Recent Advances in Agglomerated Multigrid

Hiroaki Nishikawa, Boris Diskin, National Institute of Aerospace

James L. Thomas, Dana P. Hammond

NASA Langley Research Center NATIONAL

AFROSPACE

AIAA Aerospace Sciences Meeting Wednesday January 9, 2013 Joint Fluid Dynamics and Meshing/Visualizaton Session Grapevine, TX

Purpose

Improve efficiency of Reynolds-Averaged Navier-Stokes (RANS) simulations for complex-geometry and complex-flow applications

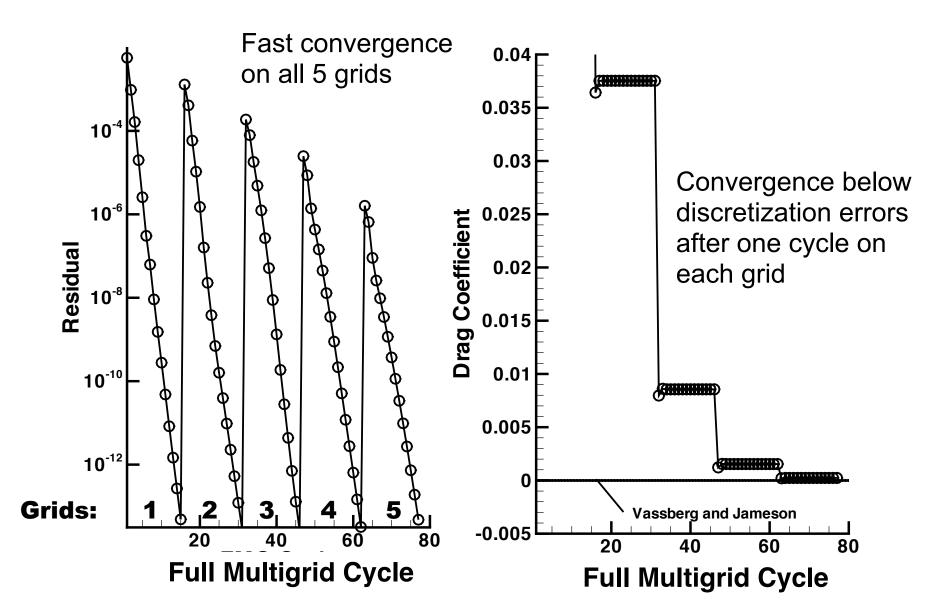
- Unstructured compressible flow method (FUN3D)
- Spalart-Allmaras 1-equation turbulence model
- Multigrid with agglomerated coarse grids

Previous Work

- Agglomerated multigrid methods well suited to unstructured grids
 - Nonlinear multigrid from 1977
 - Agglomeration methods from 1987
 - Speedups observed but gains fall short of gains for inviscid or laminar flows
- Current approach extends hierarchical multigrid method (1999) to unstructured grids
 - Assessed defect correction for compressible Euler (2010)
 - Developed agglomeration method preserving features of geometry (2010)
 - Critically assessed multigrid for diffusion (2010), identified by Venkatakrishnan (1996) as weakest part of agglomeration
 - Applied to complex inviscid/laminar/turbulent flows (2010/2011)

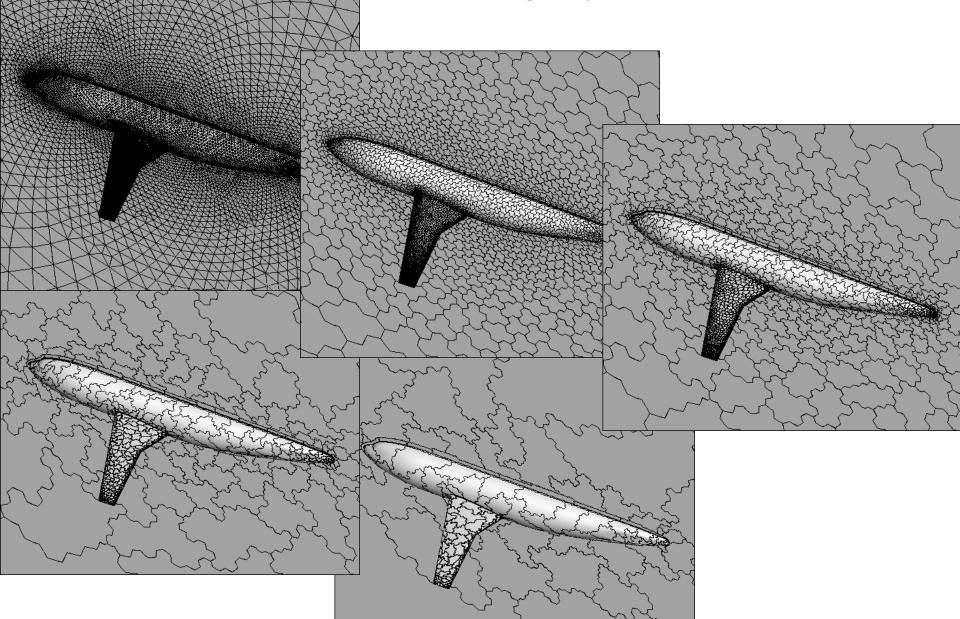
Multigrid for Euler (2011)

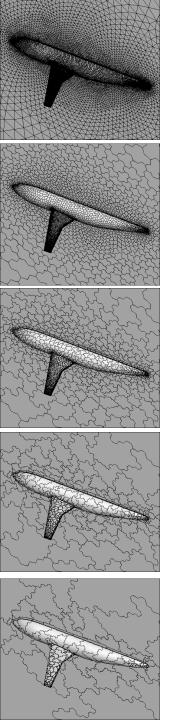
NACA 0012 airfoil; M= 0.5; Alpha =1.25



Multigrid for Diffusion (2010)

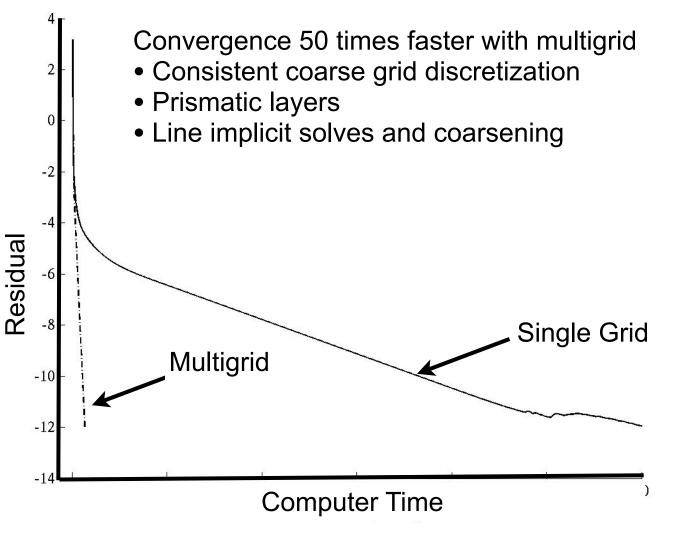
DLR F6 Wing-Body Grids



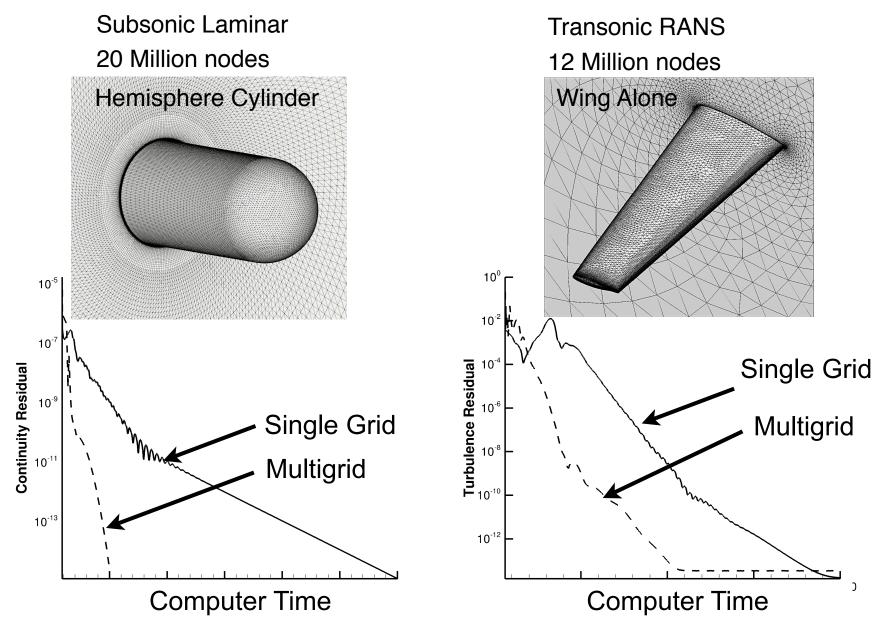


Multigrid for Diffusion (2010)

DLR F6 Wing-Body



3D Agglomerated Multigrid (2011)



Previous Work

- Agglomerated multigrid methods well suited to unstructured grids
 - Nonlinear multigrid from 1977
 - Agglomeration methods from 1987
 - Speedups observed but gains fall short of gains for inviscid or laminar flows
- Current approach extends hierarchical multigrid method (1999) to unstructured grids
 - Assessed defect correction for compressible Euler (2010)
 - Developed agglomeration method preserving features of geometry (2010)
 - Critically assessed multigrid for diffusion (2010), identified by Venkatakrishnan (1996) as weakest part of agglomeration
 - Applied to complex inviscid/laminar/turbulent flows (2010/2011)
- Overall status
 - Uniformly successful for laminar and inviscid simulations
 - Limited success for RANS simulations

Purpose - Revisited

Improve efficiency of Reynolds-Averaged Navier-Stokes (RANS) simulations for complex-geometry and complex-flow applications

- Unstructured compressible flow method (FUN3D)
- Spalart-Allmaras 1-equation turbulence model
- Multigrid with agglemerated coarse grids Single grid structured (regular coarsening)

"When there is a difficult question that you cannot answer, there is also a simpler question that you cannot answer" (Achi Brandt)

Solving turbulence equations to zero residuals is one such question

Why Such a Difficult Question? Spalart-Allmaras Model with negative turbulence variable *provisions* (2012)

- Nonlinear diffusion and source terms
- Production source terms associated with exponentially growing solutions are eventually balanced by other terms
 - Reduce diagonal positivity
 - Require gradients of mean flow variables
- RANS necessitates high aspect ratio, highly stretched grids
 - 3D grid refinements stretch computer resources
 - Questionable accuracy on coarse grids
- Discrete solutions depart from positivity of differential equations (*provisions* date to 1999)
 - Negative turbulence variable => zero eddy viscosity
 - Steady 3D flows with negative turbulence variable in far wake regions
 - Some first-order 3D cases are harder to solve than second-order

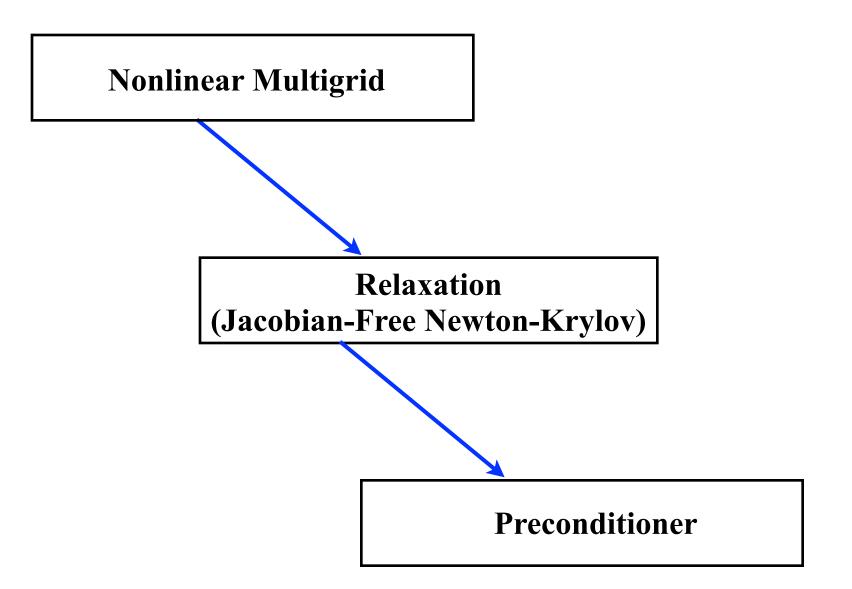
Remainder of Talk

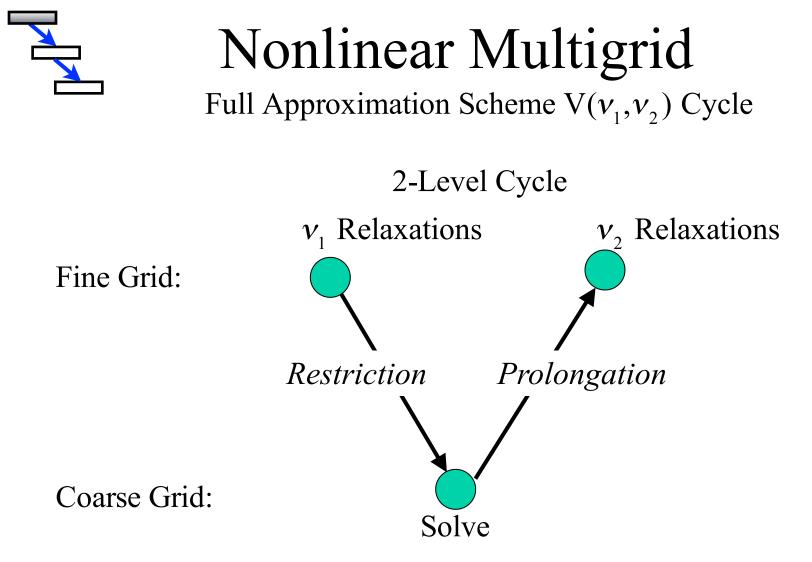
- Hierarchical solver with adaptive time step
- Agglomerated and structured multigrid comparisons
- Transonic 3D wing-body computations
- Concluding remarks

Contributions of this Paper

- Improved hierarchical solver with adaptive pseudo-time step
- Assessment of current technology with systematic tests
 - Increasing complexity and grid refinement
 - Structured and agglomerated grids
- Parallelization improvements
- Eliminated degenerate least-square stencils (fine/coarse grids)
- Term-by-term formation of Jacobians
- Improved discretization in line-implicit regions

Hierarchical Solver





- Recursive application of 2-grid cycle
- Mean flow and turbulence relaxed at every level
 - Loosely-coupled (meanflow, then turbulence)
 - Tightly-coupled

Jacobian-Free Newton Krylov Generalized Conjugate Residual (GCR)

Target update equation is full linearization with adaptive time step (CFL)

$$\left(\frac{V}{\Delta\tau} + \frac{\partial R}{\partial Q}\right)\delta Q = -R \quad ; \quad Q = Q + \delta Q$$

 $V \equiv$ volume $R \equiv$ residual

 $\Delta \tau \equiv \text{time step} \quad Q \equiv \text{solution}$

Full linearization is through Jacobian-free matrix evaluation

- Real-valued (uncertainties from round-off and constrained growth)
- Complex-valued (nominally exact)

GCR combines preconditioner directions to minimize residual, generally with loose tolerance and a few projections

$$\left\| \left(\frac{V}{\Delta \tau} + \frac{\partial R}{\partial Q} \right) \delta Q + R \right\| \le f \left\| R \right\| \qquad 0.5 \le f \le 0.98$$

GCR often stabilizes divergent preconditioner subiterations

Preconditioner

Jacobian Approximations with Subiterations

Target update (direction) equation is approximate linearization with adaptive time step $\begin{pmatrix} V & \partial P \end{pmatrix}$

$$\left(\frac{V}{\Delta\tau} + \frac{\partial R}{\partial Q}\right)\widehat{\delta Q} = -R$$

where linearization is approximate, e.g., on primal grids:

- first-order accurate inviscid terms (defect correction)
- exact viscous terms

Alternating multicolor point-implicit and line-implicit subiterations, solving with loose tolerance

$$\left\| \left(\frac{V}{\Delta \tau} + \frac{\widehat{\partial R}}{\partial Q} \right) \widehat{\delta Q} + R \right\| \le f \left\| R \right\| \qquad 0.5 \le f \le 0.98$$

Can often take many subiterations to meet even minimal tolerance of $f \le 0.98$

Pseudo-Time Step (CFL) Adaptation

- Motivated by recent work of Allmaras et al. (2011) on robust Newton solver
 - Direct linear solver
 - CFL low in highly nonlinear regions and where allowable changes exceeded
 - CFL eventually high with quadratic convergence
- Current approach evolving
 - CFL reduced whenever linear systems are having difficulty reaching loose tolerance with minimal GCR projections
 - CFL reduced and null update nulled whenever linear systems converging but update extremely large
 - Otherwise, similar to Allmaras et al. but without quadratic convergence

Evolution of Target CFL Strategy

Strategy	CFL Target	Preconditioner
Clydesdale	200	Dissipative Defect Correction
 Quarter Horse	200	Consistent Defect Correction
Thoroughbred	10,000	Consistent Defect Correction

- Enabled by CFL adaptation
- Enabled by GCR

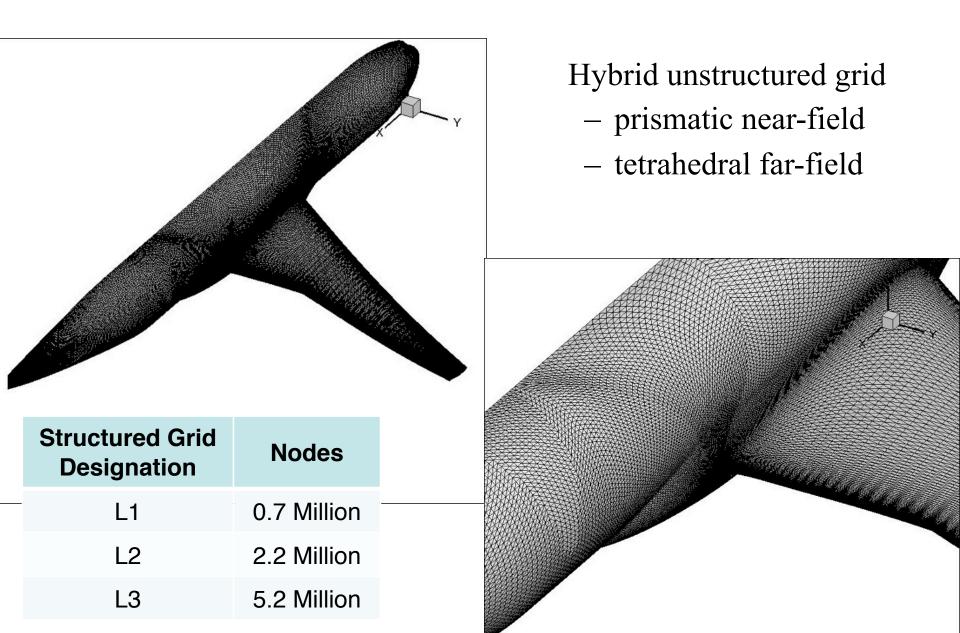
Turbulent Test Cases (SpeedUp over Single Grid) V(3,3) ; CFL=200 (Quarter Horse CFL Target) Based on Convergence to Machine Zero Residuals

	Geometry	Finest Grid Nodes	Agglomerated Multigrid SpeedUp
2D	Bump in a Channel	4K	Зx
2D	RAE Airfoil	98K	3x
2D	Flat Plate	209K	9x
2D	NACA 0012 Airfoil	919K	8x
2D	Hemisphere Cylinder	960K	16x
3D	Hemisphere Cylinder	15M	19x
3D	Wing-Body-Tail (DPW4)	10M	7x
3D	Wing-Body (DPW5)	15M	< 1x

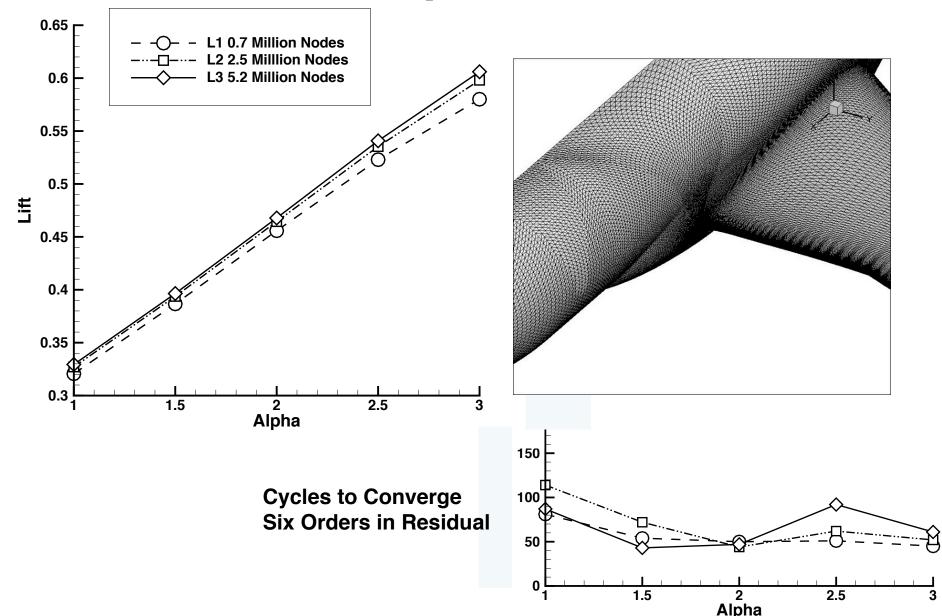
From Quarter Horse to Thoroughbred In Target CFL NACA 0012; M=0.15; Alpha = 15 Cycles to Machine Zero Residuals with Full Multigrid Cycle

Grid Density	Agglomerated Multigrid V(3,3) Cycles CFL=200	Structured Multigrid V(2,2) Cycles CFL=10,000
Grid 1 (Fine)	276	24
Grid 2 (Medium)	241	23
Grid 3 (Coarse)	216	24

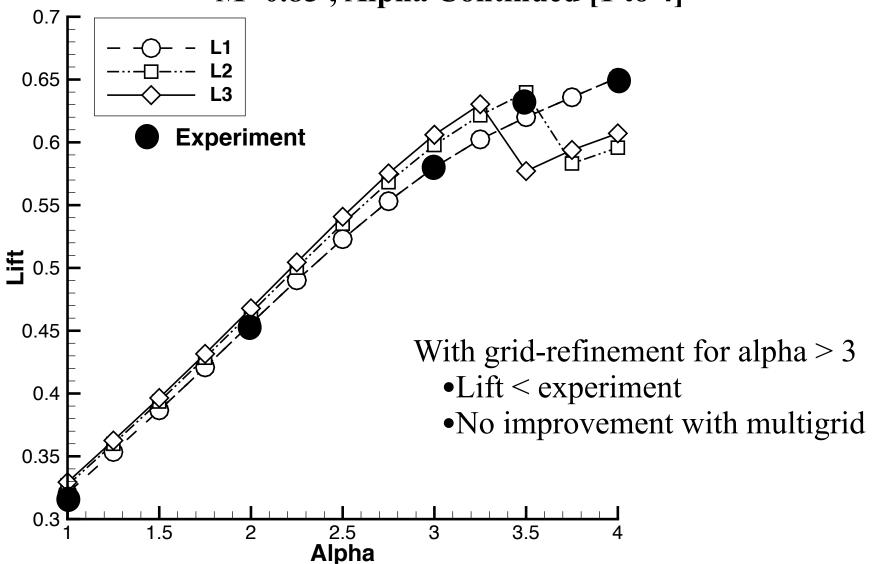
Transonic Wing-Body Drag Prediction Workshop 5

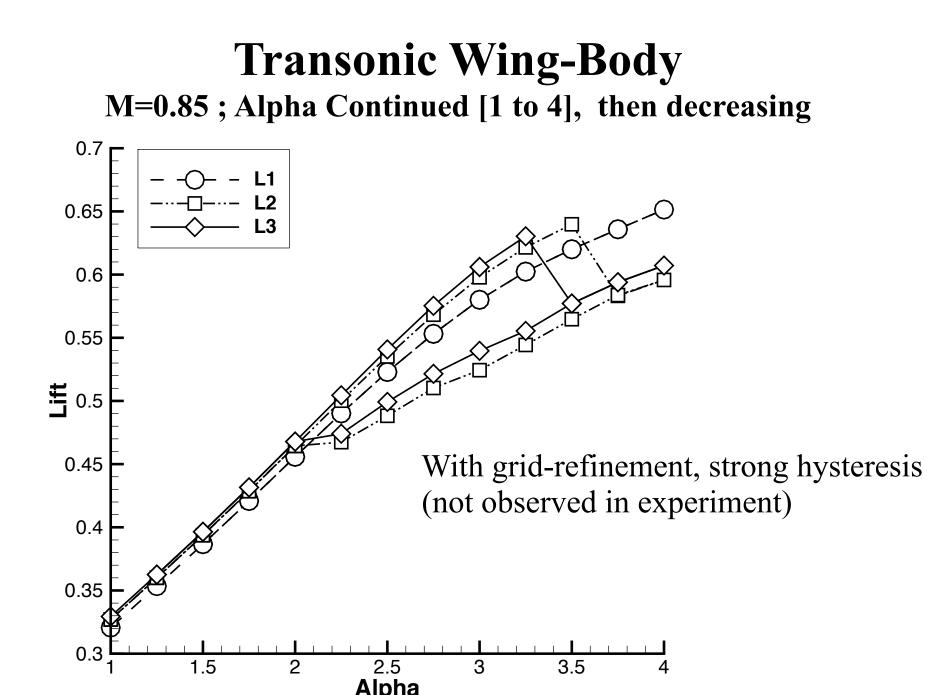


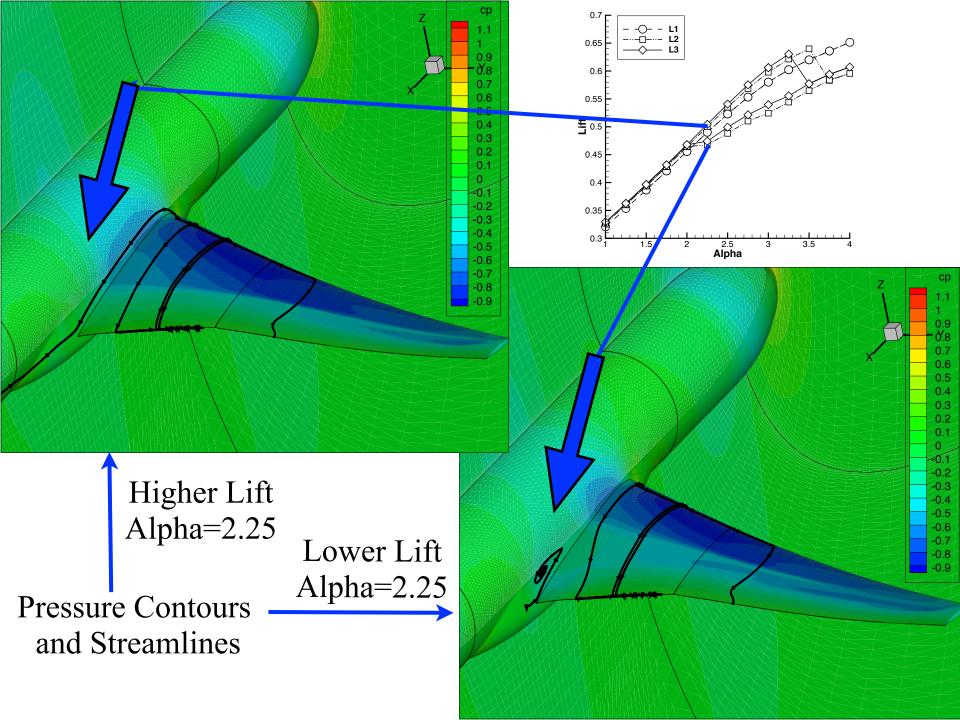
Transonic Wing-Body Structured V(2,2) Multigrid Cycle; CFL=10,000 M=0.85 ; Alpha Continued [1 to 3]



Transonic Wing-Body M=0.85 ; Alpha Continued [1 to 4]







Concluding Remarks

- Hierarchical solver with adaptive time step control proven useful for turbulent flows
 - Single grid and multigrid methods
 - Used in comparisons/adaptation of Park (Monday AM)
- Agglomeration multigrid assessed over range of tests
 - V(3,3) cycle with CFL=200
 - Comparable performance with structured-grid multigrid
 - Substantial improvement over single grid method
- Structured multigrid assessed over smaller range of tests
 - V(2,2) with CFL=10,000
 - Fast convergence for 2D and 3D comparable to inviscid

Future Research

- Single grid solver
 - Refinements in adaptation strategy to reduce sensitivity to selectable parameters (robust controller)
- Multigrid
 - Assess agglomeration multigrid with higher CFL numbers
 - Understand limitations observed for DPW5 grids
 - Apply *ideal* multigrid tools to assess where further inroads are possible
 - *Ideal relaxation* (tests coarse grid correction)
 - *Ideal coarse grid* (tests relaxation)

Research Possible through the NASA Fundamental Aeronautics Program

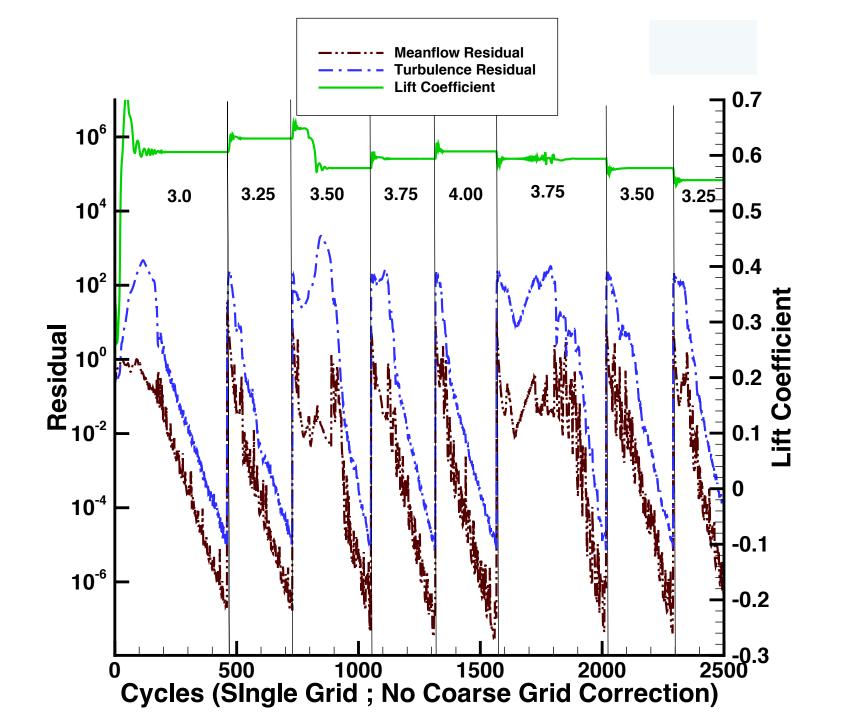
Support of cross-cutting technology development

- Peter Coen (Supersonics)
- Mike Rogers (Subsonic Fixed Wing)
- Susan Gorton (Rotorcraft)
- Mujeeb Malik (Revolutionary Computational Aerosciences)

First two authors supported by NASA contracts

- NNL12AB00T "Improvements of Unstructured Finite-Volume Solutions for Turbulent Flows"
- NNL09AA00A "Efficient Iterative Solutions for Turbulent Flows

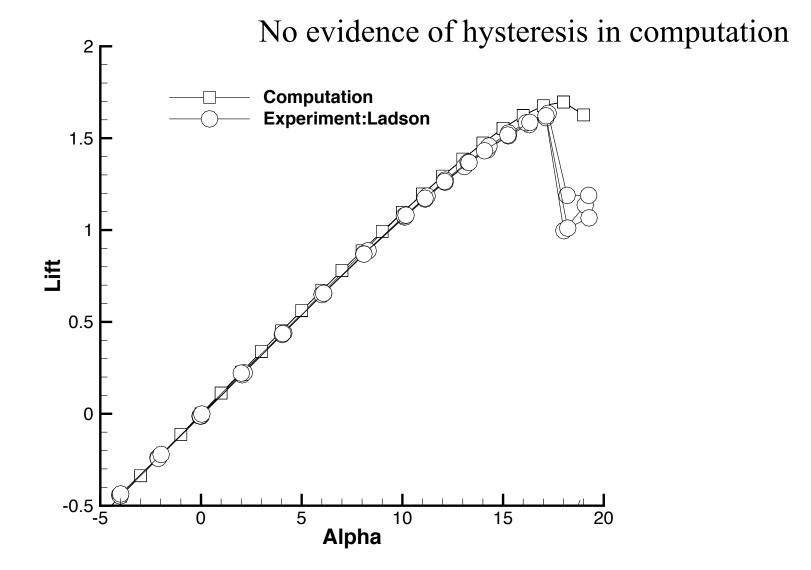
BackUp Slides Follow



Coarse Grids : AgMG vs StMG

Property	Agglomerated	Structured
Coarsening	Hierarchical (3-level)	Full (all levels)
Accuracy	First Order Inviscid Second Order Viscous	Second Order Inviscid Second Order Viscous
Jacobians	Approximate Viscous	Approximate Inviscid
Restriction	Conservative with Residual Averaging	Full Weighting (prolongation transpose)
Prolongation	Linear> Constant (viscous curved)	Linear (structured mapping)
Cycle / CFL	V(3,3) / CFL=200	V(2,2) / CFL=10,000

NACA 0012 Airfoil M=0.15; Finest Grid (919K) Alpha Continued From [10 to 19] then [19 to -5] then [-5 to -3]



NACA 0012 Airfoil M=0.15; Finest Grid (919K) Alpha Continued From [10 to 19] then [19 to -5] then [-5 to -3]

O(10) improvement with multigrid O(10) more cycles near zero lift

