
A Finite Volume Method Based on Variational Reconstruction
for Compressible Flows on Arbitrary Grids

Lingquan Li*, Xiaodong Liu†, Jialin Lou‡, Hong Luo§

North Carolina State University, Raleigh, NC, 27695, USA

Hiroaki Nishikawa¶

National Institute of Aerospace, Hampton, VA, 23666, USA

Yuxin Ren||

Tsinghua University, Beijing, 100084, China

A cell-centered finite volume method based on a variational reconstruction, termed FV(VR) in this
paper, is developed for compressible flows on 3D arbitrary grids. In this method, a linear polynomial
solution is reconstructed using a newly developed variational formulation. The solution gradients are
obtained by solving an extreme value problem, which minimizes jumps of the values of the recon-
structed polynomial solutions and their spatial derivatives at cell interfaces, and therefore maximizes
smoothness of the reconstructed polynomial solutions. Like the least-squares reconstruction, the vari-
ational reconstruction has the property of 1-exactness. Unlike the cell-centered finite volume method
based on the least-squares reconstruction, termed FV(LS) in this paper, the resulting FV(VR) method
is stable even on tetrahedral grids, since its stencils are intrinsically the entire mesh. However, the
data structure required by FV(VR) is as the same as FV(LS) and is thus compact and simple. A
variety of the benchmark test cases are presented to assess the accuracy, efficiency, robustness and
flexibility of this finite volume method. The numerical experiments demonstrate that the developed
FV(VR) method is able to maintain the linear stability, attain the designed second-order of accuracy,
and outperform the FV(LS) method without a significant increase in computing costs and storage
requirements.

I. Introduction
Computational Fluid Dynamics (CFD) has become an indispensable tool for a variety of applications in science

and engineering.Generally speaking, numerical methods used in CFD can be classified as structured grid methods,
unstructured grid methods and Cartesian grid methods. The structured grid methods alone are not practical for engi-
neering applications, as they have a disadvantage for griding complex geometries. More often, they are used in the
context of Chimera or overlapping approaches [1][2] to simplify the grid generation process for a complex configu-
ration. The difficulty of generating a structured grid for complex geometries in the engineering community aroused
the interest in the development of unstructured grid method [3]-[7]. Unstructured grids provide great flexibility in
dealing with the complex geometries in practice and offer a natural framework for solution-adaptive mesh refinement.
However, the computational costs and memory requirements for unstructured triangular/tetrahedral grids are generally
higher than for structured grids. Although the solution accuracy may not be strongly affected by element type even in
the boundary layers, computational efficiency can be benefit substantially through the use of prismatic elements in the
boundary layers and Cartesian cells in the inviscid regions. This is due to a simple fact that approximately, five to six
times more tetrahedra than hexahedra are required to fill a given region with a fixed number of nodes. Although the
boundary layer regions occupy only a small portion of the computational domain, it is not uncommon for more than
half of the mesh resolution to be packed into this small region, and thus the quadrilateral elements in 2D and prismatic
elements in 3D can lead to a significant saving in both memory requirements and computational costs. To ensure
high computational efficiency, unstructured triangular/tetrahedral elements should be kept minimal. The advantages
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of Cartesian grid approaches [8]-[12] include ease of grid generation, lower computational storage requirements, and
significantly less operational count per cell. However, the main challenge in using Cartesian methods is how to deal
with arbitrary boundaries, as the grids are not body-aligned. The cells of a Cartesian mesh near the body may intersect
with boudary surfaces. A hybrid method is in need that combines the advantages and strengths of all these three grid
types.

In recent years, significant progress has been made in developing finite volume methods to solve the compressible
Euler and Navier-Stokes equations on unstructured grids [13]-[24]. These methods have gained widespread accep-
tance in recent years for their robustness, intuitive formulation, and computational advantages. There mainly exist
two types of finite volume methods: cell-centered and vertex-centered finite volume methods. Although the debate
that which one has an edge over the other will probably never end, the cell-centered finite volume formulation can
be easily extended to higher-order (>2nd) approximation. In the cell-centered finite volume method, the mesh cells
serve as control volumes and the flux integrals are evaluated on the boundary of the cells. Since the boundaries of the
four most common element types (tetrahedra, prisms, pyramids and hexahedra) are consisted of either triangular or
quadrilateral faces, the boundary flux integrals can be readily approximated by a numerical integration scheme, e.g.,
by a quadrature rule. Furthermore, the cell-centered finite volume formulation is preferred in the context of arbitrary
grids, which may contain hanging nodes. The existence of several cell types in a hybrid grid poses a great challenge
to numerical methods. Although it is unavoidable to treat different cell types differently during the pre-processing
and post-processing stages, it is undesirable that an algorithm depends on the mesh topology during the flow solution
stage. The required conditinal statements not only lead to a sophiscated code but also adversely affect the program
speed. Therefore, an algorithm that treats different cell types in the same way is needed. Such an algorithm is termed
grid-transparent in the literature, which does not require any information on the local cell topology. A gird-transparent
scheme has a number of advantages: first of all it can significantly reduce the discretization stencils compared to a
non-grid-transparent scheme; secondly it can increase the speed of the program; last it can facilitate the implementa-
tion of implicit schemes and parallelizatons.

Stability and accuracy of a finite volume mehtod are mainly determined by the evaluation of numerical fluxes, the
accuracy of reconstruction schemes, and the use of slope limiters, which are needed to suppress spurious oscillations
in the vicinity of discontinuities. Most efforts in the development of the finite volume methods are primarily focused
on numerical fluxes with different Riemann solvers and slope limiters to avoid oscillations in the vincinity of strong
discontinuities. Highly accurate and efficient reconstruction schemes remain relatively unexplored, although they can
significantly improve the accuracy of the finite volume methods. Most of work [25]-[28] in this area is a continu-
ation of the pioneering work by Barth and Frederickson [29] based on a least-squares reconstruction. Although the
second-order cell-centered finite volume methods based on a least-squares reconstruction are in general stable in 2D
and structured grids in 3D, they suffer from the so-called linear instablility on unstructured tetrahedral grids, when the
reconstruction stencils only involve von Neumann neighborhood, i.e., adjacent face-neighboring cells [30]. In fact,
the second-order cell-centered finite volume methods can hardly achieve a formal second order of accuracy for the
solution of the Euler and Navier-Stokes equations in practice, which can be attributed to the lack of a highly accurate
reconstruction method.

The objective of the presented work is to develop an accurate, efficient and robust cell-centered finite volume
method for solving compressible flow problems on arbitrary grids. The novelty of this finite volume method is to
use a newly developed variational formulation [31] to reconstruct a linear polynomial solution. This variational re-
construction can be regarded as an extension of the compact finite difference schemes [32] to the unstructured grids.
The solution gradients are obtained by solving an extreme value problem, which minimizes jumps of the values of the
reconstructured polynomial solutions and their spatial derivatives at cell interfaces, and therefore maximizes smooth-
ness of the reconstructed polynomial solutions. Like the least-squares reconstruction, the variational reconstruction
has the property of 1-exactness. Unlike the cell-centered finite volume method based on the least-squares reconstruc-
tion, termed FV(LS) in this paper, the resulting FV(VR) method is stable even on tetrahedral grids, since its stecils ate
intrinsically the entire mesh. However, the data-structure required by FV(VR) is the same as FV(LS) and is thus com-
pact and simple. A variety of the benchmark test cases are presented to assess the accuracy, efficiency, robustness and
flexibility of this finite volume method. The numerical experiments demonstrate that the VR method is more accurate
and converges faster than its LS counterpart and the developed FV(VR) method is able to maintain the linear stability,
attain the designed second-order of accuracy, and outperform the FV(LS) method without a significant increase in
computing costs and storage requirements. The remainder of this paper is organized as follows. The governing equa-
tions are presented in Section 2. The developed variational reconstruction based finite volume method is described in
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Section 3. Extensive numerical experiments are reported in Section 4. Concluding remarks are given in Section 5.

II. Governing Equations
The Euler equations governing unsteady compressible inviscid flows over any region Ω with boundary Γ = ∂Ω

can be expressed in integral form as

∂

∂t

∫
Ω

UdΩ +

∫
Γ

Fj · njdΓ = 0 (2.1)

where the summation convention is used here, and nj is the outward unit normal to Γ. The conservative variable vector
U, and inviscid flux vector F are defined by

U =

 ρ
ρui
ρe

 Fj =

 ρuj
ρuiuj + pδij
uj(ρe+ p)

 (2.2)

Here ρ, p and e denote the density, pressure, and specific total energy of the fluid, respectively, and ui is the velocity
of the flow in the coordinate direction xi. The pressure is computed from the equation of state

p = (γ − 1)ρ(e− 1

2
ujuj) (2.3)

which is valid for perfect gas, where γ is the ratio of the specific heats.

III. Numerical Method
3.1. Finite Volume Formulation
The system of the governing compressible Euler equatons is discretized in space using a cell-centered finite volume
method. In a finite volume method, the computational domain Ω is divided by a set of non-overlapping control volumes
Ωi with boundary Γ = ∂Ωi that can be one or combination of four most common element types: tetrahedra, prisms,
pyramids and hexahedra. On each control volume, the integral form of the governing equations is required to be
satisfied. ∫

Ωi

∂U
∂t
dΩ +

∫
Γi

FjnjdΓ = 0 (3.1)

Take the unknowns to be the cell-averaged conservative variable vector

Ui =
1

Vi

∫
Ωi

UdΩ (3.2)

By summing the boundary integration over the cell interfaces between the cell Ωi and its adjacent face-neighboring
cell Ωj , Γij = ∂Ωi ∩ ∂Ωj , and by approximating the flux integral using one point quadrature at the midpoint of the
face Γij in Eq. (3.1), the semi-discrete form of the equations may be written as

Vi
dUi
dt

+
∑
j

Fij · nijΓij = 0 (3.3)

where Vi is the volume of the control volume Ωi, nij is the outward unit normal to Γij , and the flux function gives
the flux through the face Γij seperating the control volume Ωi from the adjacent control volume Ωj . If the numerical
fluxes at the interfaces in Eq. (3.3) are simply evaluated as an arithmetic average of the normal fluxes, the resulting
finite volume scheme, equivalent to the classic central differencing scheme, allows for the apperearance of checker
boarding modes, and thus suffers from numerical instabilities, unless some type of numerical dissipation in the form
of artificial viscosity is introduced. To construct a stable scheme for the compressible Euler equations, any of the
Riemann solvers can be formulated by adopting different forms for the numerical fluxes at the interface. When an
upwind scheme is used to compute the numerical fluxes at the cell interface via simple cell-averaged flow variables,
i.e.,

Fij · nij = F(Ui,Uj ,nij) (3.4)
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the resultant finite volume method is only first-order accurate in space. A second order of accuracy can be achieved
using a reconstruction scheme where a piecewise linear polynomial solution is reconstructed in the control volume us-
ing the neighboring cells. The numerical fluxes at the interfaces are then evaluated using upwind-biased interpolations
of the solution via the MUSCL approach. This leads to the numerical fluxes

Fij · nij = F(U−ij ,U
+
ij ,nij) (3.5)

The upwind-biased interpolations of the solutions for U−ij and U+
ij are defined by

U−ij = Ui + φi(xij − i) · ∇Ui, (3.6)

and

U+
ij = Uj + φj(xij − j) · ∇Uj , (3.7)

where xi, xj and xij are the position vector for the centers of cell Ωi, Ωj and face Γij , respectively, and φ is a slope
limiter.

Equation (3.3) represents a system of ordinary differential equation. A fully implicit time scheme is employed
to integrate Equation (3.3) to reach steady-state solutions. An approximate Newton method is used to linearize the
equations arising from the implicit discretization. A fast, matrix-free implicit method, GMRES+LU-SGS method
[22][23], is then used to solve the resultant system of linear equations. In this work, HLLC scheme [33] is used to
compute interface fluxes. Several limiters can be chosen to suppress spurious oscillation of the numerical solutions in
the vicinity of the discontinuities. As our design goal is to develop a grid transparent finite volume method on mixed
element type grids with possible hanging nodes, the data structure of the flow solver is based on the face of the grid,
rather than on the elements. A face based data structure has the advantage that there no limitations on the number of
faces, which can be connected to an element, and thus can handle hanging nodes with ease. The computation of fluxes
and their contribution to cells can be effictively implemented by loops over the faces through gather/scatter operations.

3.2. Reconstructin Schemes
As it can be seen above, the accuracy of a reconstruction method can have a big effect on the stability and accuracy of
the finite volume methods. A second order finite volume method needs to reconstruct a piecewise linear polynomial
solution using cell-averaged values of the flow variables in the neighboring cells. This simply requires the evalua-
tion of the derivatives in the cell for the flow variables. One of the most commonly used and simplest reconstruction
schemes is the least-squares reconstruction [29], where the computation of gradients is performed in the form of a
minimization problems. This least-squares reconstructed finite volume method FV(LS) can be successfully used to
solve the 2D compressible Euler equations for smooth flows on arbitrary grids and is able to achieve the designed
second order of accuracy and significantly improve the accuracy of the underlying first-order FV method. However,
when extended to solve the 3D compressible Euler equations on tetrahedral grids, the FV(LS) suffers from the so-
called linear instability, which occurs even for the linear hyperbolic equation [30]. This linear instability is attributed
to the fact that the reconstruction stencils only involve von Neumann neighborhood, i.e., adjacent face-neighboring
cells. The linear stability can be achieved using extended stencils, which will unfortunately sacrifice the compactness
of the underlying reconstruction method.

Alternatively, a recently developed variational reconstruction [31] can be used to obtain the solution gradients by
solving an extreme value problem, which minimizes jumps of the values of the reconstructed polynomial solutions
and their spatial derivatives at cell interfaces, and therefore maximizes smoothness of the reconstructed polynomial
solutions. In this case, a cost function in the variational reconstruction can be defined as

I =

nface∑
iface=1

Iiface (3.8)

where nface is the number of cell interfaces in a grid and Iiface denotes the interface jump integration function for a
given interface. For an internal face Γij separating the left element i and the right element j, Iiface is given by

Iiface =
1

dij

∫
Γij

1∑
p=0

(
dpijwp[

∂pU
∂xp

]

)2

dΓ (3.9)
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=
1

dij

∫
Γij

(w0[U])
2

+

(
dijw1[

∂pU
∂x

]

)2

+

(
dijw1[

∂pU
∂y

]

)2

+

(
dijw1[

∂pU
∂z

]

)2

dΓ

where dij is the distance between the centroids of the two cells, wp is the weight, and [] denotes the jump operator,
which is defined as

[U] = U+ − U− (3.10)

where U− and U+ denote the values of U on Γij for the two elements i and j, respectively. The face integral can
be computed exactly using Gaussian quadrature formulas with sufficient precision. The constitutive relations of the
variational reconstruction are derived by minimizzing the total I with respect to the coefficients of the reconstruction
polynomial, i.e., the gradients. This leads to a system of linear equations, which is then solved using the LU-SGS
method [22]. The resultant finite volume method: FV(VR), can achieve the linear stability, since the stencils of this
variational reconstruction are intrinsically the entire mesh. In appendix, we prove that this VR reconstruction in 1D
recovers to the compact finite difference scheme [32] on uniform grids. Consequently, the VR reconstruction can be
viewed as the extension of the compact difference schemes on arbitrary grids.

When extended to k-th order reconstruction, Iiface can be written as

Iiface =
1

dij

∫
Γij

k∑
p=0

p∑
m=0

m∑
n=0

(
dpijwm,n,p[

∂pU
∂xn∂ym∂zp−m−n

]

)2

dΓ (3.11)

3.3. WENO Limiter
In order to maintain the so-called non-linear stability, i.e., to suppress non-physical oscillations in the vicinity of strong
discontinuities, the solution gradients on cell i is finally obtained using a nonlinear WENO reconstruction [34][35] as
a convex combination of the VR reconstructed first derivatives at the cell itself (k=0) and its face-neighboring cells
(k=1, ..., njface),

∂U
∂xn
|WENO
i =

njface∑
k=0

wk
∂U
∂xn
|k (3.12)

where njface is the number of the face-neighboring cells for cell i and the normalized nonlinear weights wk are
computed as

wk =
w̃k∑nface

i=0 w̃k
(3.13)

The non-normalized nonlinear weights w̃k are functions of the linear weights λi and the so-called oscillation indicator
ok

w̃i =
λi

(ε+ ok)γ
(3.14)

where ε is a small positive number used to avoid division by zero, and γ is an integer parameter to control how fast
the non-linear weights decay for non-smooth stencils. The oscillation indicator for the reconstructed second order
polynomials is simply defined as

ok =

√
(
∂U

∂xn
|k)2 (3.15)

The linear weights λi can be chosen to balance the accuracy and the non-oscillatory property of the FV method. Note
that the VR reconstructed polynomial at the cell itself serves as the central stencil and the least-squares reconstructed
polynomials on its face-neighboring cells act as biased stencils in this WENO reconstruction.

IV. Numerical Examples
A few examples are presented in this section to demonstrate the high accuracy and robustness of our FV(VR)

method for compressible flow problems on arbitrary grids. All solutions in test case 2 to test case 4 are obtained
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by the second order methods without any limiters, in an effort to ensure that the solution accuracy is developed on
arbitrary grids. The code has the ability to compute 1D, 2D and 3D problems. Results for one-dimensional flows
can be readily obtained by setting the number of cells in both y- and z- directions to be 1 using a hexahedral grid.
Fow two-dimensional problems, the number of cells in the z-direction is simply set to be 1. The first test case is to
assess the 1-exactness and the accuracy of the variational reconstruction method. Test case 2 to test case 4 are chosen
to demonstrate that the developed FV(VR) method is able to achieve the designed second-order of convergence for
smooth flows. The last two test cases are presented to illustrate the applicability of the FV(VR) method for solving
problems of scientific and industrial interests for complex configurations. The length scale, characterizing the cell size
of an unstructured grid, is defined as 1/ 2

√
ncells and 1/ 3

√
ncells, for 2D and 3D problems, respectively, where ncells

is the number of cells. The L2-norm of the entropy production is used as the error measurement

‖ε‖L2(Ω) =

√∫
Ω

ε2dΩ (4.1)

where the entropy production ε is defined as

ε =
S − S∞
s∞

=
p

p∞
(
ρ∞
ρ

)γ − 1 (4.2)

Note that the entropy production, where the entropy is defined as S = p/ργ , is a very good criterion to measure
accuracy of the numerical solutions, when the flow under consideration is smooth and therefore isentropic.

Test case 1. Convergence study on reconstruction methods
This test case is chosen to assess the 1-exactness and the accuracy of the variational reconstruction method in compar-
ison with its least-squares counterpart on both hexahedral and tetrahedral grids. The computational domain is a cube
(0 ≤ xi ≤ 1) for hexahedral grids. Tetrahedral grids are the ones used in test case 4. A fully linear polynomial function
and a smooth function are used to assess the accuracy, the order of convergence, and the 1-exact property of the two
reconstruction methods. Table 1 and Table 2 present numerical results obtained by the least-squares reconstruction
and VR reconstruction with 1 and 4 Gauss points for Iiface on hexahedral grids and 1 and 3 Gauss points for Iiface
on tetrahedral grids, which are also illustrated in Figure 1 and Figure 2. Mesh size, L2-error of the error function
and the order of convergence are shown. As expected, both least-squares reconstruction and variational reconstruction
methods have the 1-exact property, i.e., being able to reconstruct a linear polynomial exactly. For a generally smooth
function, both the least-squares reconstruction and the variational reconstruction can achieve the designed second or-
der of convergence. However, the variational reconstruction is more accurate and has a faster convergence rate than
the least-squares reconstruction, especially on tetrahedral grids. In addition, using more Gauss points leads to a more
accurate reconstruction.

Table 1. L2-error and order of convergence of reconstruction methods on hexahedral grids
LS VR(1 Gauss points) VR(4 Gauss points)

Element number L2-error Order L2-error Order l2-error Order
Case 1: f(x, y, z) = 999x− 888y + 777z − 666

8× 8× 8 5.1018e-14 - 2.2413e-13 - 2.4294e-13 -
16× 16× 16 5.2064e-14 - 4.8416e-13 - 4.8350e-13 -
32× 32× 32 4.9396e-14 - 9.3799e-13 - 9.3768e-13 -
64× 64× 64 4.8193e-14 - 1.7902e-12 - 1.7901e-12 -

Case 2: f(x, y, z) = sin(πx)sin(πy)sin(πz)
8× 8× 8 1.0467e-2 - 9.1387e-3 - 1.0841e-2 -
16× 16× 16 2.6027e-3 2.015 2.0723e-3 2.148 2.2795e-3 2.258
32× 32× 32 6.5055e-4 2.007 5.0036e-4 2.057 5.2014e-4 2.139
64× 64× 64 1.6265e-4 2.007 1.2375e-4 2.022 1.2570e-4 2.056
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Table 2. L2-error and order of convergence of reconstruction methods on tetrahedral grids
LS VR(1 Gauss points) VR(3 Gauss points)

Element number L2-error Order L2-error Order l2-error Order
Case 1: f(x, y, z) = 999x− 888y + 777z − 666

535 1.9738e-10 - 1.2420e-9 - 7.6205e-10 -
2, 426 1.9285e-10 - 8.1763e-10 - 6.3624e-10 -
16, 467 1.8852e-10 - 7.5296e-10 - 5.0341e-10
124, 706 1.8789e-10 - 5.1960e-10 - 4.6568e-10 -

Case 2: f(x, y, z) = sin(πx/10)sin(πy/10)sin(πz/10)
535 33.0761 - 25.4885 - 24.3049 -
2, 426 10.8501 1.614 6.6682 1.941 5.2408 2.221
16, 467 2.8138 1.954 1.4078 2.252 0.8692 2.601
124, 706 0.7031 2.008 0.3158 2.164 0.1764 2.324

Figure 1. Convergence histories of the least-squares and variational reconstruction methods on hexahedral grids

Figure 2. Convergence histories of the least-squares and variational reconstruction methods on tetrahedral grids
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Test case 2. Subsonic flow through a channel with a smooth bump
This test case is chosen to demonstrate the accuracy and convergence rates of the FV(VR) and FV(LS) methods for
internal flows. The problem under consideration is a subsonic flow inside a 3D channel with a smooth bump on the
lower surface. The height, width and length of the channel are 0.8, 0.8 and 3, respectively. The shape of the lower
wall is defined by the function 0.0625exp(−25x2) from x = −1.5 to x = 1.5. The inflow condition is prescribed
at a Mach number of 0.5, and an angle of attack of 0o. Figure 3 shows the three successively refined prismatic grids
used in the grid convergence study. The numbers of prismatic elements, grid points and boundary faces for the three
grids are (512, 914, 1024), (2048, 2850, 4096) and (8192, 9794, 16384), respectively. The cell size is haved between
consecutive meshes. Numerical solutions to this problem are computed using the FV(VR) method on these three
grids to obtain a quantitative measurement of the order of accuracy and discretization errors. Figure 4 illustrates the
computed velocity contours in the flow field obtained by the FV(VR) method on these three grids. The errors and the
convergence rates for both FV(VR) and FV(LS) methods are reported in Table 3. It shows the mesh size, the L2-error
of the error function and the order of convergence. Both methods are able to attain the designed second order of the
convergence in this test case, being 2.252 and 1.869, respectively. The FV(VR) method offers a better convergence
and more accurate solutions on the finest grid than the FV(LS) method.

Figure 3. A sequence of three successively globally refined unstructured prismatic meshes used for computing a subsonic flow in a channel
with a smooth bump
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Figure 4. Computed velocity contours in the flow field obtained by the FV(VR) method on a sequence of three successively globally refined
unstructured prismatic grids for a subsonic flow through a channel with a bump on the lower surface at Ma∞ = 0.5

Table 3. L2-error and order of convergence for the FV(VR) and FV(LS) methods
FV(VR) FV(LS)

Log(Length Scale) Log(L2-error) Order Log(L2-error) Order
-2.3046 -3.0680 - -3.1910 -
-2.6056 -3.6956 2.085 -3.7416 1.829
-2.9066 -4.4203 2.407 -4.3160 1.908

Test case 3. Subsonic flow past a circular cylinder
An inviscid subsonic flow past a circular cylinder at a Mach number of M∞ = 0.38 is considered in this test case to
assess the order of accuracy and discretization error of the FV(VR) and FV(LS) methods for external flows. Compu-
tations are performed on two types of grids: one is consisted of hexahedral cells and the other is consisted of prismatic
cells. Figure 5 and Figure 7 show four successively refined o-type hexahedral and prismatic grids with 16× 5, 32× 9,
64 × 17 and 128 × 33 points, respectively. The first number refers to the number of points in the circular direction,
and the second number refers to the number of concentric circles in the mesh. The radius of the cylinder is r1 = 0.5.
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The domain is bounded by r33 = 20. The radii of concentric circles for 128× 33 mesh are set up as

ri = r1

1 +
2π

128

i−1∑
j=0

αj

 , i = 2, ..., 33. (4.3)

where α = 1.1580372. The coarser grids are generated by successively coarsing the finest mesh. Numerical solutions
to this problem are computed on these four grids to obtain quantitative measurement of the order of accuracy and
discretization errors of the FV(VR) and FV(LS) methods. The computed Mach number contours obtained by these
two methods on the hexahedral and prismatic grids are shown in Figure 6 and Figure 8, respectively. The errors and
the convergence rates for both methods are reported in Table 4 and Table 5, respectively. The mesh size, L2-error
and the order of convergence are shown in the tables. The FV(VR) method is able to achieve the designed second
order of the convergence on both hexahedral and prismatic grids, being 2.063 and 2.675, respectively. However, the
FV(LS) method can barely attain a full second order of convergence even for this simple problem on a well-designed
set of grids, being 1.704 and 2.091, respectively. The FV(VR) method offers a better convergence and more accurate
solutions on the fine girds than the FV(LS) method, demonstrating the superior performance of the FV(VR) method
over the FV(LS) method.

Figure 5. Sequences of four successively globally refined hexahedral meshes 16× 5, 32× 9, 64× 17 and 128× 33 for computing inviscid
subsonic flow past a circular cylinder
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Figure 6. Computed Mach number contours on four successively refined hexahedral grids obtained using the FV(VR) scheme for subsonic
flow past a circular cylinder at a Mach number of 0.38
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Figure 7. Sequences of four successively globally refined prismatic meshes 16 × 5, 32 × 9, 64 × 17 and 128 × 33 for computing inviscid
subsonic flow past a circular cylinder

Figure 8. Computed Mach number contours on four successively refined prismatic grids obtained using the FV(VR) scheme for subsonic
flow past a circular cylinder at a Mach number of 0.38

12 of 19

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ju
ly

 5
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
30

97
 



Table 4. L2-error and order of convergence for the FV(VR) and FV(LS) methods on hexahedral grids
FV(VR) FV(LS)

Log(Length Scale) Log(L2-error) Order Log(L2-error) Order
-0.903 -0.4931 - -0.6982 -
-1.204 -0.9172 1.409 -1.0846 1.284
-1.505 -1.5745 2.184 -1.6368 1.834
-1.806 -2.3559 2.596 -2.2341 1.984

Table 5. L2-error and order of convergence for the FV(VR) and FV(LS) methods on prismatic grids
FV(VR) FV(LS)

Log(Length Scale) Log(L2-error) Order Log(L2-error) Order
-1.054 -0.8984 - -0.9132 -
-1.355 -1.6419 2.470 -1.5898 2.278
-1.657 -2.4842 2.798 -2.2354 2.115
-1.957 -3.3144 2.758 -2.8011 1.880

Test case 4. Subsonic flow past a sphere
In this test case, a subsonic flow past a sphere at a Mach number of M∞ = 0.5 is considered to assess if the FV(VR)
method can achieve a formal order of convergence rate on tetrahedral grids. A sequence of four successively refined
tetrahedral grids used in the grid convergence study is shown in Figure 9. The numbers of tetrahedral elements, grid
points and boundary faces for the four grids are (535, 167, 124), (2426, 598, 322), (16467, 3425, 1188) and (124706,
23462, 4538), respectively. The cell size is haved between consecutive meshes. Note that only a quarter of the
configuration is modeled due to the symmetry of the problem, and that the number of elements on a successively refined
mesh is not exactly eight times the coarse mesh’s element number due to the nature of unstructured grid generation.
The computations are conducted on the four grids using the FV(VR) method. Since the FV(LS) method is unstable for
this test case, the results obtained by a second-order DG(P1) method on the first three grids are also presented for the
purpose of comparison. Figure 10 illustrates the computed velocity contours in the flow field obtained by the FV(VR)
method on these four grids. The errors and the convergence rates for both FV(VR) and DG(P1) methods are reported in
Table 8. The mesh size, L2-error and the order of convergence are shown in this table. Figure 11 provides the details of
the spatial convergence of the FV(VR) and DG(P1) methods for this numerical experiment. Both FV(VR) and DG(P1)
achieve the expected second order of convergence rates, being 1.995 and 2.096, respectively. The second order DG(P1)
method is more accurate than the second order FV(VR) method on the same grids. However, the FV(VR) solution is
almost as accurate as the DG(P1) solution for the same number of degrees of freedom, convincingly demonstrating
the high accuracy of the FV(VR) method.
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Figure 9. A series of four successively globally refined tetrahedral meshes for subsonic flow past a sphere at M∞ = 0.5

Figure 10. Computed velocity contours in the flow field obtained by the FV(VR) method for subsonic flow past a sphere at M∞ = 0.5

Table 6. L2-error and order of convergence for the FV(VR) and DG(P1) methods
FV(VR) DG(P1)

Log(Length Scale) Log(L2-error) Order Log(L2-error) Order
-1.1283 -2.1000 - -2.5294 -
-1.4055 -2.6730 2.067 -3.1311 2.170
-1.6986 -3.2146 1.848 -3.7236 2.021
-1.9951 -3.8284 2.071 - -
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Figure 11. Accuracy summary for an inviscid subsonic flow past a sphere obtained using the FV(VR) and DG(P1) method

Test case 5. Transonic flow past an ONERA M6 wing
A transonic flow over the ONERA M6 wing at a Mach number of M∞ = 0.84 and an attack angle of α = 3.06o is
considered here. This test case is chosen to demonstrate that the FV(VR) method is able to obtain a stable solution
for transonic flows using a WENO limiter. The mesh used in this computation consists of 593,169 tetrahedral cells,
110,282 grid points and 39,770 boundary faces. Figure 12 shows the computed pressure contours on the upper wing
surface obtained by the FV(VR) solutions. The computed pressure coefficients obtained by the FV(VR) method are
compared with experimental data [36] at six span-wise stations in Figure 13. The results obtained by the FV(VR)
method compare closely with the experimental data, except at the root stations, due to the lack of viscous effects. The
shocks are captured sharply essentially without any oscillations, demonstrating the high accuracy and non-oscillatory
property of our FV(VR) method, when combined with a WENO limiter.

X

Z

Y

Figure 12. Computed pressure contours on the unstructured surface mesh obtained by the FV(VR) method (nelem = 593,169, npoin =
110,282, nface = 39,770) for a transonic flow past a M6 wing at M∞ = 0.84
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Figure 13. Pressure coefficient distributions for wing section at 20%, 44%, 65%, 80%, 90%, 95% semispan locations
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Test case 6. Transonic flow past a Boeing 747 aircraft
Finally, a transonic flow past a complete Boeing 747 aircraft is presented. The 747 configuration includes the fuselage,
wing, horizontal and vertical tails, under-wing pylons, and flow-through engine nacelle. The mesh used in this test
case, contains 371,162 grid points, 1,025,170 tetrahedral cells, and 60,780 (double check) boundary faces for the half-
span airplane. The solution is computed at a free stream of Mach number of 0.85 and an angle of attack of 2o. The
computed Mach number contours on the surface of the airplane, along with the surface mesh, are shown in Figure
14. This example confirms that the developed FV(VR) method can be used to compute complicated flows of practical
importance for complex configurations.

X

Y

Z

Mach Number: 0.00 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.34 1.50 1.67

Figure 14. Computed Mach number contours and unstructured surface mesh for transonic flow past a complete B747 aircraft at M∞ =
0.84

V. Conclusions
A cell-centered finite volume method based on a variational reconstruction, FV(VR), has been developed for

solving the compressible Euler equations on 3D arbitrary grids. The variational reconstruction can be viewed as
an extension of the compact finite difference schemes on unstructured grids and has the property of 1-exactness.
The resulting FV(VR) method is linearly stable, since its stencils are intrinsically the entire mesh. However, the
data structure required by the FV(VR) method is compact and simple. A variety of the benchmark test cases are
presented to assess the performance of this FV(VR) method. The numerical experiments indicate that the developed
FV(VR) method is able to maintain the linear stability, attain the designed second-order of accuracy, and outperform
the FV(LS) method without a significant increase in computing costs and storage requirements. Future development
will be focused on the extension of the second-order FV(VR) method to a higher-order FV(VR) method.
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Appendix: 1
In this appendix, the equivalence of the variational reconstruction to the well-known compact finite difference scheme is demon-

strated on a uniform grid. The jump at interface i+ 1
2

is defined as

Ii+ 1
2
=

1

2

{[
w0

(
u+

i+ 1
2
− u−

i+ 1
2

)]2
+

[
w1h

(
du
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∣∣∣+
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2
− du

dx

∣∣∣−
i+ 1

2

)]2}
where

u+

i+ 1
2
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h

2
si+1, u−

i+ 1
2
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h

2
si,

du

dx

∣∣∣+
i+ 1

2
= si+1,

du

dx

∣∣∣−
i+ 1

2
= si.

The objective function is defined as the summation of the interface jumps over all the interfaces

I =

n∑
i=0

Ii+ 1
2

The equations for the slopes s can then be derived by finding the minimizer of the objective function. Taking the derivative I with
respect to si and setting it to be zero leads to

∂I
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2

∂si
+

∂Ii+ 1
2

∂si
= 0

Note that only Ii− 1
2

and Ii+ 1
2

contain the coefficient si and

∂Ii+ 1
2

∂si
= w0

(
u+

i+ 1
2
− u−

i+ 1
2

)
(−h

2
)w0 + w1h

(
du

dx

∣∣∣+
i+ 1

2
− du

dx

∣∣∣−
i+ 1

2

)
(−h)w

=

(
w2

0

4
+ w2

1

)
h2si +

(
w2

0

4
− w2

1

)
h2si+1 −

w2
0h

2
(ui+1 − ui)

∂Ii− 1
2

∂si
= w0

(
u+

i− 1
2
− u−

i− 1
2

)
(−h

2
)w0 + w1h

(
du

dx

∣∣∣+
i− 1

2
− du

dx

∣∣∣−
i− 1

2

)
hw

=

(
w2

0

4
− w2

1

)
h2si−1 +

(
w2

0

4
+ w2

1

)
h2si −

w2
0h

2
(ui − ui−1)

The resulting linear equation for the slope s becomes(
w2

0

4
− w2

1

)
h2si−1 + 2

(
w2

0

4
+ w2

1

)
h2si +

(
w2

0

4
− w2

1

)
h2si+1 =

w2
0h

2
(ui+1 − ui−1)

Note that when w1 = 0.5w0, the slope is given by the central differencing scheme. When w1 = 0, the above equation can be
simplified as

si−1

2
+ si +

si+1

2
=

ui+1 − ui−1

h
which is the second order compact finite difference scheme[32]. Consequently, the variational reconstruction scheme can be
regarded as the extension of the compact finite difference scheme on unstructured grids. The resultant linear system for the slopes
is symmetric, compact and diagonally dominant. When w1 is not equal to zero, the matrix of the linear system is strictly diagonally
dominant, and therefore nonsingular. Consequently, the gradient solution always exists uniquely and easy to compute numerically.
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