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Edge-Based Discretization




Edge-Based Finite-Volume Method

NASA’s FUN3D; Software Cradle’s SC/Tetra; DLR Tau code, etc.
divif =0

Edge-based finite-volume scheme: K

2 Gik(nge) =0 njx = 0y + 0
) ke{k;}
with the upwind flux at edge midpoint:

1 . 1
opn(n) = ( 56+ ) e = 5 onl(um — ur) )

Accuracy with left/right states:

- Ist-order with nodal values
- 2nd-order with linear extrapolation, linear LSQ
- 3rd-order with linear extrapolation, quadratic LSQ Katz&Sankaran(JCP2011)

Efficient 3rd-order scheme: edge-loop with a flux per edge
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Why Third-Order? Part |

Zero dissipation for quadratic solution

Linear extrapolation with quadratic LSQ gradients:

1 — 1
Uy, = uj =+ §vu3 ) Arjk Ur — U — §Vuk . AI‘jk

For a quadratic solution, it gives

1
Uy, — uUrp — Uj -+ QVUJ . AI‘jk

The same left and right states, but not exact. Aryy = (T4 — %5, Y — ;)

and therefore,

Dik(njx) = (%

Averaged flux is the source of error.
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Why Third-Order?! Part Il

Exact for quadratic fluxes

Linear flux extrapolation with quadratic LSQ gradients:

1__ —
fr = f;+ 5V - Ay fr=1f; — sVI, - Ary

For a quadratic flux, it gives
1

The same left and right fluxes, but not exact. Aw
and the edge-based discretization becomes

1 1 1 1 1 .
V. > Om(ng) = V. > 5+ 1) mjp = o >+ 5 Vi - Arg) - ny, = dive
T ke{k;} T ke{k;} ! kefk;}

True for arbitrary triangles/tetrahedra

Exact for quadratic fluxes, and thus third-order accurate
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Lost with Exact Flux

If the flux is exact for quadratic fluxes (e.g., quadratic
extrapolation or kappa=0.5 with UMUSCL), we have

fL = fR f -+ Vf Arjk—|— 8(Ar3k V) f

and the edge-based discretization becomes

1 1
Y7 Z ¢]l€ jk‘ V Z Q(fL+fR>'njk

Vi ke{k;} T kelk;}

1

Vi ke{k;} ‘ T

TE=0O(h),and so DE=O(h”2)

3rd-order is lost if the flux is exact for quadratic fluxes.
DO NOT use quadratic extrapolation nor kappa=0.5 for fluxes.
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Edge-Based Discretization

k

LU = U "

~2nd-Order (Linear LSQ gradients) =~

1 —
up = u; + §Vuj cArjy,  fp=1f(up)

1 —
UR = Uk — §Vuk-Arjk fR — f(UR)

- 3rd-Order (Quadratic LSQ gradients) Vf; = (%) V) o

| 1— 1=
P Up — U — §Vuk y AI‘jk fR = fk — §ka y AI‘jk



EB Scheme for Diffusion, Source, Unsteady

“You Already Have It/ %(* ) &‘

.~\

- Diffusion (Laplace) [JCP2014]

Steady Conservation Law

0. F + ayG =0 U= [u,p(=0d,u),q(=0d,u)]

au — vp bu —vq
F=| /T —(y—vy)q/T- |, G= (y —v;)p/ T
(a:—xj)q/Tr _U/Tr_(x_xj)p/Tr

- Source term [JCP2012]

Steady Conservation Law
axf+ayg: S(CE,y) — ax(f_f8)+ay<g_gs) =0

1 1
ff=(r—xj)s— i(x — xj)Q((?ws + g(x - xj)z)’({)ms, g°=0

- Unsteady [ CF2014]

Steady Conservation Law (implicit time integration)

atu+axf+8ygzo —_—> ax(f_fs)_'_ay(g_gs)zo

3rd-order EB scheme for divf = ( applies to various equations.
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Two Approaches

diffusion, source terms, and unsteady equations

|. Modify the target equation - extra equations
(so that, the same 3rd-order EB scheme can be applied.)

| st/2nd/3rd-order Hyperbolic NS Schemes [AIAA2014-2091]

2. Modify the scheme - extra computational work
Pincock and Katz, ]SC, v6 1, Issue2, pp454-476

(4th-order viscous with cubic LSQ gradients)

3rd-order EB scheme has already been demonstrated for NS.


http://link.springer.com/article/10.1007%2Fs10915-014-9833-1
http://www.hiroakinishikawa.com/My_papers/nishikawa_aiaa2014-2091.pdf

EB Discretization at Boundary




Boundary Closure

If BCs are imposed through numerical fluxes, the residual needs to be

closed by boundary contributions at boundary nodes.
4

5
> (nyy) + [Boundary Fluxes] = ¢5(nfs) + dja(1a) + ¢js(n;3) + ¢ja(nly) + dr(nf) + dr(ng)
k=2

Boundary contributions must be defined such that
the overall discretization is exact for linear/quadratic fluxes:
It depends on the element type.



Second-Order Formulas

Exact for linear fluxes

Available for triangles, quadrilaterals,
tetrahedra, hexahedra, prisms, pyramids.

Note: Some regularity is required for quadrilaterals, hexahedra, prisms, and pyramids.

See Appendix B.in AIAA2010-5093
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Appendix B.in AIAA2010-5093

Second-Order for Triangles

This formula has been known for decades (see, e.g., AIAA Paper 95-0348, 1995).
4

Boundary condition is set in the right (ghost) state,

and let the numerical flux determine the boundary flux.
See, e.g., NASA-TM-2011-217181, AIAA2014-2923

3rd-order formula is not known at this point....
Let’s see what we get with the 2nd-order boundary formula.


http://www.hiroakinishikawa.com/My_papers/nishikawa_AIAA-2010-5093.pdf
http://arc.aiaa.org/doi/abs/10.2514/6.1995-348
http://fun3d.larc.nasa.gov/papers/NASA-TM-2011-217181.pdf
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Terrible Results

Advection-diffusion problem

x0.0] 2nd-order boundary quadrature formula
1
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X
2nd-order boundary formula doesn’t seem compatible with 3rd-order EB scheme.

We need a formula for third-order.



A Formula for Third-Order?

5%
> éje(nji) + [Boundary Fluxes] = ¢5(n)5) + ¢ja(nja) + ¢j3(nj3) + ¢j2(n’y) + ¢r(np) + ¢r(ng)
k=2

4

br(nf) = P " " g (nk) = P

The overall discretization must be exact quadratic fluxes.

How can | derive such a formula? Very difficult.....
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1
EB scheme is 3rd-order accurate.
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EB scheme is 3rd-order accurate.



EB scheme is 3rd-order accurate.



EB scheme is 3rd-order accurate.



EB scheme is 3rd-order accurate.



EB scheme is 3rd-order accurate.



5 1 5

This is a boundary stencil, and we have 3rd-order!
So, we don’t really need a boundary formulal

EB scheme is 3rd-order accurate.



Node b can be used as a ghost node.

EB scheme is 3rd-order accurate.



Expanding the 3rd-order EB scheme, we find
> Gi(ng) = dia(nky) + @ia(nys) + ¢ja(nje) + ¢js(nfs)

ke{k;} 2 I 1 L 2 R 1 It
Jr§</5jb (np) + §¢J’5 (ng) + §¢jb (n5) + §¢j2 (m5)

Oh, we have a formula!



A General Formula

It preserves |st/2nd/3rd-order accuracy at boundary nodes.
4
3

1) = <65 (nh) + 5655 (nf)  Or(0E) = 20,4 (nf) + 3052 (nf)

Note: the second terms (j5 and j2 terms) require linear extrapolation.

3rd-order with straight boundary edges.



Remaks

® A general formula derived for tetrahedra (3D).
See JCP2015,v281, pp5 18-555

® Curved elements should not be used.

The EB discretization is 3rd-order on linear triangular elements.
Immediately applicable to existing grids (high-order grids not needed).

Other 3rd-order schemes on linear elements:

- 3rd-order fluctuation-splitting scheme [ AIAA2001-2595 ]
- 3rd-order LSQ scheme [ [JNMF2007 ]

- 3rd-order residual-distribution scheme [Mazaheri and Nishikawa 2015]

Attractive alternatives to high-order methods in applications
for which 3rd-order accuracy is sufficient.
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Special Case |: Flat Boundary

4
3
_ Ing)
nj
c =2
—
5 b - 2
név Vng

General formula becomes

dr(ng) =5 [(5+2) d5(0p) +c(1 = c)s(np)]  dr(ng) =5 [(5+¢) d;(ng) + F da(ng)]

This gives third-order accuracy.



Special Case IlI: Flat Uniform Boundary

4

s‘:
|

br(ng) = ¢;(ng) dr(ng) = ¢;(np)

This gives third-order accuracy.



Boundary Formulas

- One-point formula (Ist-order, 3rd-order for flat uniform boundary)

¢r(ng) = ¢;(np)

- Two-point formula (2nd-order)

b1(np) = %( B) + ¢5(HB)

- General formula (3rd-order) ,

2 1 g np
¢r(ng) =

5 Pib (ng) + L (n3g)



Results




Numerical Results

Third-order results (see JcP2015 for 2nd-order results)
Burgers, advection-diffusion, Laplace

All equations solved as a steady conservation law
10 Irregular triangular grids: 1089 to 409,600 nodes.
Residuals reduced by 10 orders in all cases.
Errors measured at interior and boundary nodes
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Burgers’ Equation

axf -+ ayg — S(I,y)
where (f,9) = (v*/2,u) and s(z,y) = (1 +sin(z — y)) cos(z — y)

Exact solution: u(z,y) = sin(z — y) + 2

3rd-order EB scheme applied in the steady conser\(/:aizz(i)ozn form.
[JCP2012 ]
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- Weak condition at top boundary (outflow); exact solution imposed elsewhere.
- Errors measured at interior nodes and boundary nodes separately.
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Log | O(L | €ITor norm of u)

-3 -2.5

Burgers’ Equation

Interior Nodes

- DE-I, IRRG, 3rd, Burgers

o =

P + One point
<l Two point
General

= = = Slope 3

-2 -15
Log ,(h)

Log . O(L | €rror norm of u)

Boundary Nodes

' DE-B, IRRG, 3rd, Burgers

+ One point
Two point
General

= = = Slope 3

-3 -2.5

-2 -15
Log, (h)

Error doesn’t propagate back into the domain.



Advection-Diffusion

a Oyu+ bOyu = v(0.,u + Oyyu) (a,b) = (1.23,0.12)
a® + b -
V= oo Re =10
3rd-order EB scheme applied in the steady conservation form.
[JCP2014 ]

1

N

NN
N

4
% RORDE

N4

0 —r—

0 1
X

- Weak condition at bottom boundary: specify (u,p) and compute gq(=uy).

the exact solution imposed elsewhere.
- Errors measured in g at interior and boundary nodes separately.
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Log . O(L | €rror norm of q)

Advection-Diffusion

Isotropic Grids

Interior Nodes Boundary Nodes
17 . _
DE-I, IRRG, 3rd, Adv-Diff '[ DE-B, IRRG, 3rd, Adv-Diff
Or 0
=
G
o
z
o
=
S
=
QO
SEP
—¥— One point o , —¥— One point
-+ Two point S Tt -+~ Two point
gl General gl -@- General
B == Slope 1 ‘== Slope 1
9l Slope 2 —Of Slope 2
= = = Slope 3 = = = Slope 3
-10 | ' | -0 25 ; 15
-3 =25 . -2 -15 - 2. - -1
Log, (h) Log, (h)

Boundary formula affects both boundary and interior:
| st/2nd/3rd-order with one/two- and general formula.



Advection-Diffusion

Anisotropic Grids

0.01

0.009
0.008

0.007
0.006

0.005
0.004
0.003
0.002

0.001

1 OO X

Flat uniform boundary grid:

- One-point formula: 3rd-order for flat uniform boundary
- Two-point formula: 2nd-order



=0

Y-derivative of uaty

0.35

0.3

o
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0.05

o

-0.05

-0.1

Advection-Diffusion

Anisotropic

u n Galerkin(3rd)
- ° Schemell(3rd) One-point
N [ Schemell(3rd) Two-point
u Exact
| | | | | |
0.5
X

Third-order boundary formula is

Grids

\

Y-derivative of u at y=0

0.35

0.34

0.33

0.32

= Galerkin(3rd)
[ Schemell(3rd) One-point
[ Schemell(3rd) Two-point

Exact

essential.




Curved Boundary Problem

Potential flow over a cylinder

/

Exact solution Fully irregular grid



Governing Equation

Laplace equation for the stream function
Opz® 4 Oyt = 0

Third-order EB discretization is applied in the steady
conservation form. [JCP2014]

¥ +0,G =0 U= [up=0,u).q=du)
Extra variables, p and q, correspond to the velocity components.

U:5’y¢=(1 V= =09 = —p

Third-order EB scheme produces 3rd-order accurate (u,v).
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Boundary Condition

Strong and weak conditions

|. Outer boundary: Specify the exact solution.

2. Cylinder (slip wall)

v; =0
(Qj, _pj) ' ﬁj =0

(Res;(3), —Res;(2)) - t; =0

The last equation approximates (9,%, —9.%) - t; — (¢, —p) - t; =0

This is where the boundary flux is required.



Normal and Tangent Vectors

|. Linear Approximation

A — (yj+1 —Yj-1,Tj—-1 — 513j+1)

2. Quadratic Approximation

Quadratic interpolation over 3 nodes in the parameter space of edge-length, s.

X (dy/ds, —dx/ds);

n; = NOTE: -This is reconstruction.
\/(dx/ds)? + (dy/ds)? No analytical geometry is required.
- Geometrical singularities (e.g., corner)
would require a special treatment.




Linear App

Interior Nodes

\®*

DE-I, IRRG, 3rd, cylinder.

o -3
o
£
2 =35
—
o
5
— _4 i
=)
wg ¢ —¥— One point
< —4.57 R Two point
’ -e- General
.
_5| / == Slope 1
’ = Slope 2
f = = = Slope 3
-5.5 ! ! ! !
-18 -16 -14 -12 -1
Log, (h)

roximation

Discretization error in the x-velocity (u)

Log . 0(L | error norm of q)

Boundary Nodes

031 DE-B, IRRG, 3rd, cylinder
g —¥— One point
’ Two point
~3.5¢ ¢ p
ot - General
N == Slope 1
—4p = Slope 2
= = =Slope 3
45—
-18 -16 -14 -12 -1
Log (h)

No boundary formula gives 3rd-order accuracy



Quadratic Approximation

Discretization error in the x-velocity (u)

Interior Nodes

~2[ DE-I, IRRG, 3rd, cylinder
-2.5
o -3
S
:
2 =35
—
S
=
—~ 4
)
009 —¥~ One point
S —4.5 -3 Two point
General
s e == Slope 1
’ Slope 2
f = = =Slope 3
-5.5 ' ' ' '
-18 -16 -14 -12 -1
Log, (h)

1

Log . 0(L error norm of q)

—4.5
-1

Boundary Nodes

DE-B, IRRG, 3rd, cylinder

—¥~ One point
-3 Two point
-e- General
’ ‘== Slope 1
’ = Slope 2
= = = Slope 3

8 -16 -14 -12 -1
Log (h)

Only the general formula gives 3rd-order accuracy.



Quadratic Approximation

Contours of the x-velocity (u)

Two-point formula General Formula

The quadrature formula has a significant impact on the solution.



Conclusions

- Edge-based scheme is |st/2nd/3rd-order through boundary nodes.
- We already had a general boundary quadrature formula.

- Numerical flux should NOT be exact for quadratic fluxes

- 3rd-order accurate without curved elements.

- Accurate normal vectors required for 3rd-order (quadratic interpolation)

See JCP2015, v28I, pp518-555 for details.
See AIAA2014-2091 for NS results.
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Don’t worry,
if Santa Claus doesn’t bring you a present.

You already have it!

Happy Holidays!




