1

3
Vn +

2

3
[V(2) + ∆tMt

−1R(V(2))].

(31)

In summary, explicit hyperbolic DG schemes can be constructed in a straightforward manner because
the Galerkin formulation creates a physical time derivative for the gradient variable vx, and results in a
semi-discrete system ready for explicit time stepping. Further details such as stability properties remain to
be investigated; here, we demonstrate numerically that high-order explicit schemes actually work and deliver
design orders of accuracy for unsteady problems.
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IV. Numerical Examples

A. 1D unsteady heat equation

Consider the following 1D heat conduction problem:
∂ϕ

∂t
= ν

∂2ϕ

∂x2
x ∈ [0, 1]

u(0, t) = u(1, t) = 0

u(x, 0) = C sin(πx)

. (32)

with
ν = 0.06, C = 50. (33)

The exact solution is given by
ϕ(x, t) = C exp(−νπ2t) sin(πx). (34)

In this case, three different hyperbolic rDG schemes, DG(P0P1)+DG(P0), DG(P0P2)+rDG-LS(P0P1),
DG(P0P2)+rDG-VR(P0P1), are used to perform computations up to t = 1, with a fixed time step ∆ =
10−4. DG(P0P1)+DG(P0) is a first-order scheme while DG(P0P2)+rDG-LS(P0P1) and DG(P0P2)+rDG-
VR(P0P1) are second-order schemes [11,26]. Error convergence results are shown in Figure 1, with uniform
grids with 8, 16, 32, and 64 elements. Clearly, the design order of accuracy has been confirmed for all schemes.
Furthermore, the same order of accuracy has been achieved in the gradient variable for all schemes.
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Figure 1: Grid refinement study on regular grids for 1D unsteady heat equation.

B. 1D unsteady advection diffusion problem

Consider the following exact solution to the 1D unsteady linear advection diffusion problem

∂ϕ

∂t
+ a

∂ϕ

∂x
= ν

∂2ϕ

∂x2
, x ∈ [0, 2] (35)

with the exact solution given as

ϕ(x, t) =
1√

4t+ 1
exp

(
− (x− at− x0)2

ν(4t+ 1)

)
, (36)

where
a = 104, ν = 0.01, x0 = 0.5. (37)

The parameters are chosen to yield an advection dominant problem. The initial Gaussian bump will travel
with a constant velocity with a small diffusion effect. The numerical flux is constructed as a sum of the
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upwind diffusion flux (18) and an upwind advective flux as described in Ref.[29]. For this test case, we test
the fourth-order scheme, DG(P0P3)+rDG-VR(P0P2), in addition to the three schemes considered before.
These schemes are known to achieved one-order higher-order of accuracy in the primal solution for advection-
dominated cases [11]. A grid refinement test has been carried out to verify the spatial order of accuracy in
this unsteady case. A small physical time step ∆t = 10−9 has been set for all the grids with a fixed final
time tend = 10−4. The grids are uniform with nelem = 32, 64, 128 and 256. Dirichlet boundary conditions
have been applied on both ends. All the presented methods use the same degrees of freedom, 2, which
is equivalent to a conventional P1 DG method. Note also that a FV scheme would have 2 unknowns per
element for the hyperbolic diffusion formulation; however, the developed hyperbolic rDG schemes are not
FV schemes because of the coupling generated by the non-diagonal basis matrix CT . The numerical results
are shown in Figure 2. As can be observed, DG(P0P1)+DG(P0) achieves first-order accuracy in the gradient
and one-order higher-order of accuracy in the primal solution as expected. Unexpectedly, DG(P0P2)+rDG-
LS(P0P1) and DG(P0P2)+rDG-VR(P0P1) achieve asymptotically second-order accuracy in the gradient and
fourth-order accuracy in the primal solution. Furthermore, DG(P0P3)+rDG-VR(P0P2) gives fourth-order
accuracy in both the solution and the gradient.

Secondly, a comparison between the developed schemes and a conventional DG (Direct DG [30] in this
study), is shown in Figure 3. Here, periodic boundary conditions are enforced with ∆t = 10−9, tend = 10−3

on a uniform mesh (nelem = 32). Clearly, the presented hyperbolic rDG schemes can outperform the
conventional counterpart, better resolving the peak of the Gaussian profile. Efficiency of the hyperbolic rDG
schemes are evident from the fact that all schemes use 2 degrees of freedom per element, including the P1

DDG.
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Figure 2: Grid refinement study on regular grids for 1D unsteady case.

C. 2D unsteady advection diffusion problem

In this case, we extend the previous case to two dimensions. The analytical solution is given by

ϕ(x, y, t) =
1

4t+ 1
exp

(
− (x− at− x0)2 + (y − bt− y0)2

ν(4t+ 1)

)
, (x, y) ∈ [0, 2]× [0, 2], (38)

where
x0 = y0 = 1.0, a = b = 10−5, ν = 0.01. (39)

The following schemes are tested and compared:

DG(P0P1)+DG(P0), and DG(P0P2)+DG(P1),

DG(P0P2)+rDG-LS(P0P1), and DG(P0P3)+rDG-LS(P1P2),

DG(P0P2)+rDG-VR(P0P1), and DG(P0P3)+rDG-VR(P0P2),

DG(P0P3)+rDG-VR(P1P2), and DG(P0P4)+rDG-VR(P1P3).
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Figure 3: Grid refinement study on regular grids for 1D unsteady case.

Note that the hyperbolic rDG schemes with rDG(P1P2) and rDG(P1P3) use six degrees of freedom per
element, which is equivalent to the P2 DG scheme, DG(P0P2)+DG(P1). Two sets of triangular meshes are
used in the test, namely regular and irregular grids. The sample of each type of grids are shown in Figure 4.

X
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0
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1

1.5

2

X

Y

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 4: The sample regular and irregular grids, generated from a 16 × 16 Cartesian grid by subdivision
and nodal perturbation.

The physical time step is set as ∆t = 10−3 with tend = 1. Dirichlet boundary conditions are applied on
all the boundary faces. The numerical results are shown in Table 1 and Figures 5 to 6. All the presented
schemes are shown to provide the design or higher order of accuracy in this unsteady case. In particular,
DG(P0P3)+rDG-VR(P0P2) achieves slightly higher than fourth-order accuracy for both the solution and
the gradient on irregular grids with only three degrees of freedom per element, which is equivalent to a
conventional P1 DG scheme that is second-order in the solution and first-order in the gradient.

V. Conclusions and Outlook

Contrary to expectations, we have demonstrated that rDG methods applied to a hyperbolic diffusion
system are time-accurate with explicit time-stepping schemes. The hyperbolic diffusion formulation used
here is formally equivalent to the diffusion equation only in the steady state. However, it has been discov-
ered that the reconstructed discontinuous Galerkin discretization automatically creates a valid time-accurate
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Figure 5: Grid refinement study on regular grids for 2D unsteady case.
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Figure 6: Grid refinement study on irregular grids for 2D unsteady case.

semi-discrete system that can be integrated in time by explicit time-stepping schemes. This special property
has been found due to the non-diagonal nature of the basis matrix used in the efficient construction of the
hyperbolic rDG method. The off-diagonal entries create the physical time derivatives through the weak
formulation, and also scale the relaxation properly to recover time accuracy. In effect, no special technique
nor modification is necessary; explicit time-stepping schemes can be constructed in a rather straightforward
manner. Several high-order hyperbolic rDG schemes have been constructed and demonstrated for an un-
steady advection-diffusion equation. These schemes are very efficient, achieving up to fourth-order accuracy
on irregular grids with only three or six degrees of freedom per element in two dimensions, while conventional
DG schemes can achieve only up to third-order accuracy with six degrees of freedom per element. Also, the
developed hyperbolic rDG schemes achieve the same order of accuracy in the solution and the gradient on
irregular grids in the diffusion limit while conventional DG schemes yield one-order lower order of accuracy
in the gradient. These hyperbolic rDG schemes provide attractive alternatives to solve unsteady problems
with explicit time-stepping schemes. An undergoing effort is being put on extending the method to nonlinear
equations to show its potential for applications to the Navier-Stokes equation on fully 3D unstructured grids.
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Table 1: Order of accuracy on 2D unsteady advection diffusion problem.

Scheme [DoFs] Regular Irregular

ϕ vx ϕ vx

DG(P0P1)+DG(P0) [3] 0.97 0.79 0.99 0.80

DG(P0P2)+DG(P1) [6] 1.96 1.86 1.84 1.68

DG(P0P2)+rDG-LS(P0P1) [3] 2.34 2.24 1.94 1.95

DG(P0P3)+rDG-LS(P1P2) [6] 3.96 3.34 3.93 3.18

DG(P0P2)+rDG-VR(P0P1) [3] 2.89 2.30 2.64 2.24

DG(P0P3)+rDG-VR(P0P2) [3] 5.30 4.57 4.38 4.57

DG(P0P3)+rDG-VR(P1P2) [6] 3.76 3.66 3.81 3.56

DG(P0P4)+rDG-VR(P1P3) [6] 5.14 5.06 4.74 4.62
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