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Reconstructed Discontinuous Galerkin (rDG) methods are presented for solving diffu-
sion equations based on a first-order hyperbolic system (FOHS) formulation. The idea is
to combine the advantages of the FOHS formulation and the rDG methods in an effort
to develop a more reliable, accurate, efficient, and robust method for solving the diffusion
equations. The developed hyperbolic rDG methods can be made to have higher-order ac-
curacy than conventional DG methods with fewer degrees of freedom. A number of test
cases for different diffusion equations are presented to assess accuracy and performance of
the newly developed hyperbolic rDG methods in comparison with the standard BR2 DG
method. Numerical experiments demonstrate that the hyperbolic rDG methods are able
to achieve the designed optimal order of accuracy for both solutions and their derivatives
on regular, irregular, and heterogeneous girds, and outperform the BR2 method in terms
of the magnitude of the error, the order of accuracy, the size of time steps, and the CPU
times required to achieve steady state solutions, indicating that the developed hyperbolic
rDG methods provide an attractive and probably an even superior alternative for solving
the diffusion equations.

I. Introduction

The discontinuous Galerkin (DG) methods2,4, 5, 8–10,16,18,19,22–26,41,42,45 have recently become popular
for the solution of systems of conservation laws. Nowadays, they are widely used in computational fluid
dynamics, computational acoustics, and computational magneto-hydrodynamics. The DG methods combine
two advantageous features commonly associated to the finite element (FE) and finite volume (FV) methods.
As in classical finite element methods, the order of accuracy is obtained by means of high-order polynomial
approximation within an element rather than by wide stencils as in the finite volume methods. The physics
of wave propagation is, however, accounted for by solving the Riemann problems that arise from the discon-
tinuous representation of the solution at element interfaces. In this respect, the DG methods (DGMs) are
therefore similar to the finite volume methods. The DG methods have many attractive features: 1) They
have several useful mathematical properties with respect to conservation, stability, and convergence; 2) They
can be easily extended to higher-order (>2nd) approximation; 3) They are well suited for complex geometries
since they can be applied on unstructured grids. In addition, the methods can also handle non-conforming el-
ements, where the grids are allowed to have hanging nodes; 4) The methods are highly parallelizable, as they
are compact and each element is independent. Since the elements are discontinuous, and the inter-element
communications are minimal, domain decomposition can be efficiently employed; 5) They can easily handle
adaptive strategies, since refining or coarsening a grid can be achieved without considering the continuity
restriction commonly associated with the conforming elements. The methods allow easy implementation of
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hp-refinement, for example, the order of accuracy, or shape, can vary from element to element. However, the
DGMs have a number of their own weaknesses. In particular, how to effectively control spurious oscillations
in the presence of strong discontinuities, how to reduce the computing costs for the DGMs, and how to
efficiently solve elliptic problems or discretize diffusion terms in the parabolic equations remain the three
unresolved and challenging issues in the DGMs.

The DGMs have been recognized as expensive in terms of both computational costs and storage require-
ments. Indeed, compared to the FE and FV methods, the DGMs require solutions of systems of equations
with more unknowns for the same grids. In order to reduce high costs associated with the DGMs, Dumbser
et al.12–14 have introduced a new family of reconstructed DGM, termed PnPm schemes and referred to as
rDG(PnPm) in this paper, where Pn indicates that a piecewise polynomial of degree of n is used to represent
a DG solution, and Pm represents a reconstructed polynomial solution of degree of m (m ≥ n) that is used
to compute the fluxes. The rDG(PnPm) schemes27,28,31,46,47 are designed to enhance the accuracy of the
DGM by increasing the order of the underlying polynomial solution. The beauty of rDG(PnPm) schemes
is that they provide a unified formulation for both FVM and DGM, and contain both classical FVM and
standard DGM as two special cases of rDG(PnPm) schemes. When n = 0, i.e. a piecewise constant polyno-
mial is used to represent a numerical solution, rDG(P0Pm) is nothing but classical high order FV schemes,
where a polynomial solution of degree m (m ≥ 1) is reconstructed from a piecewise constant solution. When
m = n, the reconstruction reduces to the identity operator, and rDG(PnPn) scheme yields a standard
DG(Pn) method. For n > 0, and m > n, a new family of numerical methods from third-order of accuracy
upwards is obtained. A Hierarchical WENO-based rDG method30,32 is designed not only to reduce the high
computing costs of the DGM, but also to avoid spurious oscillations in the vicinity of strong discontinuities,
thus effectively overcoming the first two shortcomings of the DG methods.

The DGMs are indeed a natural choice for the solution of the hyperbolic equations, such as the compress-
ible Euler equations. However, the DG formulation is far less certain and advantageous for elliptic problems
or parabolic equations such as the compressible Navier-Stokes equations, where diffusive fluxes exist and
which require the evaluation of the solution derivatives at the interfaces. Taking a simple arithmetic mean
of the solution derivatives from the left and right is inconsistent, because it does not take into account
a possible jump of the solutions. A number of numerical methods have been proposed in the literature
to address this issue, such as those by Bassi and Rebay,3,5, 6 Cockburn and Shu,11 Baumann and Oden,7

Peraire and Persson,40 and many others. Arnold et al.1 have analyzed a large class of DGM for second-order
elliptic problems in a unified formulation. All these methods have introduced in some way the influence of
the discontinuities in order to define correct and consistent diffusive fluxes. Gassner et al.17 introduced a
numerical scheme based on the exact solution of the diffusive generalized Riemann problem for the DGM. Liu
et al.?,? proposed a direct discontinuous Galerkin (DDG) method to solve diffusion problems based on the
direct weak formulation for solutions of parabolic equations. Cheng et al.? successfully extended the DDG
method to solve the compressible Navier-Stokes equations on arbitrary grids. Luo et al. have developed
a reconstructed discontinuous Galerkin method using an inter-cell reconstruction29 for the solution of the
compressible Navier-Stokes equations. Unfortunately, all these methods seem to require substantially more
computational effort than the classical continuous finite element methods, which are naturally more suited
for the discretization of elliptic problems.

An alternative approach for viscous discretization is to reformulate the viscous terms as a hyperbolic
system using the first-order hyperbolic system (FOHS) formulation developed by Nishikawa35–39 over the
last several years, and recently extended to the three-dimensional Navier-Stokes equations.20,34 In the
FOHS formulation, the diffusion equations are first formulated as a first-order system (FOS) by including
derivative quantities as additional variables. The system is then rendered to be hyperbolic, which is the
distinguished feature of the FOHS method from other FOS methods, by adding pseudo time derivatives to
the first-order system. It thus generates a system of pseudo-time evolution equations for the solution and
the derivatives in the partial differential equation (PDE) level, not in the discretization level as in DGM.
The hyperbolic formulation in the PDE level allows a dramatic simplification in the discretization because
well-established methods for hyperbolic systems can be directly applied to the viscous terms. In the pseudo
steady state or simply by dropping the pseudo-time derivative after the discretization, a consistent and
superior discretization of the diffusion equations is obtained. The FOHS method is especially attractive in
the context of the DGM, since it allows the use of inviscid algorithms for the viscous terms and thus greatly
simplifies the discretization of the compressible Navier Stokes equations. Moreover, schemes constructed
based on the hyperbolic method are known to achieve the same order of accuracy in the solution and the
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derivatives on irregular grids; conventional DGMs typically yield one-order-lower accuracy in the derivatives
on such grids. This property is attractive since irregular grids are hard to avoid in grid adaptation, which
is considered as one of the essential elements for high-order methods to be practical,44 and the main target
quantities (e.g., the viscous stresses) are derivatives in viscous problems.

The hyperbolic approach applied to a DG discretization method for advection-diffusion equation is dis-
cussed in literature,33 where the idea of Scheme-II37 is extended to construct a hyperbolic DG discretization
that minimizes the additional cost associated with the increased number of equations. This specific method
achieves the same order of accuracy in the advective term and the gradients as a conventional DG method
for the same total number of degrees of freedom. However, the order of accuracy for the diffusive term is
one order lower than the conventional DG method (see Table 3 in Ref.33); it leads to lower order accuracy,
for example, in boundary layers. Moreover, since a direct solver is employed for solving the linear system in
the Newton method, convergence acceleration by the elimination of second derivatives, which is one of the
advantages of the hyperbolic method, is not achieved. Therefore, this approach is, although more efficient
than a straightforward DG discretization of the FOHS, actually less efficient than conventional DG methods,
not fully taking advantage of the hyperbolic method. Note also that the method in Ref.33 employs a dissi-
pative Rusanov-type flux, not the upwind hyperbolic-diffusion flux demonstrated in the previous studies for
finite-volume methods. As we will show, the latter yields more accurate solutions and gradients. Further-
more, this paper focuses on pure diffusion problems, which are not addressed in Ref.,33 including a tensor
diffusion coefficient, and explores various hyperbolic DG constructions. Developed schemes will be compared
with the BR2 diffusion scheme15 that is widely employed in the DGMs for diffusion and the Navier-Stokes
equations;16,29 Ref.33 provides comparisons only with a less popular non-optimal interior penalty scheme.
As will be shown, some of the developed DG schemes here achieve one order higher accuracy in the primary
variable than that in the auxiliary variables; these schemes indicate a potential for overcoming the lower
order accuracy issue for the diffusion term in the method of Ref.33

The objective of the effort discussed in this paper is to develop a higher-order rDG method for solving
diffusion equations based on the first-order hyperbolic system formulation, termed hyperbolic rDG methods
in this paper. The idea behind the hyperbolic rDG methods is to combine the advantages of the FOHS
formulation and the rDG methods in an effort to develop a more reliable, accurate, efficient, and robust
method for solving the diffusion equations and ultimately the incompressible and compressible Navier-Stokes
equations on fully irregular, adaptive, anisotropic, unstructured grids. By using the solution derivatives
handily available in the FOHS formulation and Taylor basis in the rDG formulation, the hyperbolic rDG
methods can be designed to have the same number of degrees-of-freedom as the conventional rDG methods.
A number of test cases for different diffusion equations are presented to assess accuracy and performance of
the newly developed hyperbolic rDG methods in comparison with the standard BR2 DG method. Numerical
experiments demonstrate that the hyperbolic rDG methods are able to achieve the designed optimal order
of accuracy for both solutions and their derivatives on regular, irregular, and heterogeneous girds, and
outperform the BR2 method in terms of the magnitude of the error, the order of accuracy, the size of
time steps, and the CPU times required to achieve steady state solutions, indicating that the developed
hyperbolic rDG methods provide an attractive and probably an even superior alternative for solving the
diffusion equations.

The remainder of this paper is organized as follows. A FOHS formulation for diffusion equations is
described in Section II. The rDG methods for solving the hyperbolic diffusion equations are presented in
Section III. Extensive numerical experiments are reported in Section IV. Concluding remarks are given in
Section V.

II. First-Order Hyperbolic System formulation

The FOHS formulation35 was introduced by Nishikawa as a radical approach for solving diffusion equation.
Consider the following diffusion equation in two dimensions

−∇ · (D∇ϕ) = f, (1)
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where ϕ denotes a scalar function, which can be referred to as velocity potential, and D denotes a symmetric
positive definite diffusion tensor, which can be expressed as

D =

[
Dxx(x, y) Dxy(x, y)

Dxy(x, y) Dyy(x, y)

]
. (2)

By introducing an auxiliary vector variable, V = (vx vy), which is the gradient of the velocity potential, i.e.,
velocity vector, Eq. (1) can be rewritten as a first-order system of equations as

− ∂

∂x
(Dxxvx + Dxyvy)− ∂

∂y
(Dxyvx + Dyyvy) = f

vx =
∂ϕ

∂x

vy =
∂ϕ

∂y

(3)

This formulation is known for decades as the mixed formulation in the FE community and widely used
in many discretization methods including the DG methods. For example, Bassi and Rebay derived the
well-known and widely used BR1 and BR2 methods from this formulation.3,6 Note that the above system,
i.e., Eq. (3) is elliptic in space, which is equivalent to the original equation. In the FOHS formulation, the
system is made hyperbolic by adding pseudo-time derivatives with respect to all variables as follows:

∂ϕ

∂τ
=

∂

∂x
(Dxxvx + Dxyvy) +

∂

∂y
(Dxyvx + Dyyvy) + f

∂vx

∂τ
=

1

Tr

(
∂ϕ

∂x
− vx

)
∂vy

∂τ
=

1

Tr

(
∂ϕ

∂y
− vy

) (4)

where τ is the pseudo time and Tr is a free parameter called the relaxation time. In the FOHS formulation,
our interest is to obtain the steady-state solution of the pseudo-time system, i.e., Eq. (4), which is the
solution to the original diffusion equation (1). The FOHS can be written in vector form as

∂U

∂τ
=
∂Fx

∂x
+
∂Fy

∂y
+ S, (5)

where

U =

ϕvx

vy

 ,Fx =

−Dxxvx −Dxyvy

−ϕ/Tr
0

 ,Fy =

−Dxyvx −Dyyvy

0

−ϕ/Tr

 ,S =

 f

−vx/Tr

−vy/Tr

 . (6)

Since D is a symmetric positive definite tensor, consider an unit vector n = (nx ny)T at an arbitrary
direction, one would have

ν = nTDn = Dxxn
2
x + 2Dxynxny + Dyyn

2
y > 0. (7)

Consider the Jacobian of the flux projected along n,

An =
∂(F · n)

∂U
=
∂(Fxnx + Fyny)

∂U
=

 0 −Dxxnx −Dxyny −Dxynx −Dyyny

−nx/Tr 0 0

−ny/Tr 0 0

 . (8)

It has the following eigenvalues

λ1 = −
√

ν

Tr
, λ2 = −

√
ν

Tr
, λ3 = 0. (9)

The first two nonzero eigenvalues indicate that the system describes a wave propagating isotropically. The
third eigenvalue corresponds to the inconsistency damping mode.35 The relaxation time Tr does not affect
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the steady solution, and thus can be defined solely for the purpose of accelerating the convergence to the
steady state. For simplicity, Tr is defined as

Tr = L2
r, Lr =

1

2π
, (10)

where the length scale Lr, according to Nishikawa’s work,35–39 has been defined to maximize the effect
of propagation. The absolute Jacobian |An| is constructed by the right-eigenvector matrix Rn, and the
diagonal eigenvalue-matrix Λn,

Rn =
1

2

 1 −1 0

nx/
√
νTr nx/

√
νTr −2(Dxxnx + Dxyny)

ny/
√
νTr ny/

√
νTr −2(Dxynx + Dyyny)

 ,Λn =

−λ 0 0

0 λ 0

0 0 0

 , (11)

where λ = |λ1| = |λ2| =
√
ν/Tr. Hence,

|An| = Rn|Λn|R−1
n = λ

1 0 0

0 nx(Dxxnx + Dxyny) ny(Dxxnx + Dxyny)

0 nx(Dxynx + Dyyny) ny(Dxynx + Dyyny)

 . (12)

III. Reconstruction Discontinuous Galerkin Methods

Discontinuous Galerkin methods are a family of numerical method that combines the advantages of classic
finite volume methods and finite element methods. With the method of lines, it would expressed the solution
as

uh =

N∑
j=1

uj(t)Bj(x, y), (13)

where Bj is basis function in the broke Sobolev space. Multiply test function, chosen as the basis function
Bi, to Eq. (5), and integrate by parts would yield

d

dτ

∫
Ωe

UhBidΩ +

∮
∂Ωe

F · ndΓ−
∫

Ωe

F · ∇BidΩ =

∫
Ωe

SBidΩ, i = 1, · · · , N. (14)

In short, we could express it as the semi-discretized form

M
dU

dτ
= R, (15)

where M is the mass matrix, whose entries are

mij =

∫
Ωe

BiBjdΩ, i, j = 1, 2, · · · , N, (16)

and R is the residual vector, defined as

ri =

∫
Ωe

(
Fx

∂Bi

∂x
+ Fy

∂Bi

∂y
+ SBi

)
dΩ−

∮
∂Ωe

FnBidΓ, i = 1, 2, · · · , N. (17)

In the traditional nodal discontinues Galerkin methods, numerical polynomial solutions in each element
are expressed using either standard Lagrange finite element or hierarchical node-based basis function. In
the implementation of the DGMs in this paper, however, modal DG is adopted. The numerical polynomial
solutions are represented using a Taylor series expansion at the cell center and normalized to improve the
conditioning of the system matrix. For example, the quadratic polynomial solutions could be expressed as
follows,

Uh =Uc +
∂U

∂x

∣∣∣∣
c

(x− xc) +
∂U

∂y

∣∣∣∣
c

(y − yc)

+
∂2U

∂x2

∣∣∣∣
c

(x− xc)2

2
+
∂2U

∂y2

∣∣∣∣
c

(y − yc)2

2
+

∂2U

∂x∂y

∣∣∣∣
c

(x− xc)(y − yc),
(18)
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which could be further expressed as cell-averaged values, i.e., Ũ, and the derivatives at the center.

Uh =ŨB1 +
∂U

∂x

∣∣∣∣
c

∆xB2 +
∂U

∂y

∣∣∣∣
c

∆yB3

+
∂2U

∂x2

∣∣∣∣
c

∆x2B4 +
∂2U

∂y2

∣∣∣∣
c

∆y2B5 +
∂2U

∂x∂y

∣∣∣∣
c

∆x∆yB6,

(19)

where ∆x = 0.5(xmax − xmin) and ∆y = 0.5(ymax − ymin). And xmax, xmin, ymax, and ymin are the maxium
and minimum coordinates in the cell Ωe in x−, and y− directions respectively. The basis functions are given
as follows

B1 = 1, B2 =
x− xc

∆x
,B3 =

y − yc
∆y

,B4 =
1

2

(
B2

2 −
∫

Ωe

B2
2dΩ

)
,

B5 =
1

2

(
B2

3 −
∫

Ωe

B2
3dΩ

)
, B6 = B2B3 −

∫
Ω3

B2B3dΩ.
(20)

Compared with reconstructed FV methods, the DGM would require more degrees of freedom, additional
domain integration, and more Gauss quadrature points for the boundary integration, which leads to more
computational costs and storage requirements. Inspired by the DGM from Dumbser et al. in the frame
of PnPm scheme,12–14 a hierarchical WENO-based rDG method30,32 is designed to achieve high order of
accuracy while reducing the computational cost. As a matter of fact, rDG method could provide a unified
formulation for both FV and DG methods. The standard FV and DG method would be nothing but special
cases in rDG frame work, and thus allow for a direct efficiency comparison.

Based on different DGMs, some effective discretization hyperbolic rDG methods will be presented to
deal with the derived first-order hyperbolic system (FOHS). The format A + B is used to indicate the
discretization method for the system, where A refers to the discretization method for ϕ and B refers to
the discretization method for its derivatives. Note that what make the hyperbolic DG methods based on
FOHS different from standard DGMs is that the system is in the partial differential equation (PDE) level
other than in the discretization level. While the choice of B would be either standard DG(Pn) method or
rDG(PnPm) method, we have one more option in A. Since FOHS would introduce the derivatives into
the system as auxiliary variables, one can construct higher order polynomial in the primary variable while
keeping the minimal degrees of freedom. In FV methods, this technique corresponds to Scheme-II in Ref.,37

which replaces the LSQ gradients in the primary variable reconstruction by the auxiliary variables. It thus
eliminates the need for the LSQ gradient computation for the primary variable, but the degrees of freedom
remains the same. In the DGMs, it eliminates the need to store and solve for high-order moments for the
primary variable,33 and effectively reducing the degrees of freedom and the number of discrete equations.
This new approach, termed DG(P0Pk), can deliver high order accuracy in ϕ with the minimal computational
cost and storage requirement, where k is the order of polynomial we construct for ϕ with the information
from its derivatives.

In this work, Gaussian quadrature formulas are used to compute the integration. We tabulate the the
degrees of freedom and optimal order of accuracy in ϕ and its derivatives, as well as number of minimal
needed Gauss quadrature points for face and domain integration in Table 1. The top three schemes are
straightforward DG discretizations of FOHS, which achieve first, second, and third-order accuracy for all
variables. The next three schemes correspond to their efficient variants: the first one constructs a linear
polynomial of ϕ by using (vx, vy) as its slopes; the second and third ones replace higher-order moments of ϕ
by using the information of (vx, vy). The next two schemes are rDG constructions: the first one corresponds
to a second-order finite-volume scheme, and the second one is a popular third-order rDG scheme. The next
four schemes, DG+rDG, are more efficient rDG constructions, whereonly one degree of freedom is retained
for ϕ for all accuracy orders. Finally, the BR2 schemes are listed for comparison. As can be seen, the
DG+rDG schemes achieve higher-order accuracy in either ϕ or (vx, vy), or both for comparable numbers of
degrees of freedom. It is possible to match the degrees of freedoms of DG(P0P2)+rDG(P1P2) (and even
DG(P0P2)+rDG(P1P2)) and BR2(P2) by unifying the cross derivative terms of (vx, vy) as in Ref.33 But
such is left as future work as these schemes are already more efficient than BR2(P2), which can be seen also
in terms of the number of quadrature points. It is clearly seen that hyperbolic rDG methods could achieve
high order of accuracy while using less degrees of freedom and also less Gauss quadrature points compared
with standard DGMs. Finally, it should be noted that BR2 schemes require the same order of polynomials
and their storage for the solution and the diffusive fluxes, and therefore the hyperbolic DG/rDG methods and
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the BR2 method (or any FOS-based methods) has the same storage requirement. The hyperbolic DG/rDG
methods solve for the solution and the derivatives in a coupled manner, thus resulting in a larger system of
discrete equations; the BR2 schemes use the FOS formulation in a decoupled manner by explicitly computing
the diffusive fluxes and then substituting them in the primal discretization.

Table 1: Comparison between different hyperbolic rDG methods and the BR2 method in terms of degrees
of freedom, optimal order and number of Gaussian quadrature points in 2D. In BR2, the degrees of freedom
for the diffusive fluxes are not included.

Scheme Degrees of freedom
Observed order Number of Gauss points

ϕ vx, vy Face integral domain integral

DG(P0)+DG(P0) 3 1 1 1 1

DG(P1)+DG(P1) 9 2 2 2 3

DG(P2)+DG(P2) 18 3 3 3 6

DG(P0P1)+DG(P0) 3 2 1 2 1

DG(P0P1)+DG(P1) 7 2 2 2 3

DG(P0P2)+DG(P1) 7 3 2 2 3

rDG(P0P1)+rDG(P0P1) 3 2 2 2 1

rDG(P1P2)+rDG(P1P2) 9 3 3 3 4

DG(P0P1)+rDG(P0P1) 3 2 2 2 1

DG(P0P2)+rDG(P0P1) 3 3 2 2 1

DG(P0P2)+rDG(P1P2) 7 3 3 2 4

DG(P0P3)+rDG(P1P2) 7 4 3 3 4

DG(P1)-BR2 3 2 1 2 3

DG(P2)-BR2 6 3 2 3 6

The hyperbolic formulation in FOHS would allow hyperbolic DGMs to use well-established methods for
hyperbolic system. Instead of using BR2, DDG or other usual diffusion scheme for DGMs, the numerical
flux is computed by the upwind flux as

Fij =
1

2
(FL + FR) · nij −

1

2
|An|(UR −UL), (21)

where the subscripts L and R indicate the values evaluated at the face by the polynomials in the elements
i and j, respectively, and nij denotes a unit face-normal vector pointing from the element i to the neighbor
element j. In contrast, the Rusanov (or Local-Lax-Friedrich) flux as employed in Ref.33 is given by

Fij =
1

2
(FL + FR) · nij −

λ

2
(UR −UL), (22)

which is much more dissipative than the upwind flux and yields lower levels of errors as we will show later.
Boundary conditions are enforced weakly through the numerical flux in a similar manner as described for

one-dimensional hyperbolic schemes in Ref.39 For all test problems, the Dirichlet condition is considered,
and therefore the solution ϕ is given on boundaries. At a boundary face, nij is taken to be outward, and
thus UR is considered as a boundary state. The boundary condition is incorporated into the boundary state
as

UR = (ϕb, vnnx + ∂sϕbtx, vnny + ∂sϕbty), (23)

where ϕb is the value given as a boundary condition, and ∂sϕb is the tangential derivative that can be
obtained from the given boundary condition, vn is the face-normal projection of (vx, vy) evaluated at the
left (interior) state UL, nij = (nx, ny), and (tx, ty) denotes a unit tangent vector of the boundary face. Note
that s is taken to be positive in the counterclockwise direction along a boundary, and the tangent vector is
also taken in the same direction. In the case of a unit square domain, the boundary state becomes

UR = (ϕb, vx, ∂yϕb), (24)
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at the left and right boundaries, and
UR = (ϕb, ∂xϕb, vy), (25)

at the top and bottom boundaries.
Note that the normal component vn may be specified in place of ϕb in the case of Neumann problems.

As discussed in,35 the hyperbolic diffusion system has one wave going out of the domain,and therefore one
quantity should be left unspecified, which corresponds to the normal derivative vn in the Dirichlet case (or
ϕ in the Neumann case). Or it may be argued that since the hyperbolic diffusion system is equivalent to the
original diffusion equation in the pseudo steady state, the boundary condition should also be the same as
the original problem. The tangential derivative can be specified since ϕ is known in the Dirichlet case, but
it is not necessary; the results are very similar with and without specifying ∂sϕb.

To advance the solution in time, explicit three-stage TVD Runge-Kutta (TVDRK3) scheme and implicit
BDF1 scheme have been employed in this work. To accelerate the convergence, the local time step is employed
and determined as

∆t = CFL
2Ωe∑

j(ν/LrAij + Ωj/Tr)
. (26)

For TVDRK3 time marching scheme, hyperbolic rDG method typically would require CFL≤ 1.5 to
ensure stability. However, for implicit BDF1 method, one can set CFL as infinity (CFL= 1015) for all the
case. In other words, the pseudo time term could be dropped for implicit time marching. For implicit
scheme, GMRES+LU-SGS21,43 has been implemented to solve the linear system, where LU-SGS serves as
the preconditioner.

IV. Numerical Examples

Several steady model diffusion problems in a unit square are considered in this section. All the cases
would be computed on three types of grids. The first and second types are regular and irregular triangular
grids with 9× 9, 17× 17, 33× 33, and 65× 65 nodes. The irregular gird is generated from the regular grid
by random diagonal swapping and nodal perturbation. The third type is a set of heterogeneous grids with
12× 11, 23× 21, 45× 41, and 99× 81 nodes. The second grid of every type is shown in Figure 1.

In our work, the quality of these 3 types of grids is investigated as follows. For any triangle, there exists
a ratio,

r =
Rout

Rin
, (27)

where, Rout denotes the radius of the circumscribed circle, and Rin refers to the radius of the inscribed circle.
The ratio for the equilateral triangle, the best choice for numerical computation, is equal to 2.0. Therefore,
in this work, the quality of meshes would be measured through

R =
r − 2

2
. (28)
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Figure 1: The second mesh of every type, that is, 17 × 17 regular grid, 17 × 17 irregular grid, and 23 × 21
heterogeneous grid.
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Clearly, larger R indicates that the triangle meshes deviates greatly from the equilateral triangle. While
the first type of mesh, i.e., the regular mesh, would remain same R for the entire computation domain, others
may encounter large R. The contours of R for the coarsest mesh from the irregular and heterogeneous mesh
are shown in Figure 2. It could be observed that, for the first heterogeneous mesh, maximum of reached 80,
which are almost 2 orders of magnitude higher than the one of the irregular mesh. This demonstrates the
bad quality of the heterogeneous mesh, and also will demonstrate the robustness and accuracy of developed
methods.

1 1
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Figure 2: Distribution of R in the coarsest irregular mesh (left) and heterogeneous mesh (right).

In this paper, all the cases are computed with the initial solution set as 1.0 everywhere and the steady
state is considered to be reached when the residual in ϕ drops below 10−12 in the L2 norm.

A. Case I, Scalar coefficient without source term

To begin with, a steady diffusion problem in a unit square is considered with the exact solution given by

ϕ(x, y) =
sinh(πx) sin(πy) sinh(πy) sin(πx)

sinh(π)
, (29)

and
D = I, f = 0, (30)

where I is the 2×2 identity matrix.
The grid refinement study is carried out for regular, irregular and heterogeneous mesh to access the

accuracy and the robustness of the presented hyperbolic rDG methods using BDF1. L2 norm of the difference
between the numerical results and the exact ones is used as the error measurement. All norms are computed
by Gaussian quadrature. The grid refinement study results for regular, irregular and heterogeneous meshes
are shown in Figure 3.

In all cases, the same order of accuracy, at least, has been achieved as expected. Note that the same order
of accuracy is expected even when a higher-order polynomial is used in the primary variable; this is consistent
with results for other hyperbolic schemes.37,39 Exceptions are DG(P0P1)+DG(P0), DG(P0P2)+DG(P1),
and DG(P0P3)+rDG(P1P2), which achieve one-order higher accuracy in the primary variable. Such results
have never been observed in the hyperbolic method before. Note, however, that DG(P0P3)+rDG(P1P2)
is not stable on the heterogeneous mesh. Therefore, WENO reconstruction has to be used to guarantee
the stability of such scheme with the cost of achieving only 3rd order of accuracy for variable ϕ. Note
that though upwind flux is implemented for all hyperbolic DGMs here, we use Rusanov flux scheme with
DG(P0P3)+rDG(P1P2) in irregular grids to compare. Clearly, Rusanov flux scheme would lead to less
accurate results than upwind method due to too much dissipation, especially in ϕ.

Next, the comparison between hyperbolic DGMs and BR2 is carried out on regular, irregular and het-
erogeneous meshes using explicit TVDRK3, and the order of accuracy results are shown in Figure 4. It is
obvious that, DG(P1)-BR2 could achieve 2nd order of accuracy for variable , and 1st order of accuracy for
gradient of variable. Likewise, DG(P2)-BR2 could achieve 3rd order of accuracy for variable ϕ, and 2nd
order of accuracy for gradients. Note that the gradients are obtained always with one-order-lower accuracy
than the primary variable, which is typical in conventional DGMs.
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Figure 3: Grid refinement study of Case I on regular grids(left), irregular grids (middle) and heterogeneous
grids(right) using implicit BDF1.
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Figure 4: Comparison between hyperbolic rDG methods and BR2 scheme in terms of order of accuracy on
regular grids(left), irregular grids (middle) and heterogeneous grids(right) for Case I using explicit TVDRK3.
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Figure 5: Comparison between hyperbolic rDG methods and BR2 scheme in terms of CPU time on 17× 17
regular grids(left), 17 × 17 irregular grids (middle) and 23 × 21 heterogeneous grids(right) for Case I using
explicit TVDRK3.

Several hyperbolic DGMs are presented to compare with BR2 scheme. Note that for heterogeneous
grids, DG(P0P3) + rDG(P1P2) is carried out with WENO reconstruction to remain stability. Results show
that, our method is comparable to the BR2 method in terms of computational cost and accuracy. Note in
particular that the same order of accuracy has been achieved by DG(P1)-BR2 and DG(P0P1) + DG(P0),
both of which involve exactly three discrete equations, and by DG(P2)-BR2 and DG(P0P2) + DG(P1),
which involve six and seven discrete equations, respectively.
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Figure 6: Time steps and CPU time required to reach the steady state for regular grids using explicit
TVDRK3.

Moreover, hyperbolic DG would also outperform BR2 in terms of the time steps and CPU time required
to reach convergence. The simulation is carried out by hyperbolic DG method and BR2 method using
TVDRK3 on the second mesh of each type, with the results shown in Figure 5. Clearly, hyperbolic DGMs
would be way less time consuming than standard BR2 scheme. As has been demonstrated for diffusion
problems with other hyperbolic discretization methods,35,37,39 the hyperbolic method is known to achieve
iterative convergence acceleration by the elimination of numerical stiffness due to second-derivative diffusion
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operators.
To better illustrate the high efficiency of the developed hyperbolic rDG methods, Figure 6 shows the

required total time steps and CPU time for hyperbolic rDG methods and traditional BR2 methods to reach
the convergence on all each regular mesh while keeping the CFL number when refining the mesh. As expected,
O(h2) time steps would be required for traditional diffusion scheme while the total iterations increase only
linearly with the all the hyperbolic rDG methods. In other words, the presented methods lead to O(1/h)
acceleration in the steady convergence over traditional methods.

B. Case II, Scalar coefficient with source term

A steady diffusion problem with source term is considered in this case. The exact solution is given by

ϕ(x, y) = 2 cos(πx) sin(2πy) + 2, (31)

and
D = I, f = 10π2 cos(πx) sin(2πy). (32)

Similarly, the simulations are performed in those three types of grids using hyperbolic DGMs with implicit
BDF1. The numerical results are shown in Figure 7.

In this case, the property of one-order higher accuracy in the primary variable for DG(P0P1)+DG(P0)
and DG(P0P2)+DG(P1) is lost; but DG(P0P3)+rDG(P1P2) still gives fourth-order accuracy in ϕ and
third-order accuracy in the derivatives. Otherwise, the same order of accuracy is successfully achieved for
all variables as expected.
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Figure 7: Grid refinement study of Case II on regular grids(left), irregular grids (middle) and heterogeneous
grids(right) using implicit BDF1.

C. Case III, Tensor coefficient with source term

To test the developed methods further, the following model diffusion problem is tested, with the exact
solution given by

ϕ(x, y) = 1− tanh

(
(x− 0.5)2 + (y − 0.5)2

0.01

)
, (33)
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and the diffusion tensor D is given by

D =

[
(x+ 1)2 + y2 −xy
−xy (y + 1)2

]
. (34)

The source term can be computed as

f = −∇ · (D∇ϕ) = 100(1−A2)(200AB + C), (35)

where

A = tanh

(
(x− 0.5)2 + (y − 0.5)2

0.01

)
, (36)

B = −4x3(x+ 1) + (4y2 − 4y + 3)x2 + 2(y + 1)x− 4y3(y + 1) + 2(y2 + y − 1), (37)

and
C = x(4x+ 7) + y(6y + 7). (38)

Again, grid refinement study is carried out for all three types of meshes using implicit BDF1, with the
results shown in Figure 8. Similar to the second case, DG(P0P1)+DG(P0) and DG(P0P2)+DG(P1) would
not have super-convergence in ϕ while all other hyperbolic DGMs delivering designed order of accuracy for
both variables and their derivatives, indicating the presented scheme is robust and can provide an attractive
alternatives for using DGMs for diffusion problems.
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Figure 8: Grid refinement study of Case III on regular grids(left), irregular grids (middle) and heterogeneous
grids(right) using implicit BDF1.

V. Concluding Remarks

Reconstructed discontinuous Galerkin methods have been developed for solving diffusion equations based
on a first-order hyperbolic system formulation. By judiciously using a Taylor basis in the DG formulation and
solution derivatives handily available in the FOHS formulation, the resultant hyperbolic rDG methods have
the same number of degrees of freedom as the standard DG methods. A number of test cases for different
diffusion equations have been presented to assess accuracy and performance of the newly developed hyperbolic
rDG methods in comparison with the standard BR2 DG method. Numerical experiments demonstrate that
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the hyperbolic rDG methods are able to achieve the designed optimal order of accuracy for both solutions
and their derivatives on regular, irregular, and heterogeneous girds, and outperform the BR2 method in
terms of the magnitude of the error, the order of accuracy, the size of time steps, and the CPU times
required to achieve steady state solutions, indicating that the developed hyperbolic rDG methods provide
an attractive and probably an even superior alternative for solving the diffusion equations. Our future work
is focused to extend the developed hyperbolic rDG methods for solving the advection-diffusion equations,
and the incompressible and compressible Navier-Stokes equations on fully irregular, adaptive, anisotropic,
unstructured grids.
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