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Do you read newspaper?

Stay informed.

Someone somewhere may have already
solved your problem.



Interesting High-Order Schemes

@ Residual-distribution schemes (roe,vki, INRIA, etc)

Residual-based compact schemes (corre and Lerat, jcP2001)
Third-order edge-based finite-volume scheme (katz and sankaran jcp2011)
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These schemes contain the target equation (or residual) in the truncation error (TE):
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Leading term vanishes in steady state, and accuracy upgraded to second-order.



Interesting High-Order Schemes

Residual-distribution schemes (rRoe,vki, INRIA, etc)

Residual-based compact schemes (Corre and Lerat, jcP2001)
Third-order edge-based finite-volume scheme (katz and sankaran jcp2011)

These schemes contain the target equation (or residual) in the truncation error (TE):
E.g., for linear advection, an RD scheme has the following TE,

TE = %(a@x + bﬁy)(awu) + O(h?)

Leading term vanishes in steady state, and accuracy upgraded to second-order.

This talk will focus on the third-order FV scheme
for advection-diffusion equation.




Edge-Based Finite-Volume Method

NASA’s FUN3D; Software Cradle’s SC/Tetra; DLR Tau code, etc.

oU+ 0,F +9,G =S

Edge-based finite-volume scheme:

dU ;
Vit == 3 ®udp+S;V;

dt
ke{k;}

¢
Ajr = |njg + 0l |

with the upwind flux at edge midpoint:

1 1
Cjp, = §(HnL +Hyup) — §\An’(UR —Up)

Accuracy with left/right states:

- Ist-order with nodal values
- 2nd-order with linear extrapolation, linear LSQ

- 3rd-order with linear extrapolation, quadratic LSQ
Katz&Sankaran(JCP201 1)



Implicit Solver

Residual at node j: 0=— Z O An+ S,V

ke{k;}
System of residual equations : 0 = Res(Uy,)

Update: U} = U} + AU,

ORes
ou,,

AU, = —Res(U})

- Jacobian based on |st-order scheme
- GS relaxation with tolerance 0.01



Third-Order Advection

For triangular/tetrahedral grids.

Scalar advection equation:

O, f + 0,9 =0

where

(f, g) — (auv bu)

Third-order FV scheme has the truncation error:

h2
7}adv ~ 19 000 (0nf + 0yg) + Ouy (0 f + 0yg) + Oyy (O f + Oyg)] + O(R7)
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Third-Order Advection

For triangular/tetrahedral grids.

Scalar advection equation:

O, f + 0,9 =0

where

(f, g) — (auv bu)

Third-order FV scheme has the truncation error:

h2
T = 5 [é’m(w + %M) + 6’yywﬂ +O(R%)

3rd-order accurate on 2nd-order stencil Low-Cost High-Order



Third-Order Advection-Diffusion
Opf + 0yg — v (Opzt + Oyyu) = 0

Diffusion scheme MUST have a 2nd-order truncation error in the form:
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Third-Order Advection-Diffusion
Opf + 0yg — v (Opzt + Oyyu) = 0

Diffusion scheme MUST have a 2nd-order truncation error in the form:

. h2
[ T = = 010 (v (Dratt + 0y 0)) + 0y (v (Dt + D)) + Doy (v (Dt + D)) + O() ]

so that the advection-diffusion scheme has TE in the form:

dv-diff d diff _ h*
7}&V 1 :7}aV_|_7}1 :E[M_I_M_I_M_I_O(hg)
r =0 f+ 0,9 — vV (Opu+ Oyyu)

A compatible diffusion scheme is required for
uniform third-order accuracy.



Linear Galerkin for Diffusion
0o f + 0,9 — v (Dputt + Dyyut) = 0

Linear Galerkin scheme has the TE in the form:

. Vh2
7;d1ff — ﬁ(ammu + Oyyyyu) + O(hg)

[3rd-order advection] + [Linear Galerkin] gives
adv-dift ad dift
7;- V-dl :7; V_|_/Z; 1

h2
= 5 (0000 + 0,9 + VDust) + 00y (0 + 0,9) + 0,y (0 + Dy + vD,u)] + O(H)

None of these terms vanish for advection-diffusion in the steady state.

This is a second-order scheme...

3rd-order only in the advection limit.



Third-Order Galerkin for Diffusion

Opf + 0yg — v (Opzt + Oyyu) = 0

Third-order Galerkin (Nishikawa,vKI Lecture, 2006) has the TE in the form:

. h2
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Third-Order Galerkin for Diffusion

Opf + 0yg — v (Opzt + Oyy) =0

Third-order Galerkin (Nishikawa,vKI Lecture, 2006 J*aas the TE in the form:
. h2 .
%dlﬂ: ~ 12 00 (v (Oxatt + Oyyt)) + Oy (V (Ot + Oyyu)) + Igply (Ot + Oyyu))| + O(R?)
[3rd-order advection] + [3rd-order Galerkin] giv#s

2
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Third-Order Galerkin for Diffusion

Opf + 0yg — v (Opzt + Oyy) =0

Third-order Galerkin (Nishikawa,vKI Lecture, 2006 J*aas the TE in the form:

. h2
z];dlff —

19 | (Orzu + Oyyu))| + O(hg)

Opz(V (Ozatt + Oyytt)) + Oy (v (Dzpts + Oyyut)) +
[3rd-order advection] + [3rd-order Galerkin] gi

. . h2
/];adv—dlff _ 73adv i Zdlﬁ [ 8

+ Oy’ + Dyyr'] + O(R?)

12

r'=0pf + 0,9 + v (Opztt + Oy ut)

This is NOT uniformly third-order accurate.

3rd-order only in the advection limit or in the diffusion limit.



Edge-Based Diffusion Scheme

The edge-based diffusion scheme (e.g., Nishikawa, AIAA2010, C&F2011) has a
potential for achieving uniform third-order accuracy with a cubic
fit, requiring at least, 9 neighbors in 2D and |8 neighbors in 3D.

|. Very large stencil.

2. Robustness (cubic gradient reconstruction).

3. The h-ellipticity.

4. Inconsistent Jacobian (lack of compact |st-order scheme)
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Edge-Based Diffusion Scheme

The edge-based diffusion scheme (e.g., Nishikawa, AIAA2010, C&F2011) has a
potential for achieving uniform third-order accuracy with a cubic
fit, requiring at least, 9 neighbors in 2D and |8 neighbors in 3D.

|. Very large stencil.

2. Robustness (cubic gradient reconstruction).

3. The h-ellipticity.

4. Inconsistent Jacobian (lack of compact |st-order scheme)

Not pursued in this work. Why?
Because | read the newspaper.
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Hyperbolicity Declared for PDEs

Declaration of Hyperbolicity

We hold these truths to be self-evident, that all PDEs
are created equal, that they are endowed by us
with certain unalienable Rights, that among these are
hyperbolicity, consistent and accurate schemes

and the pursuit of robustness.

Declaration of hyperbolicity presented by Dr. Hiroaki Nishikawa (NIA) at the
51st AIAA Aerospace Sciences Meeting, January 10, 2013, Grapevine, TX, USA

Hyperbolicity was declared, for
the first time in the entire CFD
history, for all partial differential
equations (PDEs) at 51 ATAA
Aerospace Sciences Meeting held
in Grapevine, Texas, on January
10, 2013. It was declared totally
unexpectedly at the technical talk
by Dr. Hiroaki Nishikawa, Senior
Research Scientist at National
Institute of Aerospace (USA). I
was preparing for this moment
since 2007. I thought I had to do it
now in order to rescue people
suffering from various difficulties
with non-hyperbolic PDEs like
parabolic PDEs,” says Nishikawa.

It seems like the declaration came
to rescue, but 1t has generated

heated controversy among
researchers.

“That’s totally crazy. I'm not
going to let anyone make me
hyperbolic,” says Dr. Parabolic at
the Viscous Institute of
Technology. He claims, It is
simply wrong because each type
of PDEs is designed to model
specific physical phenomena and
one may not change it no matter
what. It 1s a completely wrong
idea.” Nishikawa argues that the
hyperbolicity is just for the sake
of numerically solving the PDEs
and at the end of the day the
numerical solution satisfies the
original equations, parabolic or
whatever. Parabolic counters,
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PDE is made hyperbolic by turning non-hyperbolic terms on the right hand side, including a
source term, into a hyperbolic system such that it reduces to the original in the steady state.

“Totally insane. Successful numerical
schemes should reflect the nature of
the PDE they are solving. Upwind
scheme for 1sotropic diffusion has no
chance to work.” Although it sounds
right, the numerical results shown by
Nishikawa indicate that the claim 1s not
true. In fact, unusually good results
have been obtained by the upwind
scheme for diffusion and viscous flow
problems. They are unusually good
because high-order accurate gradients
have been obtained at a dramatically
‘reduced’ cost.

These interesting results have attracted
a number of researchers around the
world. Professor Elliptic at the
University of Smooth says, “It is quite
nice and welcome. As I see it, the
hyperbolized parabolic-PDE 1s
hyperbolic in time but remains elliptic

in space. It’s just like the acoustic sub-
system of the Euler equations, which is
hyperbolic in time but elliptic in space
in subsonic flows.” Dr. Muscl at
Monotone National Laboratory
(currently under reconstruction) 1s
another researcher who welcomed the
declaration. He says, “It’s a wonderful
news. | feel like I've got a lot more
places to work at than I thought.”

On the other hand, Always Nolimiter, a

graduate student of acrospace
engineering, says he’s been scared to
death since he heard the news. He says,
“I’'m so scared because the hyperbolic
Navier-Stokes equations may generate
additional shockwaves due to the
hyperbolic viscous term. I just don’t
know what to do. They’re gonna blow

me up!™ According to Professor Elliptic,

however, the student 1s worrying for

THE CFD NEWS

nothing. He says, “*No shockwaves will
be generated by the hyperbolic viscous
term. Like I said, they are elliptic in
space. There will be no shockwaves
running across the domain.”

Taro Sushiyama, one of the best sushi
chefs in town, commented on the analogy
of Sushi Burger repeatedly used by
Nishikawa to illustrate the concept. He
says, “It looks eccentric. It’s against
tradition and not acceptable in our world.
But 1t’s an interesting i1dea. In another
world, maybe, only the taste matters. If
Nishikawa-san succeeds, I'll be happy to
make a fine sushi burger for him.*

While the heated debate continues,
progress is being made towards the birth
of practical all-hyperbolic CFD codes.
The key to success seems to lie in the
taste, not in looks, as Sushiyama implied.

Sushi burger, a radical approach. “Looks eccentric, but
it's simple to make and tastes the same or even better.”




PDEs Recreated Hyperbolic

U, +AU, =BU,,+CU_p;+ -+ S

'

W;+ AW, =0

Methods for hyperbolic systems apply to all PDEs.
Dramatic simplification/improvements to numerical methods
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Sushi burger, a radical approach. “Looks eccentric, but
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Foods Recreated as Burgers
Simple, Eff cient, Accurate

! Sush| Burger!

Looks eccentric? But the taste is the same, or even better.
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Hyperbolized Diffusion

- Discretization made simple (e.g., upwind for diffusion)
- |st-order diffusion scheme (e.g., PO DG)

- Consistent Jacobian for implicit diffusion solver

- Higher-order accurate gradients on irregular grids

- O(l/h) acceleration in convergence



Hyperbolized Diffusion

- Discretization made simple (e.g., upwind for diffusion)
- |st-order diffusion scheme (e.g., PO DG)

- Consistent Jacobian for implicit diffusion solver

- Higher-order accurate gradients on irregular grids

- O(l/h) acceleration in convergence

See AIAA201 3-1125 for details.



Hyperbolic Advection-Diffusion

Sushi Burger for Advection-Diffusion

Oy + a 0yu + bo,u

|. Hyperbolic in time (JCP2010)
2. Equivalent to the advection-diffusion equation in steady state.

aOyu+b0,u = v (Oppu + Oyyu)

3. Relaxation time Tr is a free parameter (no stiff source).
4. Stiffness due to second derivatives eliminated: O(1/h) Jacobian
5. Equal order of accuracy for solution and gradients



Hyperbolic Advection-Diffusion

Sushi Burger for Advection-Diffusion

Advection Hyperbolic Diffusion

|. Hyperbolic in time (JCP2010)
2. Equivalent to the advection-diffusion equation in steady state.

aOyu+b0,u = v (Oppu + Oyyu)

3. Relaxation time Tr is a free parameter (no stiff source).
4. Stiffness due to second derivatives eliminated: O(1/h) Jacobian
5. Equal order of accuracy for solution and gradients



Fully Hyperbolic Advection-Diffusion

Advection + Fully Hyperbolic Diffusion (AIAA2013-1125)

Normal Flux:
H, = Fn, + Gn, = H* + H® + H?

U] C —v(pn. +qny) | i 0 i
— | 0 |+ —un, /T, + | (y—y;) (qne —pny)/T,
_ 0 - _ _uny/Tr - _ _(x o xj) (qncc T pny)/Tr _
where L2 1
an = ang +bn, T, = —, L. = — (AIAA2013-1125)

NOTE: It reduces to the scalar advectionas v — 0.



Fully Hyperbolic Advection-Diffusion

Advection + Fully Hyperbolic Diffusion (AIAA2013-1125)

Normal Flux:
H, = Fn, + Gn, = H* + H® + H?

U] C —v(pn. +qny) | i 0 i
— 0 + —unx/Tr -+ (y — yj) (C]n:c — Pny)/Tr
_ 0 _ _ _uny/Tr - _ _(x o xj) (qnx T pny)/T’r _
where L2 1
G = ang +bn,  Tr="C, L= (AIAA2013-1125)

NOTE: It reduces to the scalar advectionas v — 0.

Upwind flux constructed for each independently.



Upwind Flux for All

Define the numerical flux as a sum of upwind fluxes:

1
Upwind Advection &% = Q(HaL +H; ) — —]A (Ur — Uyp)

1
2

1
Upwind Source S 2(HSL +H; ) — —\A (Ur —Uyp)

1
S(H, +H ) — S|AT[(Ug — Up)

Upwind Diffusion (I);lk — 5



Upwind Flux for All

Define the numerical flux as a sum of upwind fluxes:

1 1
Upwind Advection &% = Z(HaL +H; ) — §]A,Z](UR —Uyp)

1 1
Upwind Diffusion CID;-Z,{ = Q(HdL +H?,) - §]Afb\(UR —Uy)

1
Upwind Source S 2(HSL +H; ) — —\A (Ur —Uyp)

Same scheme, same truncation error.
The compatibility problem doesn’t exist.



First-Order Scheme

Left and right states: E é

U,=U, Ug=U,




First-Order Scheme

Left and right states: E R

Up,=U;, Ur="U;

| k

Schemell: Reconstruct the solution by using p and q.
(AIAA 2013-1125) 1 1

Uy, = Uj + 5 (pja (]j) ' Aljka Ur = Uk — 5 (pk, Qk) ' Aljka

Aljk — (37k — L5, Yk — yj)



First-Order Scheme

Left and right states: E R

Up,=U;, Ur="U;

| k

Schemell: Reconstruct the solution by using p and q.
(AIAA 2013-1125) 1 1

Uy, = Uj + 5 (pja (]j) ' Aljka Ur = Uk — 5 (pk, Qk) ' Aljka
Al = (zk — T4, Yr — Yj)

Stencil remains compact.
First-order, but second-order in the advection limit.



Second-Order Scheme

For triangular/tetrahedral and smooth mixed grids.

: R

|. Compute gradients at nodes (e.g.,, LSQ). ¢~
2. Extrapolate the solution to the midpoint. /L.

.—)-:(—.

j k



Second-Order Scheme

For triangular/tetrahedral and smooth mixed grids.

R

|. Compute gradients at nodes (e.g.,LSQ). ¢~ .

2. Extrapolate the solution to the midpoint. /L. E

: ® i O :

Left and right states: ] k
1 1
Schemell: up = u; + 5 (pj,q5)|- ALk, ur = up — 5 (P> qr)|- Al
1 1
PL :pj+§ij'Aljka PR = Pk — §VPk‘A1jk

1 1
qr = q; + §VQj'A1jk, qr = QK — §VQk'A1jk

Aljk — (ka — X5, Yk — yj)



Second-Order Scheme

For triangular/tetrahedral and smooth mixed grids.

+ R
|. Compute gradients at nodes (e.g.,LSQ). ¢~ o
2. Extrapolate the solution to the midpoint. /L. E
; P i O ;
Left and right states: ] k
1 1
Schemell: ur, = u; + 5 (pj,q5)|- ALk, ur = up — 5 (P> qi)|- Al
1 1
PL ij+§vpj°Aljk, PR = Pk — §Vpk°A1jk
1 1

qr = q; + §VQj'Aljka qr = QK — §VQk'A1jk

Aljk — (Zb“k — T, Yk — yj)

Second-order, but third-order in the advection limit.



(Katz and Sankaran JCP201 I)

Third-Order Scheme

For triangular/tetrahedral grids.

|. Quadratic LSQ gradients at nodes. :
2. Extrapolate the solution to the midpoint. /L.
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Third-Order Scheme

For triangular/tetrahedral grids.

|. Quadratic LSQ gradients at nodes. :
2. Extrapolate the solution to the midpoint. /L.

. k
Left and right states: J
1 1
Schemell: ur, = u; + 5 (pj,q5)- ALk, ur = up — 5 (Pr, qr)|- Al
1 1
PL :pj+§ij'A1jka PR = Dk — §Vpk'A1jk
1 1
qr ZQj+§VQj'Aljka qQr = Qk — §VQk’Aljk

Uniformly third-order accurate for u, p, and q.



Truncation Error

3rd-order scheme
adyu+bdu—v(Op+09,q) =0, Ou—p=0, du—q=0

u_ _¥h
T" = L. [(\@ +V5)0u(p — Opu) + V20, (p — Opu) + V2 0u(q — yu) + (V2 +V5)d,(q — 0 u)]

2
™ % [Oar + Opyr + Oyyr] + O(R?) r=ad,u+bou—v(0.p+ 0,q)
@p:—hQ [(Opz + Opy) (g — Oyt) + O (p —
6T, 7y y e (p — Opu) + 0,(0,q — O,p)] + O(h?)
2

7! =

i 6T, [(Oay + Oyy) (p — Out) + Dy (q — Dyu) — Du(Deq — yp)] + O(R?)




Truncation Error

3rd-order scheme
adyu+bdu—v(Op+09,q) =0, Ou—p=0, du—q=0

T - ‘@VTh [<¢§+ \/5)6’93(]?%# ﬂay@/:mﬂ ﬂaw) + (V2 4+ V5)o e~ ayu)}

h _
n = Bpar + Byt + 0,,7] + O(h®) r=a0;u~+ bou—v(0:p+ 0,q)

P 90) 0 A0+ 1l 0,09 0 + 00
7' = _6h—;r (Oay + ayy)(%"‘ Oyy(q —270) — aw(M?)] +O(h?)




Truncation Error

3rd-order scheme
adyu+bdu—v(Op+09,q) =0, Ou—p=0, du—q=0

7= - 2L (Va4 V)L 7wﬂ @ay@/@ﬂ @ay@ + (V24 VB b))

h _
n = Opar + Byt + 0,,7] - O(h®) r=a0;u~+ bou—v(0:p+ 0,q)

P 90) 0 A0+ 1l 0,09 0 + 00
7' = _6h—;r (Oay + ayy)(%"‘ Oyy(q —270) — aw(M?)] +O(h?)




Truncation Error

3rd-order scheme
adyu+bdu—v(Op+09,q) =0, Ou—p=0, du—q=0

T - ‘@VTh [<¢§+ \/5)6’93(]?%# ﬂay@/:mﬂ ﬂaw) + (V2 4+ V5)o e~ ayu)}

h _
2 WwW% o’y r=adutbu=vOpt o)

P 90) 0 A0+ 1l 0,09 0 + 00
7' = _6h—;r (Oay + ayy)(%"‘ Oyy(q —270) — aw(M?)] +O(h?)




Truncation Error

3rd-order scheme
adyu+bdu—v(Op+09,q) =0, Ou—p=0, du—q=0

7" f+\f Mfa /+fa(/2’l)+(\f2+ﬁ)a —ayu)]

P 90 a0+ 01l e 0409 700 00
1 = _h—2 [(Ory + Oyy) (p —270) + Oy (q —270) — 0:(0:4.70,p)] H| O (1)
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Truncation Error

3rd-order scheme
adyu+bdu—v(Op+09,q) =0, Ou—p=0, du—q=0

v = _g_g [(\/5 + \/B)ax(p% \/iay(zo/ﬂ)v+ \/iax(yaﬂ) + (V2 + V5) o ” ayu)]

7 =~ 0+ 0,000 DT 0l e +,(0.9 )] 4 00
7' = _Gh—Tr (Oay + ayy)@%"‘ Oyy(q —270) — aw(M?)] O(n”)

N
||

Of course, uniformly 3rd-order accurate.




Numerical Results

Exact solution (see“l Do Like CFD, VOL.1"):
—2m%y
1+ V1 + 47202

u(x,y) = cos(2mn) exp ( f) E=axr+by, n=0r—ay (a,b)=(1.23,0.12)

V = 1

Re
Re=107°1072,10"210"" 1,10, 10% 10°,10°

- 8 irregular grids:
N=nxn n=33,65,97,129, 161, 193,225,257 ~
- Dirichlet boundary condition.
- Quadratic fit (full augmentation, two-steps)
- Defect Correction (Implicit solver)
- Converged when residual drops by |0 orders
- Compare with the Galerkin and Galerkin(3rd).

0

0



Discretization and Jacobians

Designation Discretizaiton Jacobian
Advection  Diffusion Advection Diffusion
Galerkin 3rd-order 2nd-order Galerkin Ist-order  Exact
Galerkin(3rd) 3rd-order 3rd-order Galerkin Ist-order  2nd-order
Schemell(1st) | st-order upwinc Exact
Schemell(2nd) 2nd-order upwind | st-order upwind
Schemell(3rd) 3rd-order upwinc | st-order upwind

Simple like pure advection schemes.
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Conclusions

Uniformly accurate implicit upwind FV schemes constructed for
the advection-diffusion equation on irregular grids, and
verified for a wide range of Reynolds numbers

| st-order scheme: [st-order accurate solution and gradients
2nd-order accurate solution in advection limit
compact, no gradient reconstruction, Newton convergence
2nd-order scheme: 2nd-order accurate solution and gradients
3rd-order accurate solution in advection limit
Linear LSQ gradients
3rd-order scheme: 3rd-order accurate solution and gradients
nearly at the cost of 2nd-order scheme

J

Simple, Efficient, Accurate.



Future VWork

- High aspect ratio grids
- Time-accurate computations by implicit time-stepping
(Alireza Mazaheri NASA LaRC)

- 3rd-order hyperbolic Navier-Stokes solver

Many many many others...
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Hyperbolicity Declared for PDEs

Declaration of Hyperbolicity

We hold these truths to be self-evident, that all PDEs
are created equal, that they are endowed by us
with certain unalienable Rights, that among these are
hyperbolicity, consistent and accurate schemes

and the pursuit of robustness.

Declaration of hyperbolicity presented by Dr. Hiroaki Nishikawa (NIA) at the
51st AIAA Aerospace Sciences Meeting, January 10, 2013, Grapevine, TX, USA

Hyperbolicity was declared, for
the first time in the entire CFD
history, for all partial differential
equations (PDEs) at 51 ATAA
Aerospace Sciences Meeting held
in Grapevine, Texas, on January
10, 2013. It was declared totally
unexpectedly at the technical talk
by Dr. Hiroaki Nishikawa, Senior
Research Scientist at National
Institute of Aerospace (USA). I
was preparing for this moment
since 2007. I thought I had to do it
now in order to rescue people
suffering from various difficulties
with non-hyperbolic PDEs like
parabolic PDEs,” says Nishikawa.

It seems like the declaration came
to rescue, but 1t has generated

heated controversy among
researchers.

“That’s totally crazy. I'm not
going to let anyone make me
hyperbolic,” says Dr. Parabolic at
the Viscous Institute of
Technology. He claims, It is
simply wrong because each type
of PDEs is designed to model
specific physical phenomena and
one may not change it no matter
what. It 1s a completely wrong
idea.” Nishikawa argues that the
hyperbolicity is just for the sake
of numerically solving the PDEs
and at the end of the day the
numerical solution satisfies the
original equations, parabolic or
whatever. Parabolic counters,
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PDE is made hyperbolic by turning non-hyperbolic terms on the right hand side, including a
source term, into a hyperbolic system such that it reduces to the original in the steady state.

“Totally insane. Successful numerical
schemes should reflect the nature of
the PDE they are solving. Upwind
scheme for 1sotropic diffusion has no
chance to work.” Although it sounds
right, the numerical results shown by
Nishikawa indicate that the claim 1s not
true. In fact, unusually good results
have been obtained by the upwind
scheme for diffusion and viscous flow
problems. They are unusually good
because high-order accurate gradients
have been obtained at a dramatically
‘reduced’ cost.

These interesting results have attracted
a number of researchers around the
world. Professor Elliptic at the
University of Smooth says, “It is quite
nice and welcome. As I see it, the
hyperbolized parabolic-PDE 1s
hyperbolic in time but remains elliptic

in space. It’s just like the acoustic sub-
system of the Euler equations, which is
hyperbolic in time but elliptic in space
in subsonic flows.” Dr. Muscl at
Monotone National Laboratory
(currently under reconstruction) 1s
another researcher who welcomed the
declaration. He says, “It’s a wonderful
news. | feel like I've got a lot more
places to work at than I thought.”

On the other hand, Always Nolimiter, a
graduate student of acrospace
engineering, says he’s been scared to
death since he heard the news. He says,
“I’m so scared because the hyperbolic
Navier-Stokes equations may generate
additional shockwaves due to the
hyperbolic viscous term. I just don’t
know what to do. They're gonna blow
me up!™ According to Professor Elliptic,
however, the student 1s worrying for

THE CFD NEWS

nothing. He says, “*No shockwaves will
be generated by the hyperbolic viscous
term. Like I said, they are elliptic in
space. There will be no shockwaves
running across the domain.”

Taro Sushiyama, one of the best sushi
chefs in town, commented on the analogy
of Sushi Burger repeatedly used by
Nishikawa to illustrate the concept. He
says, “It looks eccentric. It’s against
tradition and not acceptable in our world.
But 1t’s an interesting i1dea. In another
world, maybe, only the taste matters. If
Nishikawa-san succeeds, I'll be happy to
make a fine sushi burger for him.*

While the heated debate continues,
progress 1s being made towards the birth
of practical all-hyperbolic CFD codes.
The key to success seems to lie in the
taste, not in looks, as Sushiyama implied.

Sushi burger, a radical approach. “Looks eccentric, but
it's simple to make and tastes the same or even better.”



