First, Second, and Third Order Finite-Volume Schemes for Diffusion

Hiro Nishikawa

51st AIAA Aerospace Sciences Meeting, January 10, 2013

Supported by ARO (PM: Dr. Frederick Ferguson), NASA, Software Cradle.

All Created Equal

"all men are created equal,"

- Thomas Jefferson, The Declaration of Independence

Are all PDEs created equal?

Hyperbolic vs Parabolic

Hyperbolic (inviscid):

- Principle of "upwinding" (dissipation) led to many useful schemes.
- Robust 1st-order schemes a home to come back.
- A variety of unstructured, high-order schemes.

Parabolic (viscous):

- Lack of universal guiding principles.
- Lack of robust 1 st-order schemes (rely on inconsistent scheme).
- Much less variety for unstructured, high-order schemes.
- Degraded accuracy of derivatives on irregular grids.

They don't seem created equal...

Who Created PDEs?

"all men are created equal, that they are endowed by their Creator with certain unalienable Rights,"

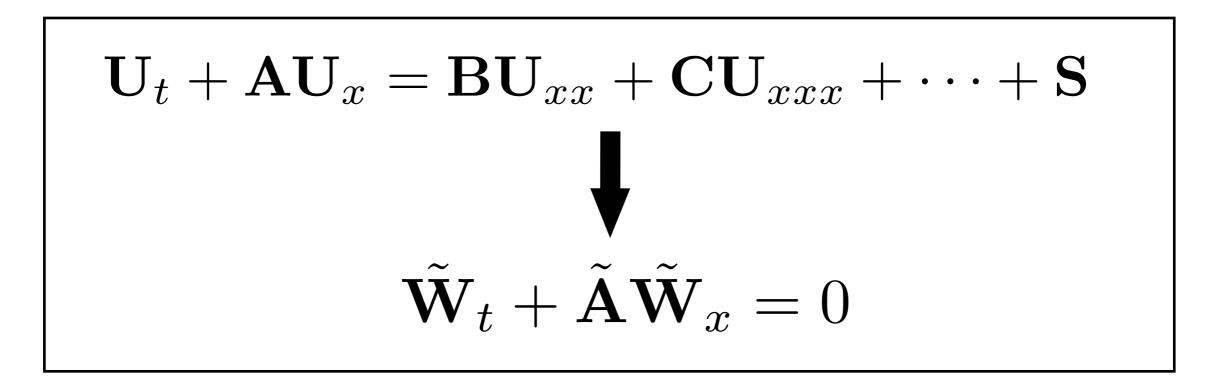
- Thomas Jefferson, The Declaration of Independence

We created PDEs.

Then, we can recreate them equal.

Recreate Them Hyperbolic

First-Order Hyperbolic System Method JCP2007, 2010, 2012, AIAA2009, 2011, 2013



Methods for hyperbolic systems apply to all PDEs. Dramatic simplification/improvements to numerical methods

Turn Every Food into a Burger

Simple, Efficient, Accurate.

It looks eccentric, but the taste is the same, or even better.

Nishikawa, JCP2007 Hyperbolic Diffusion System

$$\partial_t u = \nu \left(\partial_{xx} u + \partial_{yy} u \right)$$

Sushi Burger for Diffusion

$$\begin{array}{rcl} & & & \\ \partial_t u & = & \nu \left(\partial_x p + \partial_y q \right) \\ \partial_t p & = & \left(\partial_x u - p \right) / T_r \\ \partial_t q & = & \left(\partial_y u - q \right) / T_r \end{array} \xrightarrow{} \begin{array}{rcl} & & 0 & = & \nu \left(\partial_x p + \partial_y q \right), \\ & & p & = & \partial_x u, \\ & & q & = & \partial_y u, \end{array} \xrightarrow{} \begin{array}{rcl} & & 0 & = \nu \left(\partial_{xx} u + \partial_{yy} u \right), \\ & & q & = & \partial_y u, \end{array}$$

System is equivalent to diffusion in the steady state for any Tr :

$$T_r = \frac{L_r^2}{\nu}, \quad L_r = \frac{1}{2\pi}$$

Unsteady computation possible by dual-time formulation (implicit) with a steady solver used in the inner iteration.

Hyperbolic Diffusion System Sushi Burger for Diffusion

 $\partial_t \mathbf{U} + \partial_x \mathbf{F} + \partial_y \mathbf{G} = \mathbf{S},$

$$\mathbf{U} = \begin{bmatrix} u \\ p \\ q \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} -\nu p \\ -u/T_r \\ 0 \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} -\nu q \\ 0 \\ -u/T_r \end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix} 0 \\ -p/T_r \\ -q/T_r \end{bmatrix}$$

Normal Jacobian:
$$\mathbf{A}_n = \frac{\partial \mathbf{H}}{\partial \mathbf{U}} = \frac{\partial (\mathbf{F}n_x + \mathbf{G}n_y)}{\partial \mathbf{U}}$$

Real eigenvalues: $\lambda_1 = -\sqrt{\frac{\nu}{T_r}}, \quad \lambda_2 = \sqrt{\frac{\nu}{T_r}}, \quad \lambda_3 = 0$

Energy Estimate

Integrate over the domain $\ell^E = (u, L_r^2 p, L_r^2 q) \times (hyperbolic system):$

$$\frac{d}{dt} \int_{\Omega} E \, dV = -\nu \int_{\Omega} \left(p^2 + q^2 \right) dV - \oint_{\partial \Omega} \mathbf{f}^E \cdot \mathbf{n} \, dA$$
$$E = u^2 + L_r^2 (p^2 + q^2) \qquad \qquad \mathbf{f}^E = (-\nu u p, -\nu u q)$$

which reduces to the energy estimate for the Laplace equation:

$$0 = \int_{\Omega} \nabla u \cdot \nabla u \, dV - \oint_{\partial \Omega} u \frac{\partial u}{\partial n} dA$$

Energy estimate consistent with steady diffusion problem

Diffusion is Hyperbolic

Hyperbolic Advection-Diffusion System (JCP2010) Hyperbolic Navier-Stokes System (AIAA2011-3043)

If you have a good inviscid scheme, you have a very good viscous scheme.

- Equal order of accuracy for solution and derivatives.
- O(h) time step; O(1/h) condition number.

Edge-Based Finite-Volume Method

NASA's FUN3D; Software Cradle's SC/Tetra; DLR Tau code, etc.

Edge-based finite-volume scheme:

$$V_j \frac{d\mathbf{U}_j}{dt} = -\sum_{k \in \{k_j\}} \Phi_{jk} A_{jk} + \mathbf{S}_j V_j$$
$$A_{jk} = |\mathbf{n}_{jk}^\ell + \mathbf{n}_{jk}^r|$$

with the upwind flux at edge midpoint:

$$\Phi_{jk} = \frac{1}{2} (\mathbf{H}_L + \mathbf{H}_R) - \frac{1}{2} |\mathbf{A}_n| (\mathbf{U}_R - \mathbf{U}_L)$$

Accuracy is determined by the left and right states.

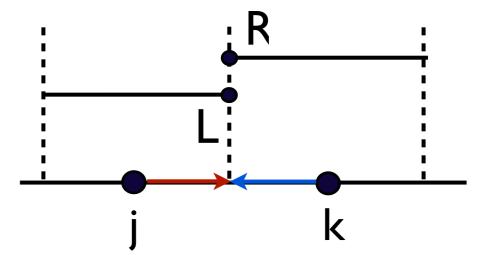
First-Order Scheme

Home sweet home for diffusion schemes

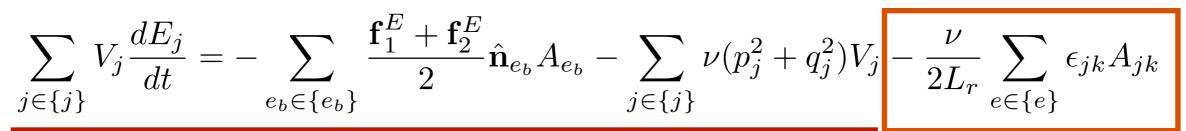
First-Order Scheme for Diffusion

Left and right states:

$$\mathbf{U}_L = \mathbf{U}_j, \quad \mathbf{U}_R = \mathbf{U}_k$$



Discrete Energy Estimate:



Consistent with continuous energy estimate

Dissipation

$$\epsilon_{jk} = (u_k - u_j)^2 + L_r^2 \left[(p_k - p_j, q_k - q_j) \cdot \hat{\mathbf{n}}_{jk} \right]^2 \ge 0$$

First-order upwind diffusion scheme is energy-stable for general grids.

Second-Order Scheme

Even better

Second-Order Scheme

For triangular/tetrahedral and smooth mixed grids.

Compute gradients at nodes (e.g., LSQ).
 Extrapolate the solution to the midpoint.

Left and right states:

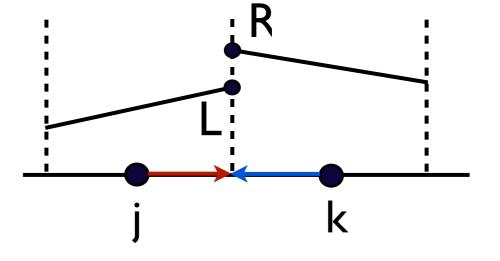
$$u_{L} = u_{j} + \frac{1}{2} (p_{j}, q_{j}) \cdot \Delta \mathbf{l}_{jk}, \quad u_{R} = u_{k} - \frac{1}{2} (p_{k}, q_{k}) \cdot \Delta \mathbf{l}_{jk}$$

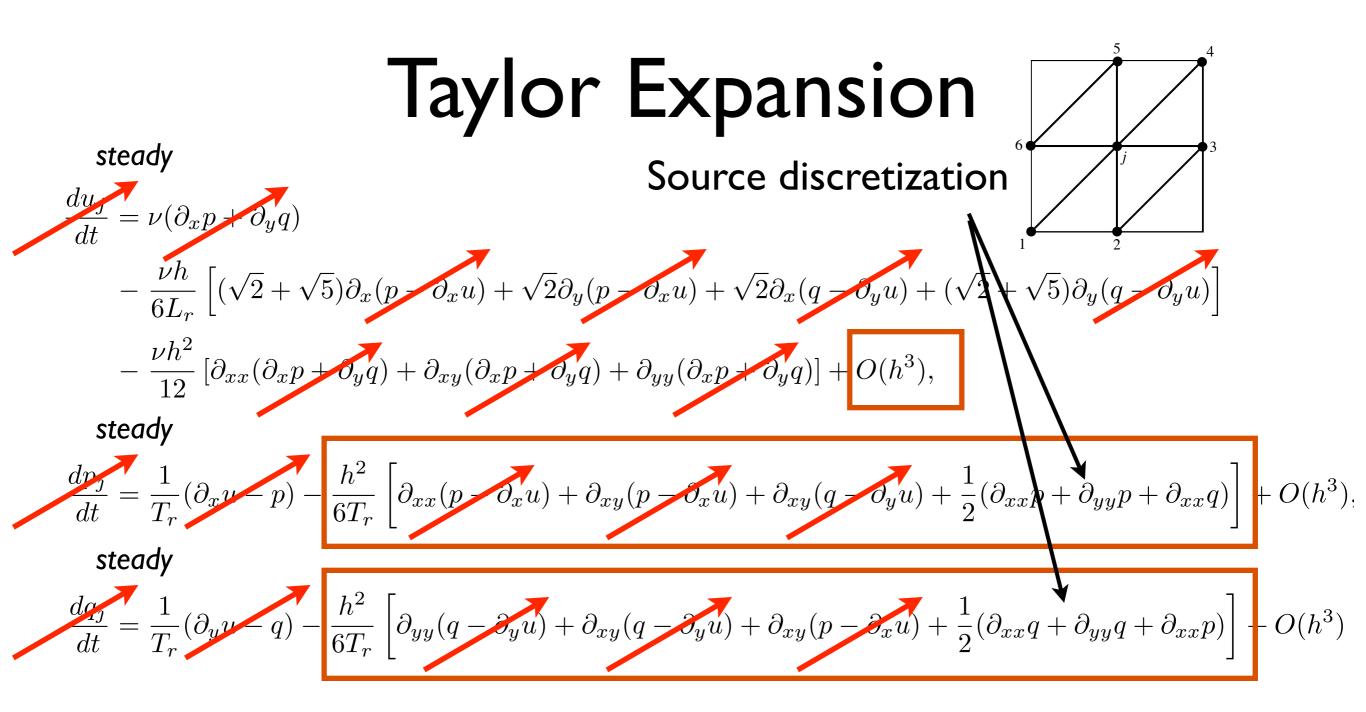
$$p_{L} = p_{j} + \frac{1}{2} \nabla p_{j} \cdot \Delta \mathbf{l}_{jk}, \quad p_{R} = p_{k} - \frac{1}{2} \nabla p_{k} \cdot \Delta \mathbf{l}_{jk}$$

$$q_{L} = q_{j} + \frac{1}{2} \nabla q_{j} \cdot \Delta \mathbf{l}_{jk}, \quad q_{R} = q_{k} - \frac{1}{2} \nabla q_{k} \cdot \Delta \mathbf{l}_{jk}$$

$$\Delta \mathbf{l}_{jk} = (x_{k} - x_{j}, y_{k} - y_{j})$$

Gradients are not needed for the solution.





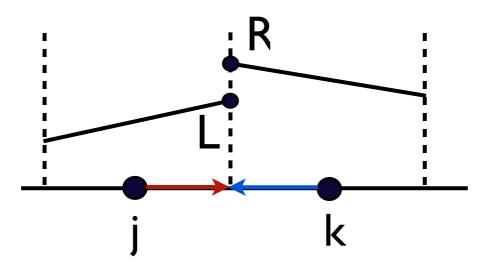
Second-order accurate for solution and gradients. First-order error makes it stable with forward Euler.

Third-Order Scheme

A new wave

Third-Order Scheme (Katz and Sankaran JCP2011)

For triangular/tetrahedral grids only.



I. 2nd-order gradients at nodes (e.g., LSQ quadratic fit).

2. Extrapolate flux/solution to the midpoint.

$$\mathbf{H}_{L} = \mathbf{H}_{j} + \frac{1}{2} \nabla \mathbf{H}_{j} \cdot \Delta \mathbf{l}_{jk}, \quad \mathbf{H}_{R} = \mathbf{H}_{k} - \frac{1}{2} \nabla \mathbf{H}_{k} \cdot \Delta \mathbf{l}_{jk}$$

Third-order accuracy on a second-order stencil Source term needs special discretization (NIA CFD Seminar 12-04-12).

Divergence Form of Source

Write the source term at each node j as follows:

 $\mathbf{S} \longrightarrow \partial_x \mathbf{F}^s + \partial_y \mathbf{G}^s$

$$\mathbf{F}^{s} = \begin{bmatrix} 0 \\ (y - y_{j}) q/T_{r} \\ -(x - x_{j}) q/T_{r} \end{bmatrix}, \quad \mathbf{G}^{s} = \begin{bmatrix} 0 \\ -(y - y_{j}) p/T_{r} \\ (x - x_{j}) p/T_{r} \end{bmatrix}$$

So that

$$\partial_t \mathbf{U} + \partial_x \mathbf{F} + \partial_y \mathbf{G} = \mathbf{S}$$

$$\downarrow$$
 $\partial_t \mathbf{U} + \partial_x (\mathbf{F} - \mathbf{F}^s) + \partial_y (\mathbf{G} - \mathbf{G}^s) = \mathbf{0}$

The system is fully hyperbolic with no source terms. Source term discretization is not needed.

Third-Order Scheme (Katz and Sankaran JCP2011)

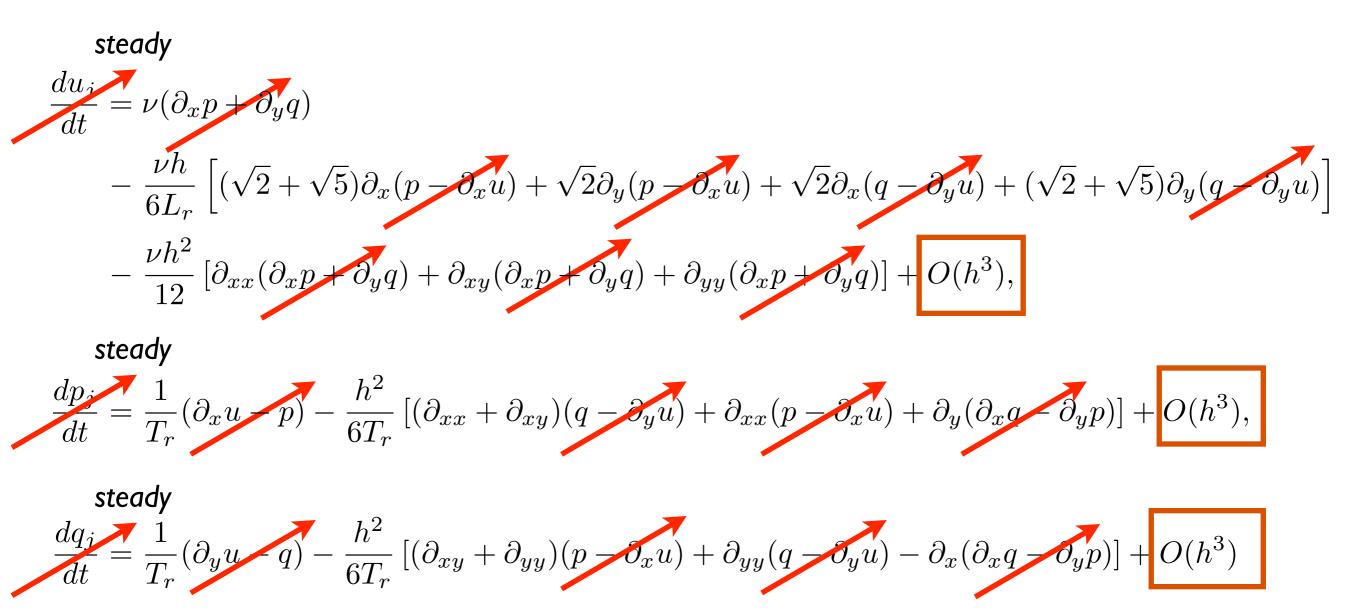
I. 2nd-order gradients at nodes (e.g., LSQ).
 Extrapolate flux/solution to the midpoint.
 Upwind flux for fully hyperbolic system.

Left and right states:

$$u_{L} = u_{j} + \frac{1}{2} (p_{j}, q_{j}) \cdot \Delta \mathbf{l}_{jk}, \quad u_{R} = u_{k} - \frac{1}{2} (p_{k}, q_{k}) \cdot \Delta \mathbf{l}_{jk}$$
$$p_{L} = p_{j} + \frac{1}{2} \nabla p_{j} \cdot \Delta \mathbf{l}_{jk}, \quad p_{R} = p_{k} - \frac{1}{2} \nabla p_{k} \cdot \Delta \mathbf{l}_{jk}$$
$$q_{L} = q_{j} + \frac{1}{2} \nabla q_{j} \cdot \Delta \mathbf{l}_{jk}, \quad q_{R} = q_{k} - \frac{1}{2} \nabla q_{k} \cdot \Delta \mathbf{l}_{jk}$$

Gradients are not needed for the solution.

Taylor Expansion (3rd-order)



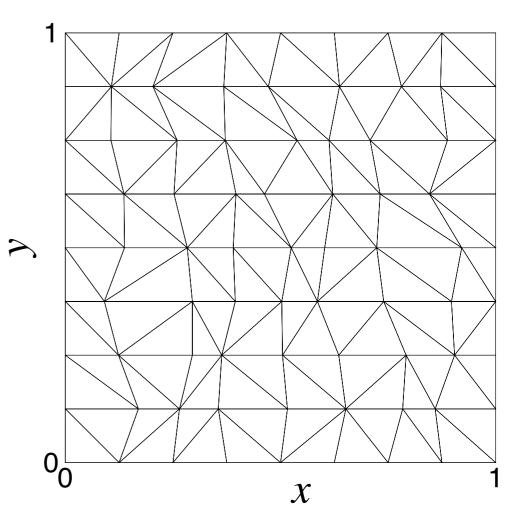
Third-order accurate for solution and gradients. First-order error makes it stable with forward Euler.

Numerical Experiment

Exact solution:

$$u(x,y) = \frac{\sinh(\pi x)\sin(\pi y) + \sinh(\pi y)\sin(\pi x)}{\sinh(\pi)}$$

- n x n grids: n = 9, 17, 33, 65, 129, 257.
- Dirichlet boundary condition.
- 10 neighbors for quadratic fit.
 (to avoid ill-conditioning of LSQ matrix)
- Forward Euler time stepping
- Steady state reached when residual drops below 1.0E-15
- Comparison with the Galerkin scheme



Max CFL Number

Max CFL numbers determined by Fourier analysis:

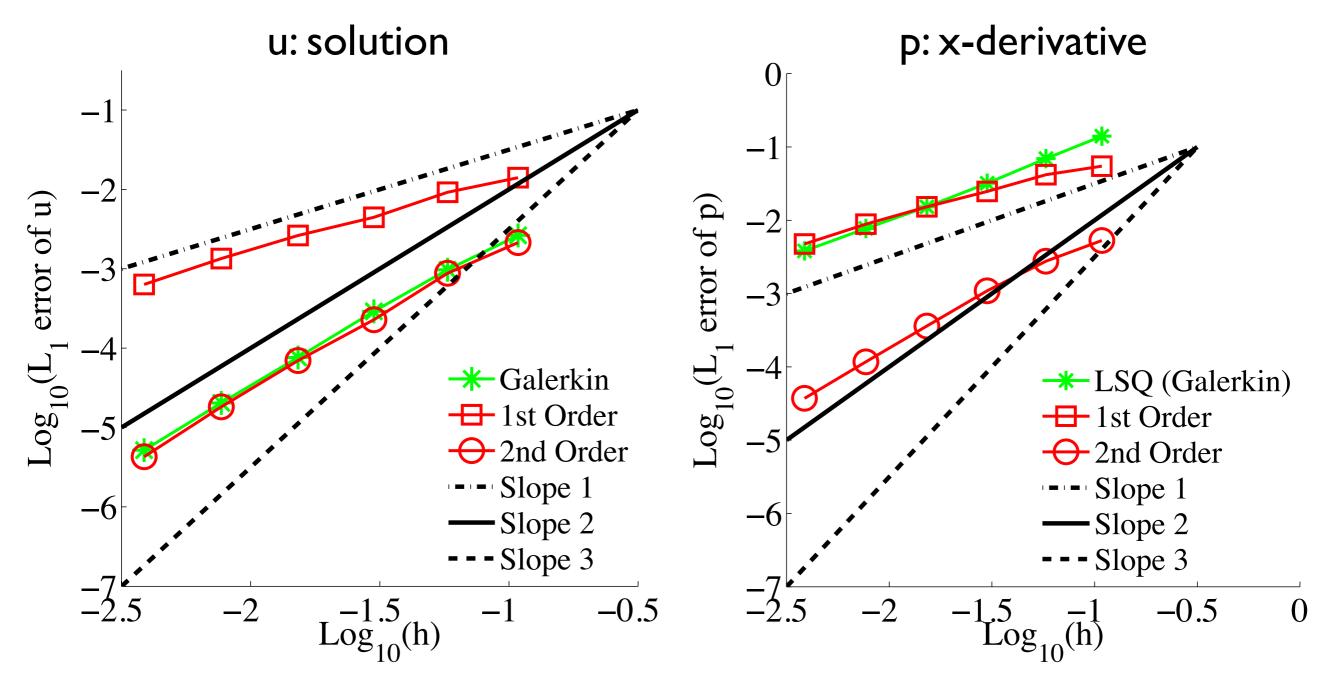
	<u>First-Order</u>	Second-Order	Third-Order
Forward Euler	1.3032	0.7313	0.7313

Hyperbolic schemes are stable with O(h) time step: O(1/h) faster than typical schemes with $O(h^2)$ time step.

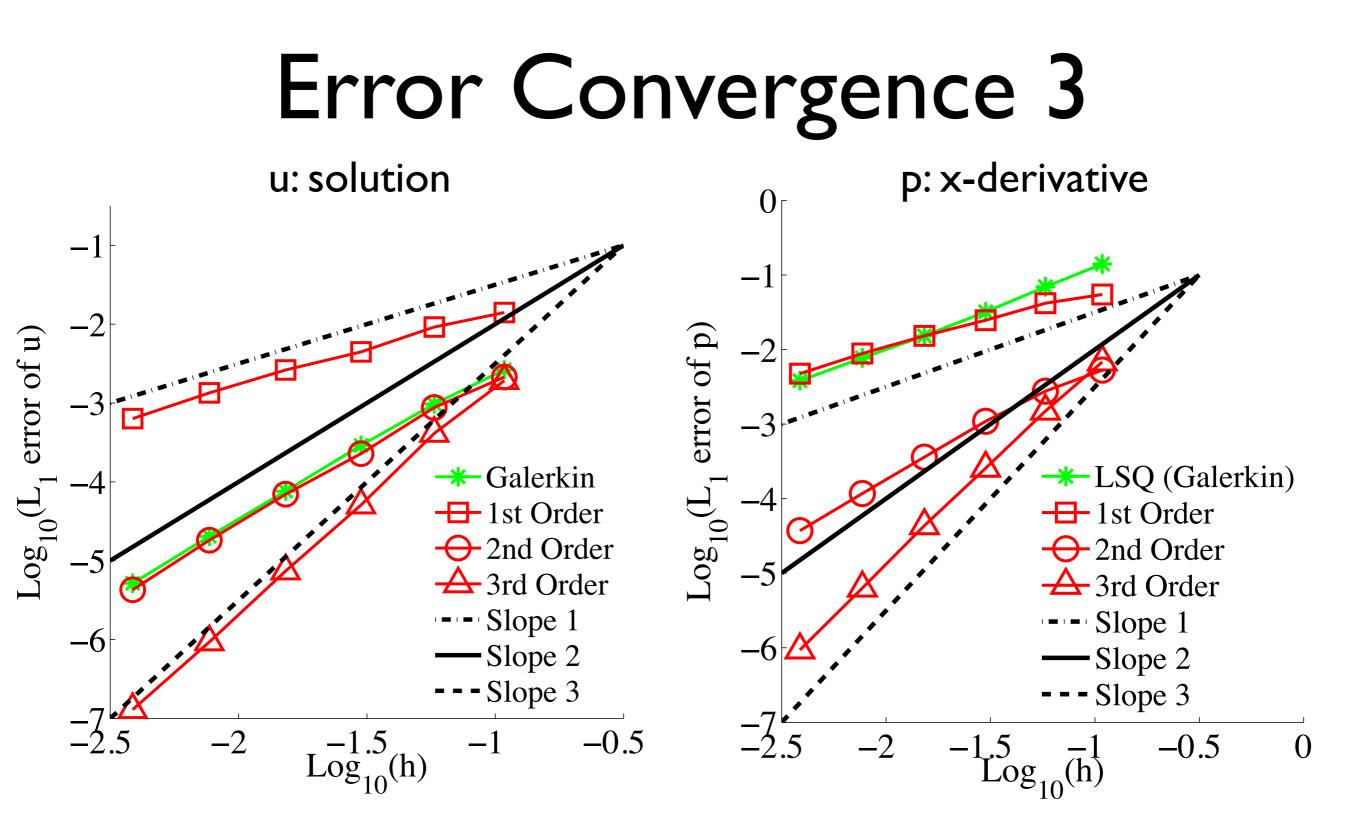


I st-order accurate solution and gradients.

Error Convergence 2



2nd-order accurate solution and gradients.



3rd-order accurate solution and gradients.

Cost Comparison

Cost per time step (the irregular grid case).

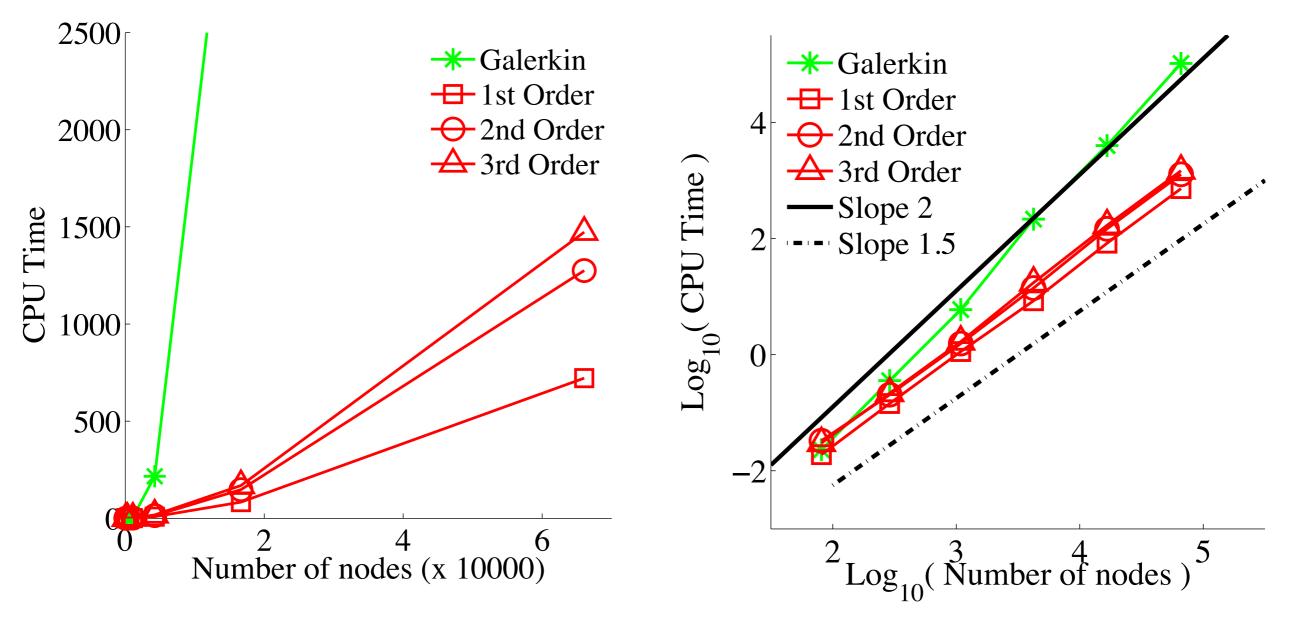
	Galerkin	<u>First-Order</u>	Second-Order		Third-Order		
Forward Euler	0.66	1.00		1.26	1.33		
				Almost the same			

Almost the same.

Reality is that hyperbolic schemes are more economical because they converge O(1/h) faster than typical diffusion schemes.

Time to Solution

O(1/h) acceleration overwhelms the increased cost per time step.



Orders of magnitude acceleration in CPU time.

Conclusions

Diffusion and source recreated hyperbolic.

- I. Energy-stable first-order diffusion scheme
- 2. Equal order of accuracy for sol. and gradients on irregular grids.
- 3. Third-order diffusion scheme by fully hyperbolic system

Third-order scheme is incomparably efficient and accurate.

Future Work

Uniformly third-order advection-diffusion scheme. Implicit schemes.

Time-dependent problems.

Third-order scheme for Navier-Stokes (2nd-order scheme in AIAA2011). New system for accurate velocity gradients (vorticity, turb source). Hyperbolic formulation for turbulence models (robust diffusion).

Various Other Applications:

- High-order residual-distribution schemes, dispersion eq., Incomp. NS at INRIA
- 3rd-order active flux scheme at University of Michigan
- Entropy-consistent scheme at Universiti Sains Malaysia
- Many other potential applications: DG, SV, CESE, SUPG, etc.

Declaration of Hyperbolicity

We hold these truths to be self-evident, that all PDEs are created equal, that they are endowed by us with certain unalienable Rights, that among these are hyperbolicity, consistent and accurate schemes and the pursuit of robustness.