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“You Already Have It.”
You already have what you want:  

happiness, jobs, money, or anything.

The issue is always just how to  
manifest what you already have.

The first step is to believe it.



Edge-Based Discretization



Edge-Based Finite-Volume Method

Edge-based finite-volume scheme:

with the upwind flux at edge midpoint: 

NASA’s FUN3D; Software Cradle’s SC/Tetra; DLR Tau code, etc.
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- 1st-order  with nodal values 
- 2nd-order with linear extrapolation, linear LSQ 
- 3rd-order with linear extrapolation, quadratic LSQ Katz&Sankaran(JCP2011)

Accuracy with left/right states:

Efficient 3rd-order scheme:  edge-loop with a flux per edge



Why Third-Order?  Part I
Zero dissipation for quadratic solution

Linear extrapolation with quadratic LSQ gradients:

For a quadratic solution, it gives

and therefore, 

The same left and right states, but not exact.
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Averaged flux is the source of error.

JCP2015, v281, pp518-555 
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Exact for quadratic fluxes

Linear flux extrapolation with quadratic LSQ gradients:

For a quadratic flux, it gives

and the edge-based discretization becomes

The same left and right fluxes, but not exact.
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Exact for quadratic fluxes, and thus third-order accurate
True for arbitrary triangles/tetrahedra

 Why Third-Order?  Part II
JCP2015, v281, pp518-555 
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Lost with Exact Flux
If the flux is exact for quadratic fluxes (e.g., quadratic 
extrapolation or kappa=0.5 with UMUSCL), we have

and the edge-based discretization becomes
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TE=O(h), and so DE=O(h^2)

3rd-order is lost if the flux is exact for quadratic fluxes.
DO NOT use quadratic extrapolation nor kappa=0.5 for fluxes.

http://faculty.uca.edu/clarenceb/Papers/AIAA-2005-4999.pdf
http://www.hiroakinishikawa.com/My_papers/nishikawa_jcp2015v281pp518-555_preprint.pdf


Edge-Based Discretization
1st-Order

2nd-Order

3rd-Order

(Linear LSQ gradients)

(Quadratic LSQ gradients) 
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“You Already Have It.”
EB Scheme for Diffusion, Source, Unsteady

3rd-order EB scheme for                 applies to various equations.

- Diffusion (Laplace) [ JCP2014 ] 

Preprint accepted for publication in Journal of Computational Physics, 2014.

where

F =

⎡

⎢⎢⎣

au− νp

−u/Tr − (y − yj) q/Tr

(x− xj) q/Tr

⎤

⎥⎥⎦ , G =

⎡

⎢⎢⎣

bu− νq

(y − yj) p/Tr

−u/Tr − (x− xj) p/Tr

⎤

⎥⎥⎦ , (45)

where Tr = (2
√
νπ)−2 as described in Ref.[18], and (xj , yj) denotes the location of a node at which the system

is discretized. The third-order edge-based discretization is constructed based on this system as described in
Section 2.1. For the second-order scheme, the terms involving (x − xj) and (y − yj), which represent source
terms, are not used, and a point-integration has been used for the source terms as described in details in
Ref.[18]. Note that u satisfies the advection-diffusion equation (43), and also the gradients are obtained as
(p, q) = (∂xu, ∂yu) to the same order of accuracy as demonstrated in Ref.[18]. The nodal gradients, as required
in the edge-based discretization, are computed in the same way as in the previous case except that we take
∇uj = (pj , qj) and avoid the gradient computation for u [18]. The resulting second- and third-order edge-based
finite-volume schemes are referred to as SchemeII(2nd) and SchemeII(3rd), respectively, as in Ref.[18]. The

domain is a square as in the previous case. For this problem, we set (a, b) = (1.23, 0.12), and ν =
√
a2+b2

Re with
Re = 10. The following exact solution [23] is specified everywhere on the boundary:

u(x, y) = cos(2πη) exp

(
−2π2ν

1 +
√
1 + 4π2ν2

ξ

)
, (46)

where ξ = ax + by, η = bx − ay. For the variables, (p, q), we specify the exact gradients on the boundaries
except on the bottom (y = 0), where the variable q, corresponding to the normal derivative, is computed by the
numerical scheme solving the third equation for q; the boundary flux quadrature is then required. Truncation
errors are, therefore, computed for the third equation. In this problem, we focus on the accuracy of q at
boundary nodes for isotropic and anisotropic grids.

5.2.1 Isotropic Grids

As in the advection case, numerical results have been obtained for a series of ten irregular triangular grids
with three different types of boundary grids: uniformly spaced (Figure 6), non-uniformly spaces (Figure 7), and
fully irregular (Figure 8). Results are summarized in Tables 7-12. Again, the actual error convergence plots are
given in Appendix B (Figures B.13-B.24). Tables 7 and 8 show the results for uniformly-spaced boundary grids.
As expected, for the second-order scheme, all boundary quadrature formulas give second-order discretization
errors and first-order truncation errors. But for the third-order scheme, the two-point formula, which is not
exact for quadratic fluxes, results in second-order discretization error everywhere. It shows that in contrast
to the previous test case, the discretization error in the interior is now affected by degraded accuracy on the
boundary. The diffusion part of Equation (44) describes an isotropic wave, modeling the isotropic diffusion,
and therefore allows the error committed on the boundary to propagate back into the domain. Note that the
system may also be considered as a model for the acoustic wave in the Euler equations, and thus a similar
accuracy deterioration is expected for subsonic inviscid flow calculations. Tables 9 and 10 show the results for
non-uniformly-spaced boundary grids. As expected, the one-point formula now gives first-order error on the
boundary. The discretization error, although deteriorated, stays somewhere between first-order and second-
order for the second-order scheme, which is indicated by O(h1.5) in the table (see Figures B.15 and B.16 for
details). It is interesting that the first-order accuracy on the boundary does not greatly affect the accuracy of the
second-order scheme in the interior. For the third-order scheme, however, the discretization error deteriorates
clearly to first-order with the one-point formula (see Figures B.21 and B.22). Although not shown, similar
accuracy deterioration has been observed for other variables in the interior domain. The accuracy preservation
at boundary nodes, therefore, has a serious impact on the third-order scheme. For the two-point formula, the
discretization error deteriorates to second-order everywhere for the third-order scheme. On the other hand,
the two-point(c) and the general formulas yield second- and third-order accuracy everywhere as expected. The
same results have been obtained, as expected, for fully irregular boundary grids; except that the two-point(c)
formula is not applicable. See Tables 11 and 12. The results indicate that only the general formula can achieve
the third-order accuracy for arbitrary boundary grids.

5.2.2 Anisotropic Grids

To further demonstrate the impact of incompatible boundary flux quadrature, we performed computations
on skewed triangular grids. The test problem is taken from Ref.[18]. The exact solution is still given by Equation

12

Steady Conservation Law

- Source term [ JCP2012 ] 

Steady Conservation Law

- Unsteady [ CF2014 ] 
Steady Conservation Law (implicit time integration)

http://www.hiroakinishikawa.com/My_papers/nishikawa_jcp2014v256pp791-805_preprint.pdf
http://www.hiroakinishikawa.com/My_papers/nishikawa_JCP2012_Preprint.pdf
http://www.hiroakinishikawa.com/My_papers/mazaheri_nishikawa_cf2014_preprint.pdf


Two Approaches

Pincock and Katz, JSC, v61, Issue2, pp454-476 

1. Modify the target equation - extra equations                                 
(so that, the same 3rd-order EB scheme can be applied.)	


!

!

2.  Modify the scheme - extra computational work

diffusion, source terms, and unsteady equations

1st/2nd/3rd-order Hyperbolic NS Schemes [AIAA2014-2091] 

(4th-order viscous with cubic LSQ gradients)

3rd-order EB scheme has already been demonstrated for NS.

http://link.springer.com/article/10.1007%2Fs10915-014-9833-1
http://www.hiroakinishikawa.com/My_papers/nishikawa_aiaa2014-2091.pdf


EB Discretization at Boundary



Boundary Closure
If BCs are imposed through numerical fluxes, the residual needs to be 
closed by boundary contributions at boundary nodes.
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Boundary contributions must be defined such that 	

the overall discretization is exact for linear/quadratic fluxes: 	


It depends on the element type.



Second-Order Formulas

Available for triangles, quadrilaterals, 
tetrahedra, hexahedra, prisms, pyramids.	


See Appendix B. in AIAA2010-5093

Note: Some regularity is required for quadrilaterals, hexahedra, prisms, and pyramids.	


Exact for linear fluxes

http://www.hiroakinishikawa.com/My_papers/nishikawa_AIAA-2010-5093.pdf


Second-Order for Triangles
Appendix B. in AIAA2010-5093
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Boundary condition is set in the right (ghost) state, 	

and let the numerical flux determine the boundary flux.

 This formula has been known for decades (see, e.g.,  AIAA Paper 95-0348, 1995).

3rd-order formula is not known at this point….	

Let’s see what we get with the 2nd-order boundary formula.

See, e.g.,  NASA-TM-2011-217181,  AIAA2014-2923

http://www.hiroakinishikawa.com/My_papers/nishikawa_AIAA-2010-5093.pdf
http://arc.aiaa.org/doi/abs/10.2514/6.1995-348
http://fun3d.larc.nasa.gov/papers/NASA-TM-2011-217181.pdf
http://arc.aiaa.org/doi/abs/10.2514/6.2014-2923
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Terrible Results
Advection-diffusion problem

We need a formula for third-order.
2nd-order boundary formula doesn’t seem compatible with 3rd-order EB scheme.
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A Formula for Third-Order?

How can I derive such a formula?  Very difficult…..
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The overall discretization must be exact quadratic fluxes.



“You Already Have It.”

Free yourself and reset your mindset: 
   Forget about deriving the formula. 

Believe it.  
Behold what you have.
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EB scheme is 3rd-order accurate.
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EB scheme is 3rd-order accurate.
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EB scheme is 3rd-order accurate.
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EB scheme is 3rd-order accurate.
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EB scheme is 3rd-order accurate.

This is a boundary stencil, and we have 3rd-order!	

So, we don’t really need a boundary formula!



2

3

5

4

b

j

EB scheme is 3rd-order accurate.

Node b can be used as a ghost node.



Expanding the 3rd-order EB scheme, we find
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Oh, we have a formula!



A General Formula

3rd-order with straight boundary edges.
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Note: the second terms (j5 and j2 terms) require linear extrapolation. 

It preserves 1st/2nd/3rd-order accuracy at boundary nodes.



Remaks
!

• A general formula derived for tetrahedra (3D).	

!

• Curved elements should not be used.	

      The EB discretization is 3rd-order on linear triangular elements. 	

        Immediately applicable to existing grids (high-order grids not needed).  	

   	

        Other 3rd-order schemes on linear elements:	

            

See JCP2015, v281, pp518-555 

[ AIAA2001-2595 ] 
[ IJNMF2007 ] 

- 3rd-order fluctuation-splitting scheme
- 3rd-order LSQ scheme
- 3rd-order residual-distribution scheme [Mazaheri and Nishikawa 2015]

Attractive alternatives to high-order methods in applications 	

for which 3rd-order accuracy is sufficient.

http://www.hiroakinishikawa.com/My_papers/nishikawa_jcp2015v281pp518-555_preprint.pdf
http://www.hiroakinishikawa.com/My_papers/nishikawa_rad_roe_aiaa-2001-2595-400.pdf
http://www.hiroakinishikawa.com/My_papers/nishikawa_ijnmf2007v53pp443-454_preprint.pdf
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Special Case I:  Flat Boundary

This gives third-order accuracy.

General formula becomes
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This gives third-order accuracy.

Special Case II:  Flat Uniform Boundary



Boundary Formulas

- One-point formula (1st-order, 3rd-order for flat uniform boundary)
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- Two-point formula (2nd-order)

- General formula (3rd-order)



Results



Numerical Results

!

• Third-order results (see　　　  for 2nd-order results)	

• Burgers, advection-diffusion, Laplace	

• All equations solved as a steady conservation law	

• 10 Irregular triangular grids: 1089 to 409,600 nodes.	


• Residuals reduced by 10 orders in all cases.	

• Errors measured at interior and boundary nodes

JCP2015 

http://www.hiroakinishikawa.com/My_papers/nishikawa_jcp2015v281pp518-555_preprint.pdf


Burgers’ Equation

where                        and 

- Weak condition at top boundary (outflow); exact solution imposed elsewhere. 	

- Errors measured at interior nodes and boundary nodes separately.	


Exact solution:
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3rd-order EB scheme applied in the steady conservation form.
[ JCP2012 ] 

http://www.hiroakinishikawa.com/My_papers/nishikawa_JCP2012_Preprint.pdf


Burgers’ Equation
Interior Nodes

Error doesn’t propagate back into the domain.
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Boundary Nodes
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Advection-Diffusion

- Weak condition at bottom boundary: specify (u,p) and compute q(=uy).	

  the exact solution imposed elsewhere.	

- Errors measured in q at interior and boundary nodes separately.	
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3rd-order EB scheme applied in the steady conservation form.
[ JCP2014 ] 
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Advection-Diffusion
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Interior Nodes

Boundary formula affects both boundary and interior:	

1st/2nd/3rd-order with one/two- and general formula.
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Boundary Nodes

Isotropic Grids



Advection-Diffusion
Anisotropic Grids
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Flat uniform boundary grid:
- One-point formula:  3rd-order for flat uniform boundary
- Two-point formula:  2nd-order



Advection-Diffusion
Anisotropic Grids
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Third-order boundary formula is essential.



Curved Boundary Problem
Potential flow over a cylinder

Exact solution Fully irregular grid



Governing Equation
Laplace equation for the stream function

Third-order EB discretization is applied in the steady 
conservation form. 

Extra variables, p and q, correspond to the velocity components.

Third-order EB scheme produces 3rd-order accurate (u,v).

[ JCP2014 ] 

http://www.hiroakinishikawa.com/My_papers/nishikawa_jcp2014v256pp791-805_preprint.pdf


The last equation approximates 

Boundary Condition
Strong and weak conditions

1. Outer boundary:  Specify the exact solution.

2. Cylinder (slip wall)

This is where the boundary flux is required.



Normal and Tangent Vectors

1. Linear Approximation

2. Quadratic Approximation
Quadratic interpolation over 3 nodes in the parameter space of edge-length, s.

NOTE:  - This is reconstruction. 	

              No analytical geometry is required.	

            - Geometrical singularities (e.g., corner)	

              would require a special treatment.



Linear Approximation
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Interior Nodes

No boundary formula gives 3rd-order accuracy

Boundary Nodes
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Discretization error in the x-velocity (u)
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Quadratic Approximation
Interior Nodes Boundary Nodes

ï1.8 ï1.6 ï1.4 ï1.2 ï1
ï4.5

ï4

ï3.5

ï3

ï2.5

ï2

ï1.5

ï1

ï0.5

Log10(h)

Lo
g 10

(L
1 e

rro
r n

or
m

 o
f q

)

DE−B, IRRG, 3rd, cylinder

 

 

One point
Two point
General
Slope 1
Slope 2
Slope 3

ï1.8 ï1.6 ï1.4 ï1.2 ï1
ï2

ï1.5

ï1

ï0.5

0

0.5

1

1.5

Log10(h)

Lo
g 10

(L
1 T

E 
no

rm
 fo

r t
he

 th
ird

 e
qu

at
io

n)

TE−B, IRRG, 3rd, cylinder

 

 

One point
Two point
General
Slope 1
Slope 2
Slope 3

Only the general formula gives 3rd-order accuracy.

Discretization error in the x-velocity (u)



Quadratic Approximation

General FormulaTwo-point formula

The quadrature formula has a significant impact on the solution.

Contours of the x-velocity (u)



Conclusions

See JCP2015, v281, pp518-555 for details. 

- Edge-based scheme is 1st/2nd/3rd-order through boundary nodes.	

!
- We already had a general boundary quadrature formula.	

!
- Numerical flux should NOT be exact for quadratic fluxes	

!
- 3rd-order accurate without curved elements.	

!
- Accurate normal vectors required for 3rd-order (quadratic interpolation)

 See AIAA2014-2091 for NS results. 

http://www.hiroakinishikawa.com/My_papers/nishikawa_jcp2015v281pp518-555_preprint.pdf
http://www.hiroakinishikawa.com/My_papers/nishikawa_aiaa2014-2091.pdf


Don’t worry, 	

if Santa Claus doesn’t bring you a present.

You already have it!

Happy Holidays!


