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CHAPTER I

INTRODUCTION

1.1 Additional Degrees of Freedom

One strategy to solve a problem is to introduce additional degrees of freedom. A
good example is the method of Lagrange multipliers for the problem of finding con-
strained extrema for which a straightforward procedure to find extrema fails because
of the coupling of the variables through the constraint. A constraint is linked with
the minimization(or maximization) via a Lagrange multiplier, an additional degree
of freedom, which converts the problem into an unconstrained optimization where
all the variables can be treated as independent, and therefore a regular procedure
becomes applicable. The implication is that a difficult problem becomes simple by
introducing extra variables.

In computational fluid dynamics, extra degrees of freedom are often introduced to
improve the solution accuracy. In the language of finite element methods, additional
degrees of freedom are introduced to construct high-order elements in the form of
either an increased number of nodes or storing extra unknowns at nodes such as
derivatives of the solutions. The former corresponds to a local grid refinement(or
enlarging a stencil) while the latter to the use of a high-order interpolation formula

to represent a solution. In these cases, the problem does not necessarily become



simple, but that is the price one has to pay to obtain a better solution.

Another good example is the adjoint methods first introduced by Jameson[47] for
aerodynamic optimization using computational fluid dynamics. A typical problem
is a drag minimization for an airfoil with the governing equations such as the Euler
equations as constraints. A naive approach is to evaluate the gradient, which indi-
cates the direction of improvement, by making a small change in each design variable,
and then recompute both the grid and flow variables for each change. But the cost
of solving the governing equations becomes prohibitively expensive for a large num-
ber of the design variables. In the adjoint methods, Lagrange multipliers (or adjoint
variables) are introduced so as to eliminate the flow variables in the expression of the
gradient, resulting governing equations for Lagrange multipliers (adjoint equations).
The cost of evaluating the gradient now amounts to mainly solving the governing
equations and the adjoint equations once for each. This is in fact a well-established
technique in optimal control theory[42] with the aim of reducing the cost of solving
the constraint equations which is another interpretation of the role of Lagrange mul-
tipliers. The method is now well established in optimal design problems also, and
besides it has recently found a new application area, error estimation for functional
outputs such as lift or drag wherein the design variables are truncation errors (or
local grid size)[76, 96]. In these cases, the extra variables not only reduce the cost
of solution methods but also make it possible to obtain useful information that is

otherwise difficult.

Yet another possibility, that is not as well established as these approaches, is to
introduce the elements with adjustable nodes: create extra degrees of freedom in
the form of nodal positions. Consider a linear advection problem which is equiva-

lent to saying that a solution is constant along the advection direction. A reason-



able way to move the grid points is along this advection direction. Obviously, this
produces the exact solution at any instant of time, and now the difficult problem
becomes trivial. Unfortunately this procedure does not generalize easily to systems
or higher-dimensional problems. It is therefore desired to create a more general
guiding principle that drives the mesh movement. A class of methods called moving
finite elements[22, 3] first introduced by Miller[64, 65] is one promising approach
in this context, in which the mesh movement, as well as the solution, is driven by
a least-squares residual minimization. The method has been studied primarily for
time-dependent problems: tracking steep fronts as they move in time or keeping
an accurate representation of a smooth solution moving in time. Methods carefully
tuned for each particular problem have been shown to give impressive results, that
otherwise requires an excessive number of nodes to resolve rapidly varying solutions
moving in time. Notice that tailoring the computational grid is no less (or even
more) important than improving a numerical scheme on a fixed grid because a good
grid does not demand an exceptionally good scheme whereas a good scheme still
does demand a good grid. Introduction of the extra degrees of freedom in the nodal

positions is therefore worthy of a particular attention.

1.2 Grid Adaptation

This thesis explores the possibility of moving grids, but the focus is on steady-
state problems. In other words, we are concerned with a class of techniques called grid
adaptation: modify the grid to capture the solution features at a steady-state. This is
an essential item in computational fluid dynamics to deal with an inevitable dilemma:
the computational grid, on which the solutions are to be computed, must be tailored

to all the flow features which, however, are available only after the computation. A



good example is shock waves on an airfoil at transonic speed, which require extra
resolution, yet whose positions are known only a posteriori. Grid adaptation is
therefore an iterative process in which solution computation and grid alteration is
alternatively repeated as desired. There have been numerous attempts in the past
couple of decades to generate solution adaptive grids, automatically, efficiently and
effectively, but nothing universal seems to have been developed yet, and it remains

an important research area in computational fluid dynamics.

Many of the current adaptation techniques rely on one or both of two types of
strategies for mesh alteration. One is local mesh refinement /derefinement (h-method)
[11, 26, 75, 59, 28, 2] in which a computational cell is subdivided into smaller cells for
higher resolution or a group of neighboring cells are merged into a larger cell to avoid
unnecessary resolution, thus attempting equidistribution of error. At the cost of a
simple (I,J,K) data structure, methods based on this strategy offer a great flexibility
to deal with a wide range of length scales, a typical feature of computational fluid
dynamics. The other strategy is mesh movement (r-method) [43, 62, 73, 33, 40, 69], in
which the grid points are redistributed for better overall resolution based on a certain
principle such as functional minimization or error equidistribution. An advantage
over h-methods is that both the grid size and the data structure can be kept invariant,

and therefore it is relatively easy to apply even for structured grids[33, 40, 69, 88].

A disadvantage of h-methods is its isotropic nature: no directional information
is taken into account, and only the resolution is altered. This usually results an
excessive grid refinement for anisotropic flows such as a shock or a boundary layer
(Figure 1.1). R-methods also have a drawback that unless an initial mesh is fine
enough, a significant number of nodes may be removed from the regions that are

judged to be less important, but that still require a fair number of nodes, which
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Figure 1.1: A typical grid adapted by Figure 1.2: A typical grid adapted by
an h-method to the solu- an r-method for the same
tion of a circular advection circular advection problem.
problem, yO,u — xdyu =
0.

often creates a severe distortion of the grid leading to deterioration of the numerical
accuracy (Figure 1.2). This is where a combination of the two strategies come into
play: local refinement can be used to cure such a problem of moving mesh methods.
But their combination does not seem meaningful if used merely to cluster nodes in
the regions where solutions undergo large variations; an h-method alone would do
the job. In other words, a combination of the two strategies with a common aim
does not make sense.

One of the problems that techniques based on these ideas suffer from is the
isotropic nature of the resulting meshes. For instance, this necessitates clustering
an excessive number of nodes around shock waves that could be captured more
efficiently simply by aligning cell edges along them. Other examples include vortical
flows, boundary layers, flow separation, etc. This is because many methods focus on
merely optimizing the grid point density (resolution), paying no attention at all to
the directionality of the solution. The importance of anisotropic meshes has recently

been recognized in the context of grid adaptation[41, 23], and also in the related

9Solutions are initially set zero except at two grid points on the z-axis £ = —0.4 and —0.3, and
these two values are to be convected along circular paths.



problem of interpolating a known function[79, 29], and has become one of the major

topics in computational fluid dynamics.

The most powerful, and perhaps essential, tool for the anisotropic adaptation is
the mesh movement which provides the most efficient way to alter the the local cell-
orientation. Many mesh movement methods have been developed merely as a means
to move the grid points towards the regions that require high resolution, and not
as a means to alter the cell-orientation. Unlike h-methods, this is, however, not an
inherent limitation of the redistribution strategy itself, but largely due to the heuris-
tic nature of the guiding principle. Commonly, equidistribution of an error indicator
is attempted which is based on solution gradient or second derivatives(the choice of
the variable for the derivatives is another source of the ambiguity). Methods based
on such error equidistribution tend to cluster too many nodes around discontinuous
solutions because such error indicators do not converge there, and therefore all the
nodes are meant to be moved to the discontinuities to achieve the equidistribution.
This suggests that we abandon the equidistribution approach, and seek a new ap-
proach that is not based on just the solution variation. A class of methods, called
variational methods, is one promising approach in this respect[58, 53, 15, 16, 49],
in which not only adaptive criteria but also grid qualities such as orthogonality or
smoothness can be incorporated into the minimization, and notably it is capable of
producing a grid that is aligned with a prescribed vector field[16, 35]. However, the
methods are currently applicable to structured grids only which limits the potential

of the technique.

Recently, a new approach was proposed by Roe[80] that simultaneously produces
numerical solutions and the grid tailored for the solutions, based on a least-squares

residual minimization principle similar to the moving finite elements. The grid move-
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Figure 1.3: The adaptive grid gener- Figure 1.4: The solution contours ob-
ated by Roe’s minimization tained simultaneously by
scheme [80]. the residual minimization.

ment however significantly differs from that of moving finite elements in that the
movement does not follow the physical path such as the advection direction, and
rather it is perpendicular to that direction, trying to construct the physical path on
which the exact solutions can be found at steady-state(Figures 1.3 and 1.4). Herein
lies the distinction between time-dependent and steady-state problems. A little sur-
prisingly, the grid movement driven by this simple minimization principle can be
shown to reflect faithfully the physics of the governing equations: automatically cre-
ating characteristic grids for hyperbolic equations, and isotropic grids, but responsive
to singularities, for elliptic equations. Note that a combination of an h-method and
an r-method now makes sense because they have two different aims and truly com-
pensate for each other’s disadvantages. A least-squares approach to the numerical
solution of differential equations is, however, not new: it is related to first-order sys-
tem least-squares finite element methods[48, 18, 17]. But the unification of the two
processes, computation of numerical solutions and an optimized grid for steady-state
problems, is a new idea, which motivated the studies presented in this thesis.

It is important to note that the solution updates and the grid movement are
driven by the same equations, i.e. there are no extra equations prepared specifically

for the grid movement. This means that the method requires a highly overdetermined



problem with enough extra degrees of freedom available to move the grid. As will be
discussed in Chapter 11, this is possible in two and three dimensions, but it demands
the use of specific types of cells for computational grids : triangles in two dimensions
and tetrahedra in three dimensions. Fortunately, grids composed of these cells are
very flexible in generation of a grid for arbitrary geometries as well as in alterations
such as removing/adding nodes or changing connectivity. These are very important
items for grid movement methods for avoiding mesh distortion often caused by large

mesh movement especially in quadrilateral or hexahedral grids.

1.3 Thesis Outline

The thesis begins with the general description of the moving grid method in
Chapter II. The principle of the solution strategy is given, the choice of triangular
and tetrahedral grids is justified, the relationship with other methods is discussed,
and the detailed algorithm is described in the general setting. The focus of the rest of
the chapters is then on what grids and solutions can be obtained for each particular
problem and how they are created, especially the mechanism of the grid movement.

In Chapter III, the least-squares method is applied to a one-dimensional boundary-
value problem which entails a boundary layer behavior calling for an adaptive grid.
This is a typical solution of the Navier-Stokes equations, and our aim is then, al-
though at a fundamental level, to give insight into the problem of efficiently repre-
senting the boundary layer solution. Also, this is an instructive example from which
we see what it means to include grid coordinates among the variables and what the
least-squares method attempts to do. A common thought about adaptive grids is
that numerical solutions are computed on an adjustable grid. Here, a geometrical

view is taken that a numerical approximation is constructed for the solution manifold



that resides in a higher dimensional space whose coordinates are solution variables
and grid coordinates, i.e. all the variables are regarded as independent. This in-
terpretation proves to be useful to understand the nodal movement driven by the

least-squares method.

In two dimensions, any partial differential equations can be decomposed into a
certain number of hyperbolic advection equations and elliptic systems [81]. Based
on this fact, we consider hyperbolic and elliptic problems separately. The hyperbolic
part is then the scope of Chapter IV. It is also necessary to distinguish linear and
nonlinear problems within the hyperbolic problems because of the different nature
of discontinuous solutions. It is known that the least-squares method works well
for linear hyperbolic problems[80, 82]. As will be demonstrated in this thesis, the
method is capable of creating characteristic grids on which exact solutions can be
found simultaneously. It is shown that the method attempts to minimize the area
of the computational cell(or element) projected onto a characteristic plane, thereby
satisfying the characteristic relations. Hence, with the extra degrees of freedom, the
problem of computing a discontinuous solution on a computational grid becomes a
simple problem of minimizing the cell area in the characteristic plane. Also shown
is the possibility to capture discontinuous solutions perfectly by means of degenerate
elements (elements with zero physical area). The method however fails at nonlinear
shocks where characteristics merge. As will be discussed in detail in Chapter IV, the
method must be designed to generate not a characteristic mesh but a shock mesh
and simultaneously computes solutions satisfying jump relations. We show that a
shock wave can be captured very economically, and also that it is achieved, contrary

to the usual practice, with nodes removed rather than added.

As a model system for elliptic problems, we consider the Cauchy-Riemann equa-
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tions in Chapter V. It is shown that the least-squares method is equivalent to the
Galerkin finite-element method for solutions and an elliptic grid generation method
for grid movement. Hence, the method seeks a simultaneous solution of the two
methods. Also shown is the fact that the mesh movement driven by the discrete
Cauchy-Riemann system is equivalent to a well-known mesh movement technique
called spring analogy with the solution Jacobian as a stiffness, which in turn implies
the equivalence of elliptic grid generation and the spring analogy technique. It has
been discovered however that the least-squares method applied to compute a flow
around a lifting airfoil loses its accuracy almost completely: the accuracy is some-
where between the zeroth order and the first order. Although many researchers have
been using the least-squares method to solve the Cauchy-Riemann equations, this
problem seems not to have been noticed. A detailed discussion on this problem is
given, and a remedy is proposed subsequently. Then, the method is extended to
achieve the third-order accuracy, and shown to produce very accurate solutions and
even more when coupled with grid movement. Finally, it is demonstrated that a
checkerboard error mode that is a typical problem in cell-vertex methods for quadri-
lateral grids [67] can be eliminated completely by the grid movement, creating a
checkerboard mode in the grid instead. An important message here is that a grid
generally believed to be good is not necessarily good; and a grid generally regarded

as bad can help a scheme produce a highly accurate solutions.

The study presented here is fundamental and by no means ready for practical
applications. It remains to be extended to more complex equations such as the Euler
and the Navier-Stokes equations. A trouble encountered in such applications is that
the least-squares method is not an accurate scheme on triangular grids. In fact, Jiang

suggests not to use triangular grids based on the argument that the problem is too
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overdetermined on triangular grids[48]. This seems not to be a valid argument since,
when grid movement is permitted, the problem is hardly at all overdetermined, but
the solutions are still poor. We believe that the real difficulty is that the residual
is not always a good measure of the error and that, even if it were, minimizing a
wrong norm still could produce poor solutions. The key is therefore the discovery of
the right residual and the norm. For all the problems we have considered so far, an
appropriate norm has actually been found. We believe that it can be done for more
complex problems, and we have just embarked upon the application to the Euler

equations. And the essence is contained in this thesis.



CHAPTER I1

THE LEAST-SQUARES MOVING GRID
METHOD

2.1 The Least-Squares Moving Grid Method

In this chapter, the least-squares approach introduced by Roe[80], to which we
will refer as a least-squares moving grid method, is described. Suppose that we seek

a numerical solution of the following equations written in an abstract form,
L(u)=0 (2.1)

in a domain of interest of one, two, or three dimensions. We divide the domain into a
set {C'} of cells, e.g. triangles in two dimensions. Then, storing the solutions at the
vertices that form the cells, and assuming a certain variation of the solutions within
each cell, we define the residual, a measure of the error in satisfying the equations,

to be the integral of the governing equations over the cell.

Do = /C L(u) (2.2)

which defines a vector in general. Typically, the number of residuals exceeds the
number of vertex values, thus leading to an overdetermined problem. Therefore the

residuals cannot be made to vanish within every cell. We then consider solving the

12
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equations in a least-squares sense by minimizing some functional

1

ce{C} ce{C}

where the superscript ¢ denotes transpose and Q¢ is a positive definite symmetric
matrix. The matrix ()¢ has two important roles; first, it assigns relative weight to
the components of the residual, and second, it weights the errors in each cell relative
to others. Now, exploiting the fact that the problem is overdetermined, implying
extra degrees of freedom available, Roe proposed to minimize the norm with respect
to not only the nodal solutions u; but also the nodal coordinates x;, say by the

steepest descent technique [80],

oOF
oOF

where 0 denotes the change made to nodal quantities , and w, and w, are small
constants. Thus the grid is now set in motion. The gradients are obtained simply
by taking the derivative of F with respect to the nodal solution and the coordinate,
each of which is the sum of terms arising from each of the set of cells {C}} that share

that node. Thus

OF o0& \"

— = > (QC )(I)c (2.6)
8uj ce{C;) 8uj

OF o0&, \"

— = Y (QC )(I)c (2.7)
an CE{C’j} an

where the matrix (), has been assumed to be frozen. Note that this is a scheme of
distribution type[84, 82, 31] that can be coded in a very simple way. In a loop over
elements, we evaluate the residual ®, for each element, and then distribute it to

t
the nodes forming that cell with the distribution coefficient (or matrix) (QC f’a‘}%) ,
J
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thus accumulating the contribution from the surrounding cells for each node as in
(2.6) and (2.7). The nodal solution and the coordinate can then be updated by the
contributions gathered at that node.

This simple minimization strategy created a new approach to mesh movement
methods, i.e. driven not by solution variations but by nonvanishing residuals. In
other words, it is based not on the nature of the solution but on the nature of the
equations. This is the principle of the least-squares moving grid method. Unlike
other moving mesh techniques, in this approach, the mesh movement can be shown
to be responsive faithfully to the physics of the governing equations. However, the
choice of quadrature for ® and the weighting matrix ) are both subtle issues as

will be discussed in details in the rest of the thesis.

2.2 The Choice of The Grid

As mentioned earlier, the number of residuals is not always equal to the number
of unknowns. In other words, the number of elements is not always equal to the
number of nodes. Specifically, in order to move the grid, we need extra degrees of
freedom, meaning that the number of elements must exceed the number of nodes.
This is however not always possible. For example, on a one-dimensional grid with

Ne cells and Ny vertices (or nodes), we have obviously

Ny — N = 1. (2.8)

Suppose that we wish to solve p differential equations with p unknowns. Then, we

have pN¢ residuals and pNy unknowns which are related by

pNy — pN¢ = pNy —pNy +p=p (2.9)
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where (2.8) has been used. This shows that we do not have any extra degrees of
freedom to move the grid because the number of unknowns exceeds the number of
residuals. Particularly, if we include the position of the vertices as unknowns, we

have

(p+1)Nv —pNe = (p+1)Nv — pNy +p= Ny +p, (2.10)

resulting a highly underdetermined problem!. It is therefore necessary to introduce
additional equations to move the grid. We shall discuss this in the next chapter.

In two dimensions, there are many possibilities because there exist a variety of
choices for the type of cells. We begin with Euler’s formula which relates the number

of vertices Ny, edges Np and faces N of a compact surface dissected by polygons:

Ny — N+ Np =2, (2.11)

Suppose that we have generated a computational grid around Np objects which
extends to a finite distance from the objects. Then we have, noting that the outside
of the grid is also a face,

Np=N¢+ (Ng+1) (2.12)

where N¢ is the number of cells in the grid. Substituting this into (2.11), we obtain

Euler’s formula for computational grids in two dimensions,

Ng = Ny + N¢ + (Ng —1). (2.13)

On the other hand, visiting the cells and marking edges, we obtain

2]\/VEZ + NEb == SNC (214)

!Exactly speaking, we must take into account the boundary conditions. But they are typically
2p conditions at most. So the problem remains underdetermined by Ny — p equations.
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where Ng, and Ng, are the numbers of edges in the interior and on the boundaries
of the grid respectively, and s is the number of edges of which each polygonal cell is

composed?. Eliminating N, from (2.13) and (2.14), we have
ONp, = 2Ny + (2 — 5)N¢ + 2(N — 1). (2.15)
Yet, since Ng, = Ny,, we obtain
(s — 2)Ne = 2Ny, + Ny, + 2(Np — 1) (2.16)

which is a formula useful in relating the number of cells to the number of vertices on

a two-dimensional grid. For instance, on a quadrilateral grid (s = 4), we have
2N¢ = 2Ny, + Ny, + 2(Ng — 1) (2.17)

which shows that the number of residuals is almost the same as the number of
unknowns because we have typically Ny,, Ng < N¢, Ny,. Therefore, if we introduce
the nodal coordinates as additional unknowns, we will have to introduce additional
equations as well to move the grid. On the other hand, on a triangular grid (s = 3),
we have

Ne =2Ny, + Ny, +2(Np — 1) (2.18)

which shows that there are almost twice as many triangles as the vertices. The
excess of the number of residuals, however, depends on the problem we wish to
solve. Suppose we wish to solve p differential equations for p unknowns. Then, the

number of extra degrees of freedom available is given by

pNec —pNy = 2pNy, +pNy, +2p(Np —1) — p(Ny, + Ny, ) = pNy, +2p(Np—1). (2.19)

2Here we assume that the domain is divided into a set of polygons of the same type, e.g. a set
of triangles. Therefore, for example, s = 3 for triangles, and s = 4 for quadrilaterals.
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In two dimensions, the number of unknowns for the grid coordinates is two (z;,y;)
at each vertex. Hence, we need 2Ny, extra degrees of freedom at least. Clearly,
this is possible only for p > 2. Therefore, the problem will be well overdetermined
for any equations except for scalar ones (p = 1). For scalar equations, the problem
will be underdetermined even with mesh movement. But at the same time this
implies the possibility that residuals could be made to vanish. It turns out that the
method works well for scalar equations without adding extra equations. For these
reasons, and also for its great flexibility in grid generation as well as in local point
insertion/removal that is a valuable option to the moving grid method, we choose
triangular grids for the least-squares method.
In three dimensions, again we have Euler’s formula for any compact three-dimensional

object dissected by polyhedra,
Ny — Ng+ Np— Ne =0 (2.20)
where Ny, Ng, and Ny are the numbers of vertices, edges, faces, and cells respec-

tively. Similarly to the 2D case, replacing N¢ by No + (Np + 1) so that N¢ now

denotes the number of computational cells, we have
Ny — Ng+ Np— N¢ = (Ng+1) (2.21)
for any three-dimensional computational grids. On the other hand, visiting the cells
and marking faces, we obtain
2Np, + N, = q¢N¢ (2.22)
where Ny, and Ny, are the numbers of faces in the interior and boundary of the grid

respectively, and ¢ is the number of faces of which each cell composed. Eliminating

Ny, from (2.21) and (2.22), we obtain

2NV—2NE+((]—2)N0+NFb :2(NB+1) (223)
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For surface grids of inner and outer boundaries which are both assumed to be compact
two-dimensional surface, we have

Ny, — Ng, + Np, = 2 (2.24)

2NEb == SNFb (225)

where s is determined by the type of elements employed to divide the surface (s =3

for triangles, s = 4 for quadrilaterals, etc). Eliminating N, from these equations,

we get

(s —2)Np, = 2(Ny, — 2). (2.26)
Now, substituting (2.24) into (2.23) to eliminate Np,, we get
2Ny, — 2Np, + (¢ —2)N¢ +4 — N, = 2(Np + 1) (2.27)
from which Ny, can be eliminated by using (2.26) to yield

2
(q—2)NC :2]\/VEZ —2]\]\/Z +S——2(va —2)+2(NB— 1) (228)

Unfortunately, there is no general formula that determines explicitly Ng, for a given
Ny, in three dimensions, except for a simple structured grid. For a structured grid
composed of hexahedra (¢ = 6 and s = 4), without any geometric singularities,

visiting the internal edges and marking vertices, we obtain
2Ng, = 6Ny, + Ny,. (2.29)
Then, the formula (2.28) becomes
4Ne = 4Ny, +2(Ny, — 1) +2(Np — 1) (2.30)

which shows that there are not enough degrees of freedom to move the grid. On

the other hand, consider a grid generated by this hexahedral grid by dividing each
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hexahedron into 5 or 6 tetrahedra without introducing additional vertices. We then
have 5 or 6 times as many tetrahedra as the vertices because the number of vertices
remains intact. If we have p differential equations with p unknowns, the excess of

the number of residuals will be
pNc — pNy ~ 4pNy or 5pNy. (2.31)

This shows that we have enough degrees of freedom to move the grid even for a scalar
equation (p = 1) since we wish to introduce three unknowns at each vertex (z;, y;, z;).
Therefore, tetrahedral grids are the candidates for the least-squares method in three
dimensions. Similarly to triangular grids in two dimensions, tetrahedral grids offer
an ease with node insertion/removal and geometric flexibility for generation, which
leads to the conclusion that tetrahedral grids are suitable for least-squares moving

grid methods.

2.3 The Choice of The Norm

The choice of the norm is of great importance to the least-squares method. It
is the matrix ()¢ that endows properties to the resulting numerical scheme and also
to the movement of the grid. One important role of the matrix is to scale different
equations in a system of equations. Consider Stokes’ equations that govern slow

motions of fluids in two dimensions.

OxD — 1 (agu + aju) =0 (2.32)
Oyp — It (837) + 857)) =0 (2.33)

dpyu+0v = 0 (2.34)
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To apply the least-squares method, we introduce vorticity w as an additional un-

known to reduce the system into a first-order system.

my = Ogp+poyw =0, my =0yp— poyw =0 (2.35)

A= Ogu+0w=0, & = 0pv—0u—w=0. (2.36)

Assuming on a triangular grid that all the variables vary linearly within each triangle

we define the residual ® as integrals of the equations
O = [Mor, Myr, Ap, E1]' (2.37)

where the components expressed by upper-case letters denote the integral values of
the lower-case counterparts over the triangle 7', and the superscript ¢ denotes trans-
pose. It would be reasonable to weight the first two components equally, and the
second ones also, but the pairs should be distinguished from each other on dimen-

sional grounds. Roe suggested based on a simple dimensional analysis[80] that we

set,
(1 0 0 0
01 0 0
Qr = ; (2.38)
00 k& 0
T
Lo 0 0 kg—T

where k is an arbitrary constant, so that the norm is written compactly
12
Foly [M§T+M;T+k8— (A;+52T)]. (2.39)
Te{T} T
This is a dimensionally correct norm. Our numerical experiments showed that the
method produced a correct solution with this norm, but that wrong solutions could

be found with other dimensionally inconsistent norms. Dimensional consideration
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should be carefully given in defining the norm for a system of equations. The im-
portance of weighting for least-squares methods has been pointed out by Zeitoun et
al. [100] and also by Carey et al. [21].

Another important consideration is a volume weight. Consider the norm of the

form

1 OLQP
.7: = Z FC' - 5 Z —C?/C < (240)
ce{c} ce{C} ¢
where it has been assumed that ()¢ does not contain V¢ among its arguments. It may
be perceived from (2.40) that minimizing this with respect to the grid points could
involve maximizing the volume V. This turns out to be true; de facto, this offers

a mechanism for eliminating small cell volumes. In spite of this favorable property,

the norm without the volume weight will become important in some cases.

1

F= 3 Fo=3 Y ¥Qcdc. (2.41)
ce{C} ce{C}

We will usually refer to (2.40) as the weighted norm, and to (2.41) as the unweighted
norm. Note that the unweighted norm will remain positive whatever happens; the
minimization proceeds. Mesh tangling, which is always a concern for any moving
mesh algorithm, will never be noticed unless one actually looks at the mesh. This
type of norm, although with such a disadvantage, is not without its advantages as

we shall discuss in the chapter for elliptic problems in two dimensions.
2.4 Relationship to Other Numerical Schemes

As far as the solution method is concerned, the method belongs to a class of least-
squares finite-element methods[48, 102, 18, 17] weighted by the matrix Q¢ because

we can write the norm as

1
F = 3 /RtCQCRC (2.42)
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where the integral is all over the domain, and R is a discrete version of the differ-
ential equations we wish to solve, which is an alternative definition of the residual,
typically defined by

Re = L(up) (2.43)

where wu; is an approximate representation of the solution. If a piecewise linear
function with triangular elements is chosen for u, and moreover the equations are
linear and first-order, it becomes equivalent to ®¢/Ve. Thus we find readily
%/RtCQCRC :% Z @E&Q/g@c‘ (2.44)
ce{C}
It corresponds precisely with the weighted norm. The methods are therefore related
very closely to one another. But they can be different for nonlinear problems where
different kinds of linearizations may be employed. As pointed out earlier, however,
the least-squares methods are seldom used for triangular grids because they are not
accurate on such grids. But again we emphasize that this is not because the problem
is overdetermined for triangles, for when grid movement is introduced, the problem
is scarcely overdetermined, but the solutions are still poor. It is simply, we believe,
because we do not minimize the right quantity.

Equations are associated with cells while unknowns are associated with vertices.
Numerical schemes that employ this strategy belong to the class of methods called
cell-vertex methods[27, 67] that includes residual distribution schemes (fluctuation
splitting schemes) [84, 63, 78, 31], and the least-squares method. In cell-vertex
methods, it is common that the number of equations is not always equal to the
number of unknowns as shown in the last section, which is often called a counting
problem. Therefore, instead of making the residuals vanish individually, the effort

has been put on making some weighted sum of them vanish at each vertex. The
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Figure 2.1: Residual distribution on a triangular element

choice of the weight is the central subject of the cell-vertex methods, and it has
been extensively debated[31, 63, 78]. In the least-squares methods, the weight is the
derivative of the norm with respect to a nodal solution, and its property is given
through the residuals and the norm.

As a distribution scheme, the least-squares method can be coded as a simple
double-loop process: loop over the elements computing the residuals and distribute
them to the nodes, and then loop over the nodes updating the solutions and the grid
points by the amount accumulated in the previous element loop. The distribution
process in two dimensions is depicted in Figure 2.1, which is a typical picture found in
the literature on the distribution schemes, where [; is the distribution coefficient that
determines the fraction of the residual sent to a particular node. In the least-squares

method with the unweighted norm, we have

0@\
pi = (Qc 8u¢> (2.45)
and similarly for the grid coordinate
0%\
bi = <Qc 8x¢> : (2.46)

After the element loop, we complete the computation of the gradients (2.6) and (2.7)

at each node, and the solution and the grid coordinate can be updated by using these
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gradients making a loop over the node. Note that we have typically

Y. Bi=0 (2.47)

i={1,2,3}

for residuals linearized in the cell, so that the resulting scheme will be conservative,
although not in the usual sense, and for the grid coordinate this means that the

centroid of the element does not move.

2.5 Implementation

The simplest method to minimize the norm would be a steepest descent method.

The changes made to vertex j that minimize the weighted norm (2.40) are given by

oOF OF 0l 0P
ou; = TWum = W > Ju. C = —w, > V—C (Qca—c> (2.48)
u; cefc;y YW ce{c} ¢ W
for the solution vector, and
oF oF¢ { P! ( 8<I>C> Fo oV }
0Xj = —Wp—— = —Wy — = —w, | Qc—— | — ——
J 8Xj CE{ZC]-} 8Xj CE{ZCJ-} VC 8Xj VC 8Xj

(2.49)
for the position vector of the vertex, where w, and w, are small constants, {C;} is
a group of cells that share the vertex j, and it has been assumed that the norm is
defined by (2.40) and that Q¢ is frozen during the minimization. It is important to
remember that when taking the derivative of the residual, any coefficients derived
from nonlinearity should be frozen, so that we deal with a linear problem with respect
to the solution values at each iteration step[48]. We note in passing that the change
in x; has an additional term, and that this term is in the direction of increasing
cell volumes with larger weights given to smaller cells, thus creating a mechanism by
which cells can compete for volume.

It is well-known that the steepest descent method converges very slowly. One

reason is its dimensional inconsistency. For instance, in (2.49), it is seen that the
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right hand side does not have the dimension of length while the left hand side clearly
does. The use of Newton’s method cures this dimensional inconsistency and also
speeds up the convergence. But instead of inverting the Hessian matrix (the second
derivative of the norm), we may use only the diagonal elements for simplicity which
makes the inversion extremely simple. Hence each change will be divided by the
second derivative of the norm with respect to the corresponding variable. For a

component u; of u;, we have

OF O0*F
ey bl 2.
du Wy o, au? (2.50)
and for a component z; of x;,
OF O*F
where
PF 1 0dL, ( a%)
i _ 2.52
uj céfcyy Vo O “ oy, -
O2F 1 (oo 0Pc OFc 0Ve
- = — -2 . 2.
% ce%j} Ve { O; (QC O ) Ox; Oz, (259

Observe that the equalities (2.50) and (2.51) are now dimensionally consistent. An-
other way to improve the convergence is to apply sequential updates such as a Gauss-
Seidel type iteration[91]. Since this makes the grid perturbation completely local,
it provides the opportunity to control the mesh validity at each iteration, which is
actually a usual practice for Laplacian smoothing techniques for unstructured grid
generation methods. That is to say, we check, before we actually move the node, if
the movement of a node creates mesh folding, and if it does, reject the movement.
Upwind relaxation proposed by Baines and Leary[55, 7] is another effective strategy

to accelerate the convergence where among the set of cells {C;} only those in the
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upwind side contribute to the updates at node 7. In this thesis, however, we will not
consider this upwind strategy, and use only the diagonal scaling and the Gauss-Seidel
iteration mentioned above, focusing on what we can achieve rather than how fast we

can get there.

So far, it has been implicitly assumed that the grid connectivity is preserved,
but the initial connectivity might not be satisfactory. The final mesh would strongly
depend on the initial grid since nodal movement is limited by the fixed connectivity.
On triangular grids, there is a simple way to change the connectivity called diagonal
swapping: a well-known trick used to construct Delaunay triangulations[9]. This
technique can be easily incorporated into the minimization scheme, that is, for a pair
of adjacent triangles that forms a quadrilateral, the diagonal is replaced whenever the
other would reduce the norm (Figure 2.2). But it is not always possible in general.
A pair of triangles may exists that form a concave quadrilateral as shown in Figure
2.3. In such a case, swapping the diagonal will introduce two overlapping triangles.
To avoid this situation, it must be checked whether the swapping is feasible or not
for each diagonal in consideration. The check can be made by computing the area
of each triangle created by the edge swapping: if either one has a negative area, the
swapping is not feasible. As a general procedure, we first search for the candidate
edges by checking the feasibility and then comparing the sum of Fr’s of two triangles
that share an edge with that of the other possible pair of the triangles. Then, we put
them in order of large reduction of the norm and start the swapping in the modified
order, following Tourigny and Hulsemann who developed a moving grid algorithm for
second-order elliptic equations in the form of variational minimization[91]. However
every time we swap one diagonal, the rest of the edges in the list might yield larger

norms if the edges are in the neighborhood of the already swapped edge. Therefore
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Figure 2.2: A pair of triangles for Figure 2.3: A pair of triangles for

which diagonal swapping is which diagonal swapping is

feasible. The dashed line NOT feasible. The dashed

indicates the alternative. line indicates the alterna-

tive that violates the valid-
ity of the grid.

it is necessary to check the effectiveness of the swapping again before an edge is
actually swapped. In three dimensions, face swapping can be utilized in a similar
manuner|[9].

The flexibility of triangular and tetrahedral grids makes it easy to insert or remove
nodes. This is also incorporated into the minimization scheme easily; a large norm
motivates node insertion; a small norm motivates node removal. In this thesis,
node insertion will not be considered because the interest here is to see how much
the numerical solution can be improved by grid movement; it is quite obvious that
adding more nodes improves the accuracy. But it becomes necessary to implement
node removal technique in some cases, and it turned out that node removal simply
based on the norm reduction did not work well. This issue will be addressed when

we discuss hyperbolic equations that involves discontinuous solutions.



CHAPTER III

PROBLEMS IN ONE DIMENSION

In this chapter, we describe the least-squares moving grid method for a simple
boundary value problem. It is demonstrated that in one dimension including grid
points as unknowns always results an underdetermined problem, thus leading to
nonunique solutions, but also that equidistribution of a certain quantity, which pro-
vides additional equations, yields satisfactory solutions for the problem. Of particu-
lar interest is a geometrical interpretation of the least-squares method: the method
attempts to construct a numerical approximation to a geometrical object that rep-
resents the solution. We discuss via geometrical analogy what it means to include

the node positions among the variables.

3.1 The Least-Squares Method for Friedrichs’ Model

We consider the following second-order ordinary differential equation,

du o
edy2 a0 a= :
with
w(0)=0, u(l)=1 (3.2)

which was proposed by Friedrichs[94] as a model of the boundary-layer momentum

1

ze Where Re is the Reynolds number and

equations with rough resemblances, ¢ =

28
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a(< 1) modeling the pressure gradient. The exact solution is given by

1 — exp(—y/e)
1 —exp(—1/e)

u(y) = ay + (1 — a) (3.3)

This solution exhibits a severe transition region near y = 0 whose width is propor-
tional to e. Our expectation for the least-squares method is that it will automatically
move the nodes of a computational grid into the boundary layer for better resolu-
tion. To apply the least-squares method, we first need to reduce the equation to a

first-order system by introducing J = % as an additional unknown. We thus have

dJ du

227 = 0 3.4

edy+dy a (3.4)
du_ 5~ (3.5)
dy N '

We begin by dividing the domain 0 < y < 1 into a set {E} of elements(segments)
each of which is defined by two consecutive nodes denoted by L and R where L is
the node closer to y = 0. Within each element, assuming that v and J vary linearly,

we define the residuals as integral values of the above equations over the element.

Op = eAJp+ Aup —alAyg (3.6)

where Aug is the difference of u between the right and left nodes: ug — uz, and Jg
denotes a value of J at the midpoint of the edge E. Now, observe that the number
of unknowns is 3Ny and the number of residuals is 2Ny where Ny is the number of
nodes and Ng is the number of elements. Therefore there are more unknowns than
equations. In fact, this is a valid general statement in one dimension as discussed
in Chapter II. Suppose there are p differential equations for p dependent variables.

Then, including grid points as additional unknowns, the excess of the unknowns N,
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become

Nem = (p —+ 1)NV - pNE (38)

For one-dimensional grid, we have Ny = Ny — 1. Thus

Ney = Ny + p. (3.9)

It follows from this that the problem is always underdetermined if the grid points

are included among the variables. In our case, p = 2,
Nep = Ny + 2. (3.10)

Giving the boundary conditions, which are 4 conditions: (u,y) = (0,0) and (u,y) =

(1,1), and writing the number of interior vertices Ny ;, we obtain
New - NVz'- (311)

Therefore the problem is underdetermined by Ny, conditions, which in turn implies
that the solution will not be unique. But at the same time, this suggests that an
extra condition may be imposed on the solution or the grid at each vertex. This is
discussed in a later section.

The next step is to define the norm to be minimized. The choice of the norm is
the central subject of the least-squares method, and can greatly affect the resulting
solution. This means conversely that one might aim for solutions with a desired
property by defining a suitable norm. We will return to this point in later sections.

In this study, we define the following weighted norm.

1
2Ayg

F=2 Fe= )

Ec{E} Ec{E}

@7 + w3 (3.12)

The weight 1/Ayg has been introduced in order to penalize small cells, and hence

tends to prevent Ayg from becoming negative or zero, otherwise u(y) and J(y) will
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Figure 3.1: The numerical and the exact solutions for u and J indicated by circles
connected by line segments and dotted curves respectively. = indicates
the initial and the final positions of the nodes.

become multi-valued. Now, the residuals being nonlinear, the norm is not in general
quadratic in the unknowns including y. Therefore some iterative scheme must be

employed to carry out the minimization. The simplest method would be a steepest

descent method.

oOF

n+l __ n

(3.13)

where U; = (uj, J;,y;) and ¢ is a positive constant which we call a relaxation factor.
In order to see how this simple method works, we present a few results here. In
computing all the results here, we used the steepest descent technique with a Gauss-
Seidel type procedure and a diagonal scaling as described in Chapter 1I. Figure 3.1
shows the least-squares solutions obtained on a fixed grid of eight elements. The
solutions are oscillatory in the boundary layer because of the lack of resolution. And
moving the grid does not improve the solutions at all because the residuals have
already been driven to zero (the least-squares solutions on a fixed grid is unique).
In other words, the minimization problem with grid movement is highly underde-
termined, and the norm does have an undesired minimum. Shown in Figures 3.2 is

another set least-squares solutions obtained from initial solutions u and .J that are
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Figure 3.2: The numerical and the exact solutions for u and J indicated by circles
connected by line segments and dotted curves respectively. = indicates
the initial and the final positions of the nodes.

both linear between the two boundary values 0 and 1. The method converged for
362 iterations with the relaxation factor 1.0. The solutions are much better than the
previous ones. It is seen that some vertices have been moved into the boundary layer
region, thereby suppressing the oscillation that would have been created on the fixed
grid. But at the same time this proves the nonuniqueness of the solution as well: the
solutions depend highly on the initial solutions. Figure 3.3 shows solutions with 64
elements, obtained from the same linear initial solution. We found experimentally
that the relaxation factor must be reduced as the number of elements increase, and
therefore the relaxation factor was set 0.7 in this case which resulted 66963 iterations
for convergence. It is seen in the figure that the method does not move the nodes

deeply enough into the boundary layer while placing many unnecessary nodes in the

linear portion. The Ly error, defined by Y, 4es \/(uemct — Unumerical) 2/ Nvi, of u(y)
is 9.69E-04 while the Lo error of the solution on the fixed grid of the same size is
1.05E-03. Therefore the solution has not been improved very much. Also consider-
ing the fact that the error for the case of 8 edges is already 4.89E-03, we see that
the convergence to the exact solution is extremely slow. It is, of course, possible to

improve the solution by choosing a better initial solution. However, this is not a



Figure 3.3: The numerical and the exact solutions for v and J indicated by circles
connected by line segments and dotted curves respectively. = indicates
the initial and the final positions of the nodes.

meaningful strategy because choosing a good initial curve demands the knowledge
of the exact solution. Since we know that the discrete problem is underdetermined,
the simplest strategy would be to introduce additional equations, possibly giving an
overdetermined problem, which impose some extra conditions on the least-squares

solutions. We will return to this point later.
3.2 A Geometric Interpretation

In the previous section, it was shown that the least-squares method automatically
moved the nodes into the boundary layer for better resolution, although depending
on initial solutions. But we did not know why it did. It is the purpose of this section
to understand what it does, and what it means to treat the grid points as unknowns.
It is a geometrical viewpoint that sheds a light on these questions. That is, we aban-
don the common thought that we are computing v and J on a computational grid
laid along y axis. Instead, we consider the problem as a geometric approximation:
approximation of a solution curve in three-dimensional space (u,.J,y). In order to
illustrate its geometrical nature, the presentation will be given in geometrical terms.

The mathematics suitable for discussing the geometry of differential equations is the
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calculus of differential forms, also known as the exterior calculus. For the details of
the theory, the interested reader is referred to Edwards[34] which is readable and a

good introduction to the subject, and Schutz[86] for more advanced topics.

3.2.1 Geometric Solution of Friedrichs’ Model

In order to discuss the geometrical property of Friedrichs’ model, we shall derive
the exact solution using the calculus of differential forms. In the geometric formu-
lation, differential equations are expressed as a system of differential forms(exterior
system). The solution to the system is then a vector field which annuls all the dif-
ferential forms in the system. There are basically two methods to find the solution.
We shall demonstrate these here for Friedrichs’ model. To define the system of the
differential forms equivalent to (3.1), we first reduce the equation to the first-order

system by introducing J = Z—Z as an additional unknown. We thus have

Gt E—a = 0 (3.14)
Z—Z -J =0 , (3.15)
rewritten as
edJ +du—ady = 0 (3.16)
du—Jdy = 0 (3.17)

On a three-dimensional manifold with the coordinates (u, J,y), denoted by R?, we

define two one-forms, a; and «s, by
o = edJ+du—ady (3.18)
o = du—Jdy (3.19)

where du, dJ and dy are now one-forms. One-forms are in fact what are called

covariant vectors, such as gradients, in tensor analysis. Therefore one may think
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of these expressions as defining two covariant vectors (1,¢, —a) and (1,0, —J) for
the basis {du, dJ,dy}. The solution is then a tangent vector(contravariant vector)
which annuls these two one-forms. In other words, the solution is a vector that is
perpendicular to the both covariant vectors. The solution submanifold is then the
integral curve of the vector field. A question may arise as to whether the problem
is equivalent to the original problem. The equivalence to the original problem may
be verified by sectioning the forms into a solution submanifold. The sectioning is
done by substituting du = uydy and dJ = chiy into the above equations and then
requiring the components of the resulted forms to vanish!. In order to assert the
equivalence it still remains to show that the set of forms is closed. A closed set is
defined as a set whose elements generate an ideal® and the exterior derivatives of the
elements are also in the ideal. It is easy to show that a set of forms {3;} is closed if
exterior derivatives of the forms can be written as a linear combination of {f;}, i.e.

> 7 A B; where A denotes wedge product[86] and ; is any form. In fact we find

doy = 0 (3.20)

. . . 1~ 1~
day = —dJNdy=-dyNa; ——dyhay . (3.21)
€ €

Therefore they constitute a closed ideal of differential forms®. The Frobenius’ theorem|[86]
then guarantees the existence of the solution submanifold of the forms, i.e. any local
surface element that annul a; and ay will fit together to form a solution submanifold.

Now we describe how to find the solution submanifold.

!The solution submanifold is represented here by functions (u(y), J(y)) satisfying (3.2) with y
as a parameter.

2A set of differential forms defines a tangent vector space as its dual space. An ideal is all the
forms whose restriction to the tangent vector space vanishes.

3This is in fact trivial in the present case since any two linearly independent one-forms in a
three-dimensional manifold automatically constitute a closed ideal.
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One approach to the exact solution is to find an analytic expression of the tangent
vector field whose integral curve becomes the solution submanifold. In general, a

tangent vector V in R? can be written as

d du 0 dJ 0 dy 0
o _ =27, 27 7 22
v dx  dA 8u+d)\ 8J+d)\ Jy (3:22)

where A is a parameter of a curve and %’%’ and % are the components of V' for the
basis {8%, %, %} which is dual to the one-form basis, {ciu, dJ, ciy} The components

are found by requiring «; and ay to vanish when contracted with (3.22), which we

write

(V) = edJ(V)+du(V)—ady(V)=0 (3.23)
(V) = du(V)=Jdy(V)=0, (3.24)
and we obtain
dJ du dy
Y - .2
ed)\+d)\ ad)\ 0 (3.25)
du dy
a—Ja = 0. (3.26)

These are two linear equations for the components, and thus the tangent vector is

determined up to a length. A quick algebra shows that

<du dJ dy) _, <J7_JZG71> (3.27)

d\ d\’ dx
where p is any function of u, J, y or a constant. Then the solution can be found by

solving the system of ordinary differential equations given by

du dJ J—a @_

A e

1. (3.28)

This method therefore leads us to the original system of ordinary differential equa-

tions by choosing A = .
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Figure 3.4: A geometric representation of the exact solution of the Friedrichs’ model
for a=0.3 and € = 0.04. The plane is defined by € J +u — ay = constant,
and the curved surface is defined y + ein(J — a) = constant where the
constants have been determined by the boundary conditions in (3.2).

The other approach gives another interesting view of the solution curve. The
Frobenius’ theorem is now stated more precisely for Friedrichs’ model as follows. If
and only if the one-forms, a; and s, are closed, there exist functions h, k, [, m, f,

and g such that

o = hdf+kdg (3.29)

oy = ldf +mdyg. (3.30)

Then the solution is a one-dimensional submanifold defined by f = constant and
g = constant®. In general, it is however not easy and often impossible to find such

functions that are valid globally. The theorem in fact guarantees only the local

4Each function defines a family of surfaces in R®. And the intersections are the general solution
curve. The functions k, I, and m are arbitrary and have no meaning. The point is that the
differential forms can be written as a combination of two total differentials, so that if these functions
are constant, they vanish.
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integrability of the exterior system. For Friedrichs’ model, however, we find

o = d(e] +u—ay) (3.31)
ay = dleJ+u—ay)—(J—a)dly+eln(J —a)). (3.32)

Therefore the solution submanifold is given by

eJ+u—ay = constant (3.33)

y+eln(J —a) constant, (3.34)

i.e. each of which defines a family of surfaces in R?, and the set of their intersections
is understood as the general solution submanifold. The solution of Friedrichs’ model
is one of the intersections which satisfies the boundary conditions (3.2). See Figure
3.4. It turns out that this unique representation of the solution reveals a property of

the least-squares method.

3.2.2 Discretization

We will approximate the solution curve by a piecewise linear curve which consists
of a set of linear edges { E'} and a set of vertices {V'} where every vertex is incident
to exactly two distinct edges, i.e. the number of vertices = the number of edges
+ 1. The orientation of the curve may be defined as positive in the direction from
(u,J,y) =(0,.,0) to (u, J,y) = (1, J,1). The properties of the solution submanifold
is that its tangent vectors V' annul the one-forms a; and as everywhere on it, which

is again written
(V) = edJ(V)+du(V)—ady(V) =0 (3.35)
(V) = du(V)—Jdy(V)=0 . (3.36)

We remark here that the tangent space is defined at a point on the submanifold

and therefore there exist infinite tangent spaces on the exact submanifold. In our
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approximate submanifold, we have a finite number of tangent spaces each of which
is defined by the edge, Vg = (Aug, AJg, Ayg) where Aug denotes the projected
length of the edge E onto u-axis and similarly for others. On the assumption that
the tangent vector and the one-forms are defined at the midpoint of the edge, we

obtain the discrete versions of (3.35) and (A.10),

(I)E = Otl(VE) = €AJE + AUE — aAyE =0 (337)

where Jg denotes a value of J at the midpoint of the edge E. These are identical
to (3.6) and (3.7). This shows that we may interpret the residual as a geometrical

error, i.e. an error in aligning a tangent vector along the solution manifold.

3.2.3 The Least-Squares Method

The least-squares method is formulated in exactly the same manner as before.
But our viewpoint is now geometrical: construct an approximate curve by minimizing
the residuals, in a least-squares norm, with respect to the the positions of the vertices

in R3. Consider the change made to each vertex by the steepest descent method.

sUT = —cg—i. (3.39)
The gradient is given by
( (Pr +Vr)/Ayr — (Pr + VYr)/Ayr |
55 - (2 ) L(w, 4wy (3.40)
Ve Vet (S - 8) T A - A

where the subscripts L and R again indicate the edges on the left and right of
the vertex j and the right means the positive direction of the approximate curve.

The method is usually understood as updating the solution U’ in the direction of
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steepest descent. This interpretation is global in nature, and does not give any useful
information as to what the formula tries to do locally. In fact, an interesting property
is hidden in the gradient, which can be seen clearly by decomposing the gradients

into four parts. The change made to each vertex is then written, with ¢ =1,

1 0 0 ( 0
n 1
V4 v F F
o | | dima] | (AhaktARRE) || AE Ak
(3.41)
where
d 0] \\ v

¢ = (—L - —R> L= (—L S ) . (3.42)

Ayr  Ayr Ay, Aygr

It is now observed that each component indicates a particular direction in which
vertex j is updated. The first and the second component will move the vertex j
in the direction normal to the surfaces defined by €J 4+ u — ay = constant and
y + eln(J — a) = constant, respectively. And updates in these directions will cease
when c¢; and ¢y reduce to zero, i.e. when the weighted residuals are equidistributed
over the edges. Here it is important to note that such analytical functions of solution
surfaces are not in general available as mentioned in Section 1. Therefore a more
general interpretation would be that the first two components move the vertex in the
directions of the two one-forms, a; and ay, which can be clearly seen by rearranging
the first two components in the form —¢;[] — ¢;[]. The interpretation of the third
component is not so obvious. However, it can be shown that when ¢, vanishes, it
moves a vertex such that the projected area onto (.J,y)-plane of the triangle formed
by the two adjacent edges is minimized locally until the residuals W; and ¥y are
driven to zero. Besides, we see that this projected area is nothing but the value

of two-form (3.21) contracted with the two tangent vectors V7, and Vi. Now recall
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that the integrability condition states that the exterior derivatives must be also in
the ideal, i.e. must vanish also on the solution submanifold. On the exact solution
submanifold, this is automatically true because any two-form is identically zero on a
one-dimensional manifold. However on a discrete curve it cannot be true in general
because two adjacent edges are very likely to form a finite angle at the vertex that
they share. In effect, the third component locally attempts to minimize the values
of two-form (3.21) at the vertices. The last term has been produced by the weight.
It can be seen that this will limit the vertex movement such that no edge vanishes
when projected onto y-axis. These are quite accurate pieces of information about
the exact solution, and thus should be preserved. This suggests that we must use

the same relaxation factor for all variables.

Let us look again at the results presented before, but geometrically this time.
In Figure 3.5, we see that the oscillatory solution curve lies on one of the surface
eJ +u — ay = constant but not on the other. This seems to suggest that the
oscillation is caused by the second equation, and that it could be satisfied in many
different ways apart from the exact orientation. In Figure 3.6, the trajectories of
the vertices are plotted (at every 5 iterations). The reason that some points moved
into the boundary layer is the movement of the vertices perpendicular to the surface
€J +u — ay = constant. A close look at the geometrical solution will reveal that
any vertex near the boundary with v = y = 0 is moved away from the boundary
no matter how close they are. This explains why many nodes are left outside the

boundary layer in the case of 64 edges as shown in Figure 3.7.
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Figure 3.5: The solution from an oscillatory initial solution and the exact solution
as the dotted curve. 8 edges.

'
od

05 05

Figure 3.6: The solution from a straight initial solution and the trajectories of the
vertices(dots). 8 edges.

'
od

Figure 3.7: The solution from a straight initial solution. 64 edges.
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3.3 Additional Property

It is important, when additional terms are added to the norm, to ensure the
dimensional consistency. Also it is desired to define the additional quantity based on
edges rather than vertices in order to avoid introducing additional complexity in the
norm. Under these requirements, in this section we seek an additional quantity to be
minimized which will make the solution as smooth as possible to exclude the minima
with oscillatory solutions, and also by which a reasonable rate of convergence will be
realized.

We begin with a rather simple argument. It is obvious that a small Ay is neces-
sary for the element with large variations in u and J. Therefore, the equidistribution
of AtgAJg, which is dimensionally consistent with the residuals, may be a good
strategy. Returning to the original viewpoint that the solution u is a function of y,

we first notice that

dJ d?u
AypAJg ~ Ayg? & ~ Ayg? % (3.43)

This means that the equidistribution of this quantity has the effect of concentrating
the grid points in regions of high-curvature of u(y). This is a desired property.

Although specific to Friedrichs” model, this takes into account the second deriva-
tive of J as well. On the assumption that J satisfies the differential equation (4), we
can replace the first derivative of J by the first derivative to get

d*J

- 2
AypAJy =~ —eAyg a7

(3.44)

which proves the statement. Also note that the right hand side is proportional to the
local truncation error of ¥. Hence the equidistribution of AyzAJg is equivalent to

that of the truncation error. This is, however, also specific to Friedrichs’ model.
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Another interpretation of Ayg AJg is based on the reconstruction of the solu-
tion u(y). For our piecewise linear approximation, u(y) is represented by a linear
Lagrange interpolating polynomial uy (y) within each element Ayy. Also a higher
order interpolation is possible using the values of J at the vertices, i.e. a cubic Her-
mite interpolating polynomial of u, denoted by ug(y). Then it may be legitimate to
estimate the error of u(y) by the difference between wuy(y) and uy(y). In fact it can

be shown that

1
Ayg

1

1 . 2

where the second term is identical to W% and therefore is already to be minimized. It
is easy to see that the first term cannot be driven to zero in general unless Ay is zero.
Therefore, it is reasonable to equidistribute AygZAJg?® so that exceptionally large
local errors are reduced. In addition, if the solution is convex, the equidistribution of
Ay AJg will suffice, and this is in fact the case for Friedrichs’ model. Yet another
interpretation is that it is a leading term of the L, error of the piecewise linear
approximation. This will be discussed in great detail in Appendix A.

The equidistribution of this quantity can be carried out, together with the mini-

mization of the residuals, by minimizing the norm,

1
F=>Y F= Y [®% + 03, + 3] (3.46)
Ec{E} Ec{E} 2Ayg
where

and Ay AJ is the average value of Ayg AJg over the edges which is to be recomputed
at each iteration. In practice, we minimize €2z with respect to only interior vertices

to keep physically meaningful boundary values of J.
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Figure 3.8: The initial approximation and the exact solution (the sold line).

3.4 Numerical experiments

For all the computations presented here, we employed the same strategies: descent
technique with a Gauss-Seidel type procedure and a diagonal scaling. As for the
stopping criterion, the gradient of the norm will be a reasonable choice. The iteration
will be terminated when all the L; norms (3,,04es | -|/Nv;) of gT'i, 3—'}; and 3—; become
less than 1.0E-06. The relaxation factor ¢ in the update formula (3.39) will be set
1.0 whenever it is possible. It has been experimentally found that the method blows

up for any value exceeding 1.0, and that the relaxation factor must be decreased as

the grid gets finer.

We consider Friedrichs’ model with € = 0.04 and a = 0.3. The initial approxima-
tion with 8 edges and the exact solution curve are shown in Figure 3.8. The results
are given in Figures 3.9 to 3.12 for the cases of 8 and 64 edges. As can be seen in
the figures, the solutions exhibit a surprising improvement over the results shown in
Section 4. Observe that the vertices are concentrated in the large curvature region
as desired. And no unnecessary vertices are placed in the linear portion anymore.
For 8 edges, it has been found also that the method produces nearly the same results

as in Figures 3.9 and 3.10 even when started with the oscillatory initial solution as
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The number of edges Iterations Lo(u — Uewact) Lo(J — Jewact) La(YJ — Yjip.pirs)
8 3332 1.55E-03 2.77E-02 1.25E-02
16 27183 3.92E-04 7.05E-03 1.54E-02
32 399479 1.00E-04 1.82E-03 1.73E-02
64 4855967 2.46E-05 4.77E-04 1.86E-02

Table 3.1: The results of the numerical experiments.

in Figures 3.1 or 3.5. Hence the undesired minimum has been successfully excluded.
The accuracy achieved by 8 edges is in fact comparable to that obtainable by 64
edges of fixed grid. The trajectories of three vertices are plotted in Figure 3.9, at ev-
ery 10 iterations. These paths are significantly different from those shown in Figure
3.6. It is of particular importance to observe the large turns near the final solution
curve. Since such a largely curved path simply corresponds to a long path, these tra-
jectories can be thought of as a geometrical interpretation of the slow convergence of
the present method. Viewed in this light, iterative methods better than the present
one would be expected to move the vertices along the shorter paths to their final

positions.

The number of iterations and the Lo errors, including the cases of 16 and 32
edges, are given in Table 1. We observe that the errors now decrease as the number
of grid points is refined, and that the quadratic convergence has been achieved®. Also
in order to see how good the final grids are, L, norm of the difference between the
final grid and the grid obtained by applying Baines’ L fits algorithm with adjustable
nodes[5] to the exact solution (3.3). As can be seen, the differences are small for all
the cases, indicating that the final grids are nearly optimal in the L, sense. The

connection of the two methods seems to lie in our L+ error estimate described in the

5Note that all the computations in this thesis were performed with double precision, but the
results have been truncated for brevity.
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Figure 3.9: The solution Figure 3.10: The projections of the curve onto u—y and
curve in (u,J,y) J — y planes with the initial and the final
space and the locations of the vertices on y-axis indicated
trajectories  of by .
the 2nd, the
oth, and the 8th
vertices(dots).

8 edges.

previous section. However a rather disappointing result is the large increase in

the number of iterations against the refinement of the grid. The results indicate that
doubling the number of edges requires nearly an order of magnitude larger number
of iterations.

Finally the method was applied for various values of €. It has been found that
the method converges to a wrong solution for approximately ¢ < 5.00E-04. What
happens is that ¥y are driven to zero at convergence, but ® are not driven to zero
but just equally distributed with the weight Alﬁ. We have found one possible way

to overcome this difficulty. The method works for extremely small €’s, if the weight

1

Aup is removed from the norm. In fact it has been confirmed that the method works

even for e=1.0E-10 with 8 edges. However this norm also has a defect that it allows
zero or negative Ayg because the norm is always positive irrespective of the sign of
Ayg, and thus the minimization can proceed. For instance, for ¢ = 0.04 with 16

edges, it has been observed that the method indeed produces a negative Ayp during
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Figure 3.11: The solu- Figure 3.12: The projections of the curve onto u—y and
tion curve in J — y planes with the initial and the final
(u,J,y) space. locations of the vertices on y-axis indicated
64 edges. by .

the iteration. In this case, however, the method finally recovered the solution close
to the one shown above, i.e. removed all of the negative Ay.’s. But we have found
also that with 32 edges the method fails to converge, creating negative Ayg’s. Even
after ten million of iterations, a negative Ayy remains. Further study is necessary

concerning with a small e.

3.5 A Nonlinear Example

It is straightforward to apply the method to any two-point boundary-value prob-
lems provided a proper norm can be defined. We give one example here: the viscous

Burgers equation in one-dimension given by

d?*u du
P 4
Gdy2 u a 0 (3.48)

The equivalent first-order system is
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Figure 3.13: 3D View of the

. Figure 3.14: The final solutions u and J and the grid.
solution

where J = g—;‘ has been introduced. As before, dividing the domain —1 < y < 1 into
a set {E£} of elements(segments) and assuming that v and J vary linearly within

each element, we integrate the equations to obtain the residuals.

Note that the two residuals have different dimensions, and therefore we need to
weight them to define a dimensionally consistent norm. Reasonable quantities that
would play the role are € and Ayy. A simple dimensional analysis tells that we define

the norm in the following form.

2
F= zEj ALyE {@% + (Aiy]) U3+ (AypAdy” - 0)2} (3.51)
where the equidistribution of the error estimate has been incorporated in a similar
manner as before. The final solutions and the grid, for ¢ = 0.03, are plotted in
Figures 3.5 and 3.14. The asterisks indicate the final and the initial grid locations,
and we see that they have moved to capture the large variation in the middle. The

Ly error on the final grid is 9.64F — 03 which is comparable to the solution with a

fixed uniform grid of 42 edges.



CHAPTER IV

HYPERBOLIC PROBLEMS IN TWO
DIMENSIONS

4.1 Linear Hyperbolic Equations

We now begin the discussion of the least-squares moving grid method for two-
dimensional problems. Based on the fact that any partial differential equations in
two dimensions can be decomposed into a certain number of hyperbolic(advection)
equations and elliptic systems|[81], we discuss the two kinds of problems separately.
In this chapter, we consider hyperbolic problem. Specifically, we start with the
problems of linear type, i.e. the advection vector (or coefficient matrix for systems)
does not depend on the solution itself. The least-squares method is known to work
remarkably well for the problems of this kind. The first result obtained by Roe[80]
was a circular advection problem where a grid evolved into a characteristic grid,
creating circular paths on which the exact solution was actually found (Figures 1.3
and 1.4). We first describe the method for a simple linear advection and introduce
the use of degenerate elements. A system of equations is then considered. In the
last section, we consider a nonlinear equation to illustrate a difficulty associated with

nonlinear shocks.

20
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4.1.1 Linear Advection

Consider the steady-state two-dimensional scalar advection equation,
alyu + boyu =0 (4.1)

where a and b are constants. This is a problem with a preferred direction dy/dz = b/a
along which u is constant, which may be called a characteristic relation. To solve
this numerically, we first divide a domain of interest into a set {1’} of triangles and
store the solution at vertices. Within each element 7" € {T'}, we define the residual
by

o) = /T(aaxu + b0, u) dxdy (4.2)
which, by Green’s theorem, reduces to a closed line integral around the boundary
orT,

OIES fsT(audy — budz). (4.3)

Assuming that u varies linearly within the triangle with vertices numbered 1,2,3 in
counterclockwise order, we obtain

U1—|—U2 U2+U3

Oy = aUI;UQ(yQ—yl)—b (22 - 21) + a=— =2 (y3 - y2)
_ 2 s (3 — 22) + a2 ;_ o (yl —y3) — b T (1 —23) (4.4)
which can be rearranged into
1
1€JT

where jp is the set of vertices {1,2,3} of triangle T" € {T'} and A( ); denotes a
difference taken counterclockwise along the side opposite to node i. Note that we

can write

o) = 1 > wA (ay — ba), (4.6)

2 1€JT
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Figure 4.1: The residual represents the Figure 4.2: A triangle in the physical
area of the triangle pro- plane which has zero area
jected onto the characteris- in the characteristic plane.
tic plane.

which represents the area of the triangle in a characteristic plane that is defined here
as a plane whose coordinates are u and ay — bz (Figure 4.1). It is therefore immediate
to see that this area will vanish if both v and ay — bz are constant along one of the
sides of the triangle because that side is reduced to a point in the characteristic
plane. In the physical plane, this means that the residual will vanish if one edge is
aligned with the characteristic direction dy/dx = b/a and w is constant along that
edge, satisfying the characteristic relation (Figure 4.2). Hence vanishing area in the
characteristic plane is equivalent to satisfying the characteristic relation. It must be
noted also that it is possible in general to drive the residual to zero only by allowing

the grid to move. Now, we attempt to minimize

Fe Y Fr=i Y @ (4.7

Te{T} Te{T}
with respect to the nodal quantities, including the nodal position, U; = (u;, z;, y;).
This is an unweighted norm (without the area weight 1/5;). We choose this here

for the purpose of showing the ability of the method for computing the exact dis-
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ay-bx

Figure 4.3: Typical nodal movement within a triangular element.

continuous solution, introducing degenerate elements: elements with zero area. Note
that this norm has no trouble with zero triangle areas, i.e. always nonnegative and
therefore minimization proceeds. Suppose that we use the steepest descent method

to minimize the norm. Then the changes made to each vertex are given by

oOF

where U; = [u;,x;,y;]" and ¢ is a small constant that may be different for different
variables.

Here, it is instructive to see the action taken place within a single triangle. For

each vertex ¢ of triangle 7', the following changes are made.

where ¢, and ¢, are small constants. Now, multiplying dx; by b and dy; by a, and

subtracting, we obtain

2
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Figure 4.4: Initial Solution Figure 4.5: Initial Grid
Then, the choice ¢, = ¢,/(a? + b?) gives
day — bx); = %‘Au,@T (4.15)

which shows that the scheme will move the vertex ¢, in the characteristic plane,
towards the opposite side in its normal direction and therefore it minimizes the
area of the triangle projected onto this plane is minimized as quickly as possible
(see Figure 4.3). The actual change given to node i is a sum of this actions to the
surrounding triangles. Recall now that the problem is underdetermined on triangular
grids for scalar equations. Then, we expect that the residuals can be made to vanish
for every triangle, and therefore at a minimum the grid forms a characteristic mesh,
which is not necessarily unique, but on any of which the exact solution can be found.
We consider a square domain with an initial solution with a discontinuity as shown

in Figures 4.5 and 4.4. Note that the discontinuity is introduced by inserting a
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Figure 4.6: Converged Solution for ¢ = 0.7 and Figure 4.7: The Final Grid

b=1.0.

degenerate element. The advection vector (a,b) is chosen to be (0.7,1). The results
are shown in Figures 4.6 and 4.7 where all the residuals have vanished; the solution is
exact. It is worth mentioning that the boundary nodes at out-flow boundary (top and
right) have been moved in the same way as the interior nodes, but their movement is
restricted along the boundary. The boundary node movement is in fact an essential
item to obtain such a remarkable solution because the initial node distribution might
not be satisfactory. In our case here, two nodes need to be placed in the location
where the discontinuous solution reaches the top boundary, but the initial grid is not
tailored in such a way. As can be seen in Figure 4.7, the nodes at the top boundary
has been moved automatically by the minimization to capture the discontinuous
solution successfully. On the right boundary, nothing much has happened because
residuals are zero from the beginning. This shows that the mesh movement (also

the solution updates) responds to nonzero residuals only, and therefore the grid has
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been altered only in an important region. The advantage of the method is obvious:
a discontinuity can be captured without clustering many nodes as would have been
done by the usual curvature-based adaptation [41, 23] and also its operation is local
not creating significant grid distortion. Similar results are reported in [8] where
they showed the possibility of extending the use of degenerate elements to nonlinear

hyperbolic equations.

4.1.2 Linearized Aerodynamics

We consider the Generalized Cauchy-Riemann equations
(1= M?*)0,u+ d,v =0, Oy — Oyu = 0, (4.16)

which are physically the description of small irrotational perturbations to a uniform
flow of Mach number A; hyperbolic if M > 1; elliptic otherwise. This system has
been well studied theoretically in [80, 82], and therefore our discussion will be brief.

We consider supersonic cases where we can find the characteristic equations.
fu+wv = const., along x + Sy = const. (4.17)
fu—wv = const., along x — Sy = const. (4.18)
where 3 = /M2 — 1.

On the assumption that v and v vary linearly within each triangle, the residuals

are obtained by integrating (4.16).

1 1

2 €47 2 (ASyI
1 1
2 1€ 2 1€

The norm is given by

1 AZ + [ M? — 1|02

Te{T} Te{T}

(4.21)
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which has special properties as demonstrated in [80, 82]: in the subsonic case, it
decouples the variables u and v completely and the discretization can be shown to
be equivalent to the Galerkin finite-element method for the second-order equivalents

of (4.16)

(1= M*»ug +uy = 0 (4.22)

(1= Mg+ vy = 0 (4.23)

in the supersonic case, Fr vanishes when any two edges(or one edge for simple
wave solutions) of the triangle T oriented along the two characteristics and the
corresponding characteristic equations are satisfied on these edges.

One way to understand its property in the supersonic case is to find characteristic
form of the residuals as we have seen for a linear advection equation. It is easy to

show that the residuals can be combined to form another interesting pair of residuals

Cr and Dr

Cpy = v+ pu) Az + By)i = Ar + BQr (4.24)

DT:

l\:JIr—\ [\Dll—‘

Z
> (v = Bu)il(a — By)i = A — fQy (4.25)
i€jT

Clearly, C7 represents the area of the triangle projected onto a plane with coordinates
v+ fu and x + Py, and similarly for Dr. For simple wave solution, say, with v + (u
constant, C'p will be identically zero, and Dy will vanish if one of the side is directed
along the characteristic direction dy/dx = 1/ and v — fu is constant along that
edge. Yet, by aligning another edge along the other characteristic direction and
having the corresponding characteristic variable invariant on that edge, they can

be both made to vanish simultaneously for non-simple wave solutions. Then, the
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least-squares norm formed by these residuals

1 C2 + D?
F=3 Fr=53 —5—

Te{T} Te{T}

(4.26)

has a property that it recognizes the characteristic equations. Note that written
in terms of Ay and €y, this norm becomes identical to (4.21), thus justifying the
choice of the weight f = |[M? — 1|. We must remark however that the property of
the characteristic recognition is not special to the norm (4.21). We may minimize
any norm without losing this particular property. To see this, solve (4.24) and (4.25)

for A, and € to get

Ap = @ (4.27)
Cr — Dy

Oy = LT 4.2

T 25 (4.28)

It is clear from these relations that the original residuals A, and €2 will vanish
when the characteristic residuals C'r and Dp vanish, i.e when the element is fitted
to a simple or non-simple wave solution. This implies that we may minimize instead

the norm without the weighting factor 3

1 A2+ Q2
f: Z FT:§ Z %’

Te{T} Te{T}

(4.29)

and still have the characteristic recognition property. The difference, however, lies in
the speed of convergence. With the weighting factor, we are minimizing the charac-
teristic residuals directly, or the element area projected onto the two characteristic
planes. It is easy to show that the movement of each node for a particular element is
perpendicular to the side opposite to that node, that is the most effective direction
to minimize the area[80, 82]. We therefore expect that minimizing a norm other than

(4.21) would slow down the convergence.
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Figure 4.8: Left: Contours of u computed on a fixed grid indicated by the thicker
lines. F =~ 1073. Right: Contours of u and an optimal grid computed
simultaneously, starting from the grid on the left. 18 nodes have been
removed during the solution process. F ~ 10712,

A computational result is available for a flow at M = /2 (from the left to the right)
through a parallel duct placed at a small incidence, so that compression and rar-
efaction waves, created at the leading edge, reflect down the duct. As the boundary
condition, we specify v = 0 at along the duct and the freestream condition at the
inlet. For simplicity, the boundary nodes are fixed for this problem. The initial and
the final grids are shown in Figure 4.8 where the former is composed of 180 elements
and 106 nodes. On the left, the solution contours(thin lines), obtained on the fixed
grid, are plotted on the initial Delaunay grid(thick lines). As can be expected, the
solution diffuses a lot on this coarse grid. But once the grid is allowed to move, the
method generates elements having one or two sides aligned with the characteristic
directions, and simultaneously computes the solutions that are perfectly diffusion-
free. Note that the grid has been altered only in regions where waves are actually
present. Because two edges sometimes try to represent the same characteristic we
implemented a scheme for removing redundant nodes: in a group of triangles that
share a node, compute the length of each edge connecting the node and a neigh-
boring node, also compute the distance between the node and the edge opposite

to that node, and if the minimum length is less than 5% of the maximum, remove
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the node. This is purely geometrical. In fact, we implemented the scheme based
on the norm reduction, but the method removed all the interior points in the end,
actually reducing the norm locally. Further investigation is required for the node
removal procedure. The boundary nodes are fixed in this example because the initial
distribution is satisfactory (exactly in the places where they can catch the waves).
The possibility of creating a characteristic grid in the supersonic case means that the

adapted solution is virtually exact.

4.1.3 Burgers’ Equation

We now return to the scalar case, but a nonlinear equation for which the least-

squares method experiences a difficulty. We consider the inviscid Burgers equation.
Oy + ulyu = 0 (4.30)

On the assumption that u varies linearly within a triangle, we integrate the equation

to get the residual.

1

i€jr

where tp = . Note that this is exact for linear solutions. This means that

U1+u32+U3
Green’s theorem holds exactly in the discrete form as well, and therefore summing
up the residuals all over the domain yields cancellation of interior line integrals, thus
leaving a single boundary integral, i.e. telescoping property. For this reason, it is
called conservative linearization in the context of residual distribution (or fluctuation
splitting) schemes[30]. Similarly to the linear case, it can be shown that the residual
vanishes for the element when one of the edges is aligned along dy/dx = ur, i.e. the
characteristic with the averaged speed. This is acceptable for a smooth solution, but

not for a discontinuity. A solution is computed for the case of a stationary shock, and

is shown in Figure 4.9 where the nodes at the top boundary were moved in the same
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Figure 4.9: Converged Solution for the Figure 4.10: Converged solution for the
residual (4.31) residual (4.32)
way as the interior nodes but only in the z-direction. By minimizing the norm of the
form (4.7), the residuals have been driven to zero for all elements. And the method
indeed converges to an overturned shock. This is the reason that the area-weighted
norm fails to converge at a nonlinear shock. It is important to note that the residual
(4.31) is not unique. In general, there exist more than one form of discretization
for nonlinear equations, e.g. the trapezoidal rule, the midpoint rule, etc. In fact,
an alternative discretization that ensures a correct shock speed can be constructed
by enforcing it to satisfy the jump condition along each edge of the element. The
discretization takes the following form.
o) = 3 Z u; (Ay; — uAw;) (4.32)
(ASVIE
This residual vanishes when one of the sides of the element is aligned along a
shock. In other words, it vanishes when it becomes parallel to the line with the slope
(u1 + ug)/2 where the other nodal solution wug is assumed to be equal to u; or us.

As can be seen in Figure 4.10, the shock is captured exactly. One problem with
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this discretization is that it does not give a correct shock if more than one element
is involved in the shock. It will give an overturned shock again. Also, it admits
non-physical shocks(entropy-violating shocks). The detailed discussion on nonlinear

problems is now given in the next section.

4.2 Nonlinear Hyperbolic Equations

We have seen that the least-squares method is capable of producing exact solu-
tions for linear hyperbolic equations, automatically adjusting the mesh into a char-
acteristic configuration. It is an advantage of the method that a discontinuity can be
captured with many fewer nodes than the usual curvature adaptation [41, 23]. We
have also seen, however, a straightforward extension to nonlinear problems fails, and
the residual must be designed such that a shock relation is satisfied across shocks.
The main focus of this section is then on the computation of residual for nonlinear

hyperbolic problems.

4.2.1 Comnservation Laws

We consider sets of two-dimensional conservation laws of the form
0,F(w)+0,G(w) =0 (4.33)

where F, G and w are all € R™ in which each component of the conservative variable

and fluxes is a bilinear function of the components of w.
F(w) =w'Cw, G(w)=w'Dw (4.34)

where the superscript ¢ denotes transpose, and C and D are constant symmetric
third-order tensors. We can easily prove that for a small change dw, we have, on
account of symmetry,

dF = w'Cdw, dG = w'Ddw (4.35)
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and for large changes we have the discrete version
AF = w'CAw, AG =w'DAw. (4.36)

This structure includes the Euler equations of compressible inviscid flow if w is taken

to be Roe’s parameter vector. The steady-state version of (4.33) can be written
w'Co,w + w'DI,w = 0. (4.37)

The Hugoniot condition, SAF — AG, where S = dy/dx is the slope of a discontinuity,
becomes

w!(SC — D)Aw = 0 (4.38)

where W is the arithmetic average of the variable across the discontinuity. To obtain

a characteristic equation we pre-multiply (4.37) by a row vector ¢ such that
(w'C = (w'D/), (4.39)

that is to say we have to solve the generalized eigenvalue problem for the pair of

m x m matrices w'C, w'D. Given such an ¢, the characteristic equation becomes
(w'C(9, + Ay)w =0 (4.40)
or
(w'Cdw = (w'Ddw = 0 on dy/dr =\ (4.41)

Note that the characteristic equation (4.41) relates values along characteristic, but

the Hugoniot condition relates values across the shock.

4.2.2 Quadrature Formulae

We are interested in computing solutions of (4.33) by a least-squares method on

triangular grids in which the first step is to compute the residual.

Dy = //123 [0, F(w) + 0,G(w)]| dedy = %123 [F(w)dy + G(w)dz] (4.42)
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where the data is available at the vertices 1,2,3. The second step is then to distribute
some fraction of the residual to each vertex. In the least-squares method, these
fractions typically sum to zero over any given element, so that the method will be
conservative however the residuals are evaluated. Therefore we focus first on different
properties of various evaluations. Consider a single term, arising from integrating

just one component of the flux vector over on edge of the element.
2 2
Fis :/ F(w) dy :/ w'Cw dy (4.43)
1 1

To evaluate this integral there is a class of simple formulas;

(92 - y1)

FlQ(Of) = 9

I:(WiCWQ + whCw) + a(w; — wy)C(w; — WQ)] (4.44)

where « is a parameter that has only a second-order relative effect on the accuracy

of the estimate.
4.2.3 Formulas for the Residual

The formula for the residual is obtained by summing up the contributions from

three sides. Introducing the notation,
o)
wij(@) = 5 (Wi +w;) + (1 - a)wy (4.45)
where 1, 7, k are cyclically permuted for 1,2, 3, and rearranging terms, we obtain

D93(0) = wh(a) {AysC — AzzD} (wz —wy) +

why(a) {AysC — AzoD} (wy — wy) (4.46)

where Ay; is the difference of y taken anticlockwise along the edge opposite to the

node 4, similarly for Az;. Note that this formula is not symmetric with respect to
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the vertices. There are two other rearrangements possible,

P93 = W1TQ(CY) {(ys = 42)C — (x5 — 22)D} (Wo — wy) +

was (@) {(y2 — 11)C — (22 — 21)D} (wa — wy), (4.47)
P15 = wy(a){(ys — 12)C — (23 — 22)D} (W3 — wy) +
wis(a) {(y1 — y3)C — (1 — z5)D} (W3 — W), (4.48)

and all three will give the same numerical value. The particular arrangement (4.46)

can be written,

OF 0G
@123(&) = {8—wAy3 — 8—WASC3} (W3 — Wl) —+
OF 0G
{aw' A~ Gy A”} we =) 49

where the Jacobian matrices in the first term are evaluated at the state ws; (o) and
those in the second terms at the state wy2(«), which shows that the parameter a acts
on the Jacobian matrices. For example, taking o = 2/3 we obtain the conservative

linearization which has been utilized in the residual splitting method [30].

Shock Recognition: o =1

Suppose that two of the states happen to be equal, w; = wy = w,.. Then the

second line of (4.46) vanishes and the first line becomes
D53(a) = wi(a) {AysC — AzzD} (wz — w,). (4.50)

For the special choice o = 1, which gives wsi(a) = W31 = (W3 + w,)/2 (arithmetic
average across the shock), this corresponds precisely with the Hugoniot condition
(4.38) along the edge 31, provided the edge 12 is aligned in shock of the speed

dy/dxz = S (Figure 4.11). This is independent of the position of the other node, and
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Figure 4.11: Shock Recognition: o =1

introduces the possibility of capturing (or fitting) shocks by means of degenerate

elements. However, unfortunately, this admits non-physical shocks as well.

Special Properties: a =0

For scalar problems, the choice &« = 0 has a special property. With a = 0, the

residual becomes

@123(0) = Wé {Aygc - Al‘gD} (W3 — Wl) -+

wi {Ay,C — Azy,D} (wy — wy) (4.51)

where all quantities are thought of as scalar. Now suppose that the edge 12 is aligned
with the characteristic whose speed evaluated at the state 2, i.e. on the edge itself.
Then the first term vanishes. And the second represents the characteristic equation
dw = 0 exactly, again for any position of the third node (Figure 4.12). For systems,
all this can actually happen but only approximately. Note that the choice @ = 0
relates the solution values along the edge rather than across as in the case a = 1.
Another important property associated with this choice is the ability to compute
physical rarefaction. To see this, consider Burgers’ equation O;u + 0, f = 0 where
f = u?/2. Discretizing the spatial derivative term by the quadrature formula (4.44),

rearranging the terms, we find

duj fj+1 - fj—l
e AN b S et
dt + 2Ax ( @)

A g2 il = U1 Uyt — 205 + U

2Ax Ax? (4.52)



Figure 4.12: Characteristic Recognition: a = 0

which is a second order discretization of
Ou+ 0, f = (1 — a)Ax® Oyu O2u. (4.53)

This shows that for diverging characteristics, d,u > 0, taking o < 1 gives positive
dissipation. Experimentally we find that « needs to be well below unity, and that zero
is a good choice. The same effect can be explained by means of entropy argument.

Write the semi-discrete equation (4.52) in the conservation form.

du; At
d—tj = _E[fj—l—lﬂ — fi=1/2] (4.54)

with the flux function fji1/2 = ujujy + $(ujr1 — u;)?®. Define a non-increasing
quadratic entropy %u? [56], sum them up all over the nodes, and arrange the result

to get

d 1 a 1
7234 =2 (5 5) wa-w* (4.55)
J J

This shows that the entropy is conserved by taking the choice a = 2/3, reduced by
a > 2/3 for the compressive data w1 < uj, and reduced also by o < 2/3 for the
expansive data wu;y1 > u;. Therefore we have to take oo > 2/3 for shock waves, but
a < 2/3 for expansion waves. This is consistent with the above discussion: a = 1
recognizes shocks but admits non-physical shocks and o = 0 avoids non-physical

shocks.
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Figure 4.13: Left: Element in expansion. Right: Element in compression. Arrows
indicate the characteristic speed vectors.

4.2.4 Detecting Compression/Expansion

One possible way to take advantage of the formulas for the residual is to use
a = 1 for elements in shocks and a = 0 for others, thus capturing shocks exactly at
the same time avoiding possible rarefaction shocks. The decision can be made based
on the rate of change of the triangle area due to the virtual vertex motion caused
by the characteristic speeds. Imagine that a triangle is convected in a characteris-
tic field. If the characteristics are diverging, implying expansion, the triangle area
would increase. On the other hand, if the characteristics are converging, implying
compression, the triangle area would decrease. See Figure 4.13. It is easy to show

that the rate of change of the area is given by

dSy

1
dt 2 i=1,2,3

X (4.56)

where n; is the scaled inward normal vector of the edge opposite to the vertex ¢
(its magnitude = the length of that edge), and XZ is a characteristic speed vector at

vertex ¢. That is to say, the element is being compressed if

dSr

1 4.
7 <0 (4.57)
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whereas being expanded if

dSy

—L>0. 4.58
e (4.58)

For system of equations, we compute this for each wave-like component.

4.2.5 Least-Squares Formulation

The solutions are sought that minimize the norm

1 P! P
F=3 Fr=3 3 7T§T r (4.59)
Te{T} Te{T} T

over a set {T'} of triangular elements that divides the domain of interest. Qr is
a positive definite symmetric matrix that assigns relative weight to the different
equations. The change made to each vertex {j} is the sum of the contribution from
the surrounding triangles {7}, and can be written in the residual distribution format

as follows.

wi = —w, y, APy (4.60)
Te{T;}

0x; = ! '

Xj = —Wg Z Bj @T—ﬁnj (461)
Te{1;} T

where w; is a solution vector at the node, x; is the nodal position vector, and w,
and w, are small constants. The second term in (4.61) comes from differentiating the
weight 1/S7 in the norm. Note that the scheme is equivalent to the steepest descent

method. A} and B] are the distribution matrices given by

1 o0&, \"
Al = S_T<QTawT<> (4.62)
J
1 0@, \"

Here the computation of the derivative in .AjT requires careful consideration. We

have observed that taking the derivative straightforwardly can result in completely
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wrong solutions. As suggested in [48], it is important to linearize the equations first,
e.g.

Ad,w + Bd,w =0 (4.64)

where A and B are locally linearized constant matrices, and then apply the least-
squares method: minimize
2
F=> [// (A@IW + anw) dxdy} . (4.65)
{ry 0T

This means that we take the derivatives assuming w;;(a) are constant in (4.46)
because these quantities act on the Jacobian matrix as mentioned before. Yet this
raises another important point of consideration. Recall that the residual has two
other rearrangements other than (4.46). The derivative computed as above now
depends on this arrangement. Then it would be reasonable to take the arithmetic

average of the three possible forms and take the derivative, which yields

W1T23(a) [(Ayr — Ay,)C — (Azy — Azy)D], (4.66)

and this has been actually found to work.
4.2.6 Results

Results are available for Burgers’ equation dyu + u d,u = 0, for which Qr was
taken to be unity. Figures 1 and 2 show the final grid and solution for a right-
moving curved shock for the boundary conditions; v = 3 for x < —0.8 and % (x—1)
for x > —0.7 where the data is interpolated linearly between z = —0.8 and z =
—0.7, modeling an initial discontinuity. The grid and the solution were obtained by

repeating the following cycle.
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Figure 4.14: The final grid for the Figure 4.15: Solution contours for the
curved shock. shock.

1. Converge the solution on a fixed grid

2. Assign « to each element, depending the sign of (4.56)

3. Remove undesirable nodes

4. Update solutions and coordinates, with edge swapping interleaved (2000 itera-

tions maximum)

and the method terminates when the changes to solutions and coordinates are both
small in the step 4. The edge swapping is based on the norm reduction, which
attempts to create a characteristic mesh as clearly seen in the final grid. Also, the
scheme for removing redundant nodes was implemented as described in Section 4.1.2.
The nodes on the upper boundary were also allowed to move by the regular procedure
but only along the z-axis. The method converged at 10 cycles. And the final values
of o are 1 for the elements forming a shock, and 0 elsewhere. As pointed out at the
end of the section 4.1.3, if more than one element is involved in the shock, implying
the existence of nodes inside the shock, it will create an overturned shock. In this
example, we did not encounter this problem. But it can be fixed easily by removing

the nodes that is associated with triangles that have negative area.
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Figure 4.16: The final grid for the ex- Figure 4.17: Solution contours for the
pansion. expansion.
A grid aligned expansion wave was computed with u = —0.8 on the left and u = 0.8

on the right, to demonstrate the ability of the method to compute entropy-satisfying
solutions. The values of « are automatically set to be zero everywhere in the step 2,
and as can be seen the final solution is the correct smooth expansion fan. The method
converges at just 1 cycle. Increasing the value of a;, we found that a rarefaction shock
appeared in the middle of the rarefaction and it became finally a perfectly-resolved

rarefaction shock when o« = 1. This is consistent with the observation in section

4.2.3.



CHAPTER V

ELLIPTIC PROBLEMS IN TWO DIMENSIONS

5.1 Cauchy-Riemann Equations: ¢ — ¢ Formulation

In this Chapter, we consider the Cauchy-Riemann equations, a prototype of first-
order elliptic equations. In particular, we consider the Cauchy-Riemann equations
for streamfunction and velocity potential, but the interpretation of the variables is
not important here, and therefore the discussion will be valid for any two variables.
For elliptic problems, there is no longer a preferred direction along which information
travels. A property of grids required for such problems is local isotropy, but the grids
must be tailored for side effects that can arise due to the presence of singularities.
We shall see that the mechanism for grid movement is quite different from the one
for hyperbolic problem and reflects faithfully the nature of elliptic problems, and

also that the solution method is equivalent to a well-known finite-element method.

5.1.1 Governing equations
In two dimensions, an incompressible and irrotational flow is governed by
O+ 0,0 = 0 (5.1)
Op) — 0y = 0 (5.2)
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where ¢ and 1) are a velocity potential and a streamfunction respectively. These
equations are accompanied by the boundary conditions: Dirichlet condition for
that specifies streamlines along boundaries, and Neumann condition for ¢ that con-
straints the flow across any internal bodies. It is possible to exchange the independent
and dependent variables to get governing equations for x and y in ¢ — ) plane, which

is known as hodograph transformation.

Oyt = Oy /j, Opx = —0y0/j, Opy = —0u/j, Opy = 0u0/j (5.3)

where
j = axqﬁay’l,b - 8y¢ax’¢ = (8¢y8¢x - 8¢x8¢y)_1. (54)

Note that the Jacobian is always negative, at least for a converged solutions in

the discrete case. We thus have another set of Cauchy-Riemann equations in the

hodograph plane (¢,1)).

Opr 4+ Opy = 0 (5.5)

awx—%y = 0. (56)

Assume that v and v vary linearly within a triangle. Then, any first derivatives are

constant and all the above results hold discretely as well.
5.1.2 Residual

Residuals are in general obtained by integrating the governing equations over an
element with some assumption on the variation of the solutions, typically piecewise
linear. But since linear variation implies constant first derivatives and our equations
consist of only first derivatives, the integration is a simple product of the governing

equations, with the piecewise linear approximation inserted, and the element area
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St. The piecewise linear interpolation formulas ¢ and 1 within each element are

given by

o=y &N/ (z,y), ¥="7Y N, (5.7)

i€jT 1€jT

where ¢; and ; are the values at node 7, and

a; +bix + ¢y

Qi = TpY — Yk, b = Ay, ¢ = —Aug; (5.8)

and .S, is the area of the element given by

S = % Z T Ay; = —= Z Y Ax; (5.9)

1€jT ZG]T
where A{}; denotes a difference taken counterclockwise along the side opposite to j
and the subscripts k£ and [ take 1, 2 and 3, and are permuted cyclically for . Then

it is straightforward to show that

8¢ 1 0¢

Z 9% _ Az, 1
9r 25, ; QY 5, gf i (5.10)
81/} 1 oy
ax QST lg le’t yZJ 8y - 25 ZEZJT Q)b’LA'xZ (511)

which are all constants in an element. Substituting these and multiplying by S, we
arrive at the following residuals of the Cauchy-Riemann equations in the physical

plane.

1
Ur = = > ¢:Ay — 2 U Aw; (5.12)
2i Tp ZE]Tp
1
Vi = 3 > Ay + 5 > ¢, (5.13)
1€y, 1€y,

This particular formulation applies to the hodograph equations also. Consider the
image {7}, } of the triangulation {7'} onto the hodograph plane. On the assumption

that z and y vary linearly within each element with respect to ¢ and 1), we obtain
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the first derivatives.

o0x o0x 1

— i AY;, — = i Ag; 5.14

8¢ QST ZEJZ A o QST ZEJZT ¢ ( )
oy 1 dy
a . 7 1y o 1 7 515
96 _ 25y EZJ: e T 25 62];, Yid: (5.15)

where S, is the element area in the hodograph plane given by

Z G = Z Vi, (5.16)

zEth ZEth

By inserting these into the hodograph equations and multiplying by Sj, we get

Upr = = Z i AY; — Z YA, (5.17)
lEjTh lEjTh
Vp = —= Z v\ = 5 LS nd (5.18)
zEJTh i€jr,

which can be written, by the antisymmetry implied in equation (5.9),

U} = 5 Z GiAy; — Z Az = Up (519)
lEJTh zeyTh

VTI“ = 5 Z ¢1Ayz+ Z ¢1sz - (520)
1€JTh zeth

Evidently, these are identical to those in the physical plane, (5.12) and (5.13). Hence,
the residuals are unified representation of the error in both physical and hodograph
planes. This suggests another interpretation of the moving grid method: by moving
the grid, we are in effect attempting to solve the hodograph equations that govern

the independent variables x and y.

5.1.3 The Least-Squares Method

We consider minimizing

F=3Y Fr=Y —[UT +Vi?] (5.21)

Te{T} Te{T} 257
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which is a norm with area weight. Based on the assumption of the linear variation,
this can be written as

F=Y % //Tv¢- Védudy+ 3 % //T Vo Videdy— Y S (5.22)

Te{T} Te{T} Te{Ty}
where S denotes the area of the triangle in the hodograph plane. This norm is
well known as energy norm in the variational formulation of the Laplace equations
on which finite-element method is based. It is in fact equivalent to the Galerkin
finite-element method with piecewise linear elements as shall be proven in the next
section.
In the light of hodograph plane, we can also write this norm as
Fo v // Ve-Vedédir Y I // Vy Vydpdp— 3 Sy (5.23)
regy 20T regy 20T Te{T)}
where Jr is the discrete version of the Jacobian in element 7. This is not precisely
the form of energy norm because of the presence of Jp. Therefore, the resulting
method will be different for grids and solutions. This is not surprising because the
norm (5.22) is biased towards the physical plane by the weight 1/Sr. In other words,
it is not symmetric with respect to physical and hodograph planes. It is not hard
to see that the resulting method for grid movement would be nothing but an elliptic
grid generation: a map between physical and hodograph planes. We will discuss this
in detail later. A final remark is that the resulting moving mesh method is very
similar to that developed by Tourigny and Hulsemann [91] in which the energy norm
is directly utilized for mesh movement for a single Poisson’s equation.
Minimization is performed by the method described in Chapter II. Accordingly,

the update formulas are given by

OF . OF

i =9 —cy 96, Vi =) — ey o0, (5.24)
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oF oF
ntl g o ST gt g 22 2
] ri —c oz, Y; yi — ¢y a0, (5.25)
where n is the iteration number and
oF OF:
9b. Z a—T - Z 25 [AyrUr + Az V] (5.26)
P; Te{T;} P; Te{T;} “°T
oF oF 1
a—w = Z —T = [ ALETUT — AyTVT] (527)
j

Te{I;} 0, Te{1;} QST

oOF OFr

5 = 2 = [AppUp — AdrVp — FrAyy] (5.28)
9r; o1&y 9% rémy 25T

OF OFy 1

o = ) 5= ) [~ A¢pUp — Ay Vi — FrAzy]  (5.29)
O 1y Ol 2

where {7} is a set of triangles that share vertex j and A{}y denotes a difference
taken counterclockwise along the side of triangle 7. The diagonal scaling is incorpo-

rated into the coefficients.

0?F
Cop = wu/?ﬁ: Cy wu/awg (530)
0?F
=wil 5y T 4= x/ 8y] (5.31)
where w, and w, are small constants, and
PF PF 1
ST = o= 2 (Azg)® + (Ayr)? (5.32)
8¢§ 8%2' Te{T;} 4ST { }
0*F 1 OF,
7 = 2 l {(Adr)? + (Ayr)?} - —AyT] (5.33)
ax? Te{T;} ST 8%
O*F 1 OFy
D S N B P Y
ayjz Te{T;} Sr 9

Note that the second term in (5.33) and (5.34) vanish at convergence. For faster

convergence, updates are performed sequentially as described in Chapter II.
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5.1.4 Equivalence with a finite-element method

Cauchy-Riemann System and Laplace Equations

Consider the Cauchy-Riemann equations for « and v

dyu+0dyu = 0 (5.35)

Opv — Oyu = 0. (5.36)
in a domain €2, with the boundary conditions

Oy = Osv (5.37)

v = g(z,y) (5.38)

on 0%, where g(z,y) is a given function, 9, is the derivative normal to the boundary
and Oy is the derivative along the boundary. The variables u and v are left arbitrary;
it is not important here. Note, however, that the condition (5.37) will become
irrotationality condition if v and v are taken as velocity components in x and y
directions respectively. It is well-known that the Cauchy-Riemann system implies a

set of Laplace equations
~Viu = 0 (5.39)
~Viv = 0 (5.40)
in {2 with the same boundary conditions. We will show that the least-squares method

applied to the Cauchy-Riemann system is equivalent to the Galerkin finite-element

method for the two Laplace equations.

Basis Functions

Although it is not necessary to introduce the concept of basis functions in the

case of least-squares method, it is useful to define local piecewise linear interpolat-
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ing functions when the two methods are compared. For this purpose, here we will
establish the relation between the two functions.

We begin by triangulating the domain 2 into a set of triangles {7’} and nodes
{J} consisting in the interior nodes {J;} and the boundary nodes {.J,}. A group of
triangles that shares node j is denoted by {7}, equivalently this local domain will
be denoted also by €2; with its boundary being 0€2;. We also introduce the notations
N; and N, for the number of interior nodes and boundary nodes respectively. The
total number of nodes N is then equal to N; + N,.

In finite-element methods, the solution is sought in a vector subspace which is
spanned by a set of basis functions denoted by ¢;(x,vy) j =1,2,...N. Each ¢;(z,y) is
unity at the vertex j , zero on 0€2;, and varies linearly within each element belonging

to {1;}. The approximate solutions u; and v, are then represented by

Up = Z u; di(2,y) (5.41)
ie{J}

o =Y, vidi(x,y) (5.42)
ie{J}

where u; and v; are the nodal values of v and v. On the other hand, the functions use-
ful in the least-squares method are piecewise linear interpolating functions NI (z, y)
as described in the last section: NI'(z,y) is a linear function that takes the value
unity at the vertex ¢ and zero at the others. The solutions are then written within

each element

ul' = Z uiNiT(:r,y) (5.43)
ie{ir}

vl = Z viNiT(x,y). (5.44)
ie{ir}

where {ir} is a set of vertices that defines the element 7. Important relations are

u” = uplr, v =wr (5.45)
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where |r means the restriction on the element 7.

Finite Element Method

Finite-element method begins with variational formulations for the pair of Laplace
equations (5.39) and (5.40). Let U and V be the trial spaces for u and v respectively

defined by
U = {ue H'(Q)} (5.46)
V = {ve HY(Q) | v=g(x,y) on N} (5.47)
where H'(2) denotes the Sobolev space defined by
HY(Q) = {v: /Q(|Vv|2 + v?) dady < oo} (5.48)
and U will be used also as the test space for u. For v, we define the test space V{y by
Vo = {vo € H(Q) | vo = 0 on 9Q}. (5.49)

The variational forms are easily found by multiplying the Laplace equations by test
functions uy € U and vy € Vj, integrating over €2, and by using Green’s formula. We
are then led to the following variational formulations: find v € U and v € V such

that
ov
// Vu - Vug dzdy —% —uyds =0 VNugeU (5.50)
Q 90 0s
// V- Voo dedy =0 Vg € Vg (5.51)
Q

where we have used the Neumann condition (5.37) to rewrite the boundary integral
for u. Note that the implementation of the Neumann boundary condition is not
automatic here.

We discretize these problems on piecewise linear triangular elements. The finite
element subspaces for (5.46), (5.47) and (5.49) are denoted by Uy, V}, and Vp, respec-

tively, with the basis function ¢; that is associated with node j € {J}. Choosing
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this basis function as a test function, we obtain the following discrete problems: find

up, € Uy, and vy, € V}, such that
// Vup - Vé; dudy — ]5 Thoyds =0 Vje{J) (5.52)

//Q Vo, - Vo, dedy =0 Vj € {J;}. (5.53)
Least-squares Method

In the least-squares method, we begin by defining the residuals {2y and Ar as

the integrals of (1) and (2) over each element.

Ap = // (8“ )d:cdy - (aa“ %Uy ) Sy (5.54)

Oy = // (g—;—@>dd (%—%)ST (5.55)

where the second equalities are due to the linear approximations of v and v. We

then define the norm F to be minimized by
F=Y Fr= —— A% + 93] (5.56)
Te{T} Te{T} QST
which can be expanded as

ul ul'\? 1 v\’ ovl\”
SR CORICHIERE S (CORCIIE
TE{T}[ ox oy 2TE{T} ox oy

Ly l@uT ot B ou’ 8UT] S,
Teir) ox Oy Jy Ox

(5.57)

or

F = Z // Vul - Vul dx dy + Z // Vol - Vol dx dy

Te{T} Te{T}

oul ovt  oul ovt
[893 5 ax]ST‘ (5.58)

>

TE{T}
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By (5.45), we have

or oy Oy Ox o1

(5.59)

1 1 T T T T
F=3 [)Vuh-Vuhdxdy%—?//Q Vo Voy dvdy+ 3 lau v’ _ du” Dv

Te{T}

Now there are two arrangements we can make for the last term. The first option is

to use an algebraic identity given by

(5.60)

g oul ov” B oul ov” g
71 0z oy oy Ox T

where S, is the area of the image of the element 7" in the solution space (u,v). This

is a discrete analog of
du dv = (0yudyv — Oyudyv) dx dy (5.61)

which holds true exactly for piecewise linear functions. It now follows immediately
that the last term reduces to the entire area of the domain in the solution space.

Hence we can write

1

1
.7::5 //QVUh'VUhdxdy'f‘§ //Q Vuy, - Vo, dx dy + Sy (5.62)

where Sy represents the entire area of the domain in the solution space. It is impor-
tant to note that Sz involves only the boundary values of u, and v,. The second
option is to use the relations (5.45) again. This gives

Buh 8’Uh 8uh 8’Uh

1 1
F = 5 /QVuh-Vuh dxdy-|—§ /QVvh-Vvh dxdy—l—//ﬂ [%8—:9 - a—y%] dxdy.

(5.63)
To simplify the last integral, we first use the following identity
auh 8vh auh 8vh 0 avh 0 8vh
— =— |\un—| — = |un— (5.64)
oxr Oy Oy Oxr  Ox oy oy ox

to rewrite the integrand, and then use Green’s formula to obtain

1 1 8vh
F = 3 /QVuh - Vuy, dx dy + 3 //Q Vuy, - Vo, dx dy + fi’m uhgds. (5.65)
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Note that the least-squares method implements the Neumann condition (5.37) auto-
matically.

To find a minimum, we need to solve the following equations

OF .
OF .
o0 view) (5.67)

for the nodal unknowns. Now we substitute (5.65) into the first equation and (5.62)

into the second equation to get

8,'/_" o th o .

a—uj_//gv“h w]dxdy—ffm@gds_o Vje {J} (5.68)
OF |
5 = //Q Vu, - Vojdody =0 Vje {J;} (5.69)

These equations are identical to those of finite element method (5.52) and (5.53),
and this completes the proof of the equivalence.

We have proved the equivalence of the least-squares method for the Cauchy-
Riemann system with the Galerkin finite element method for the associated Laplace
equations. The resulting linear systems are identical, and therefore have the same
unique solution regardless of the choice of the solution algorithm. In particular, if
an iterative algorithm is used such as Gauss-Seidel, which can be interpreted also as
a variant of the steepest descent method when applied to the least-squares method,
discrete updates will be the same, within a relaxation factor.

Also shown is that the Neumann boundary condition is automatically incorpo-
rated into the least-squares method. The implication of this fact is that the Laplace
equations are solved with irrotationality condition on a boundary when we choose
the variables u and v to be velocity components. We will return to this point later

when we discuss Cauchy-Riemann equations for velocity components.
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5.1.5 Grid Movement

Returning to the Cauchy-Riemann equations for velocity potential ¢ and stream-
function 1, we now understand that we are in effect solving Laplace equations for ¢
and ¢ by minimizing the least-squares norm. In view of grid movement, this implies
that we are solving the Laplace equations inversely for independent variables x and
y by minimizing the least-squares norm, which is nothing but the principle of elliptic
grid generation methods. The solution contours of a pair of Laplace equations, say

for ¢ and 1,

on a physical domain are smooth and nonintersecting, thus suitable for forming a
computational grid. But it is impossible to solve the equations on the physical
plane because the physical grid is what we want to generate and not yet available.
Therefore, we solve the Laplace equations for x and y on a fixed grid in ¢-7 plane.
For this purpose, it is customary to transform (5.70) and (5.71) into the governing

equations for x and y

04334545 — 2ﬁ$¢rl + ’7331/,1/, = 0 (572)
Ypp — 2BYpm + VY = 0 (5.73)
where
) 2 _ 2 2
o=y + Yy, B=TTy+ Yoy, V= Ty + Y, (5.74)

and this complex nonlinear system is then solved by a finite-difference method, usu-
ally on a rectangular domain in ¢-1 plane. In the least-squares method, we are doing

exactly the same thing, but in a much simpler way, i.e. by minimizing the norm with
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Figure 5.1: A 40x20 O-grid gener- Figure 5.2: The grid in the solution
ated by the least-squares space with an exponential
method. stretching in the v direc-

tion

respect to x and y. As an example, Figure 5.1 shows an O-grid around an ellipse
generated by the least-squares method with a fixed regular triangular grid in ¢-1

plane as in Figure 5.2.

This equivalence implies also that elliptic grid generation can be easily applied
to any types of unstructured grids, quadrilateral, triangular or even mixed ones
based on the least-squares approach while the conventional elliptic grid generation
appears to be applicable to structured quadrilateral grids only. In order for the
method to be practical, however, there must be introduced some mechanisms to
control the grid qualities such as boundary orthogonality, which is common in the
elliptic grid generation methods. In the least-squares method, this could be realized

by introducing source terms in the Cauchy-Riemann equations.
In the context of the least-squares moving grid method, the movement of the

grid is therefore nothing but an elliptic grid generation. However, the grid in the

hodograph plane is also allowed to evolve by the standard finite-element method, and
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so the method attempts to find a simultaneous solution of the finite-element method
and the elliptic grid generation.

It is interesting that the mechanism of the grid movement by elliptic grid gener-
ation can be explained by the spring analogy that is a well-known technique for any
node-moving algorithms as discussed in Blom[14] for quadrilateral grids. We show
this equivalence in terms of the least-squares method for triangular grids. Recall
that the gradient of the norm with respect to the nodal coordinates x; = (x;,y;) is

given by

oOF B 1 AYprUr — Apr Vi — FrAyr

o = 55 (5.75)

Te{T}} _A¢TUT — A¢TVT + FrAxy
Note that the third term in each pair is in the direction of the outward normal to
the edge opposite to the node j within each 7. This will contribute to preventing

vanishing area, for the change made to each vertex is proportional to the negative

gradient. Expand the first component of (5.75), which drives the corrections to z, as

oF 1 AYr 1 Aorp Fr
— = 5 > Ur—= > ——Vr— Y oAy (5.76)
ij 2TE{TJ-} ST 2T6{T]} ST Te{T;} 2ST
1 A 1 A
= 1 v > didyi— < > br > il (5.77)
4 Te{T;} ST 1€ 4 Te{T;} ST i€jr
1 A 1 A F
_Z Z ¢T Z 'Q/}ZA 1 4 Z ﬂ Z ¢1sz Z %AyTa
Te{r;} °T icjr Te{T;} P71 icjr Te{1;} “°T
or
0 1 A 1 A
a—f = -7 > Ur Yoyl + - Y SwT 3 3 Ay (5.78)
i 4 re{r;} “T igjr 4 Te{T;y PT icjr
1 Ag 1 Ag F
T S—T Yyl + 1 > S—T i Ay — Y ﬁAyT
re{r;y PT iejr re{r;y PT iejr Te{r;} “°T

By using the following formulas that hold within a triangle for any nodal quantity

a; (Figures 5.3),

Aij Z CL,AQp, + A¢] Z azA¢z = l_; . l;aj + l_i . fjal + l_; : ijQ (579)

1€Jr 1€Jr
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for a triangle 7T'. and angles in a group of tri-
angles, {7}}.
Ay 3 ;A — Ag; S aiAy; = 2SpAaq; (5.80)

1€jT i€jr
we obtain *(cf. Figures 5.4)

oF 1 ir g 1 [ A R 1 Fr
9 _(iy ), l =S A= S 2L Ay,
(18 g (e D SR S rv

TEeT; i€i; St TET; Te{T;}

Note that the side vectors are evaluated in the hodograph plane, but that St is in

the physical plane. Similarly for y, we have

oF 1 ir g 1 [ P Y 1 Fr

o [ty ), s 4 pt s Y Aret Y 2L gy
Iy, (4 TET) St ) T4 i€i; ( St Sr1 b2 1€, Te{T;} 2571

(5.82)

Evidently the third sum identically vanishes for interior nodes. Then, we write, using

the Jacobian JrSr = S/T,

oF 1 [ 1 liy - lr liv1 -l Fr

— = |- Jr——z;+ - Jr—— + I ——— | x; — —A
oz, 12 g xﬂ+4Z(T 5 e 2 gg A

SI
TE{Ty,} i€i; T+1

1 This is obtainable also by differentiating (5.23) directly. At least, the last term is easily obtained
this way.



89

oF 1 Ir - It 1 liy-lp lis1 - Iy
— = |= > |yt -D |\ F I |yt >, —AZL’T
8yj 4 el ST | ici; ( ST ST—}-I TET;) 251

Expressing the vector Iy by the other two edge vectors in a triangle 7', and converting
the sum over the triangles to the one over the surrounding nodes, we find their

alternative forms.

oF 1 " i -l

= - +Jdrp—0— | (v — ) — A

du; 4%3( ST EREA (2 = ;) Te{;}%’T ur
oF 1 lioa-lp Ir l_;+1 lT+1

S g L + 2T g
dy, 4;( TS T — ) Te{z;}st g

Furthermore, we can write also

or Py

1
= — Z (JT COt@T + JT+1 C0t9T+1) (iUz - ) - Z AyT
0w 4 ieij ’ Te{T;} 2ST
oF L
a_ = Z Z Jpcotbp + JT+1 COteT—i—l) yj + Z 25 A‘TT
Yi = re{ryy “oT

which can be proved easily by combining the definition of dot product and a formula
for a triangle area (two sides and the sine of the angle in between). At a minimum,
these gradients vanish for every node which can be realized only by iterations because
the equations are nonlinear in (z;, y;). Hence, we may solve the equations for x; and
Yy, freezing x; and y; that do not appear explicitly. By setting the gradients equal

to zero and solving for z; and y;?, we obtain

ici; QX 1 ~Fr /S
_ > €1 _ _ZTG{T]} T/ TnT (583)

Ziei]- @ 2 Zz‘eij Q;

2This is possible only if the Jacobian is nonzero, but it is the case for Cauchy-Riemann system,
except for trivial solutions of course.
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Figure 5.5: A network of springs.

where x; = (z;,y;), ny is a scaled inward normal vector of the edge opposite to the

node j for triangle 7', and
1
o; = Z (JT COteT + JT—H COt0T+1) . (584)

Yet, note that the Jacobian is always negative for our Cauchy-Riemann equations

(5.3), and therefore we can write.

Zieij a;ix; 1 ZTe{Tj} FT/ST
_ hl ny

Xj = S 07 2 Yo (5.85)
where
of = i (|| oty + [ Jrsa| cotbrr) (5.86)
Finally, we have, in an iterative form,
X;L-H =x} + Zie’ﬁ;?“(.xi; x7) %ZT;?’j} }:;/ST nr (5.87)
ici; Qi ici; Qi

where n is the iteration number. Note that the last two terms on the right are
to be multiplied by a small constant (the relaxation factor) in the actual update.
The first term is precisely the form of the spring analogy. In particular, this is of
the vertex-spring type with the stiffness defined by (5.86). See Figure 5.5. First

of all, we see that the changes to z; and y, are thus biased toward the elements
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with large Jacobian, which is a desirable property for grid adaptation. Second of
all, the nodes will move towards the elements with small angle 6, in the hodograph
plane which is controlled by the cotangent functions. In other words, a large weight
will be given to nodes closer to the node j in the hodograph plane. In fact, this
is a property of Laplacian, and therefore a natural consequence of the least-squares
method. Finally, the second term is the one that compete for area. It has an effect to
enlarge small elements. This is in fact equivalent to the term introduced by Palmerio
and Dervieux [72] for the purpose of preventing mesh folding in grid movement by
a spring analogy. They added the terms, arising from minimizing 1/S5; with a small

parameter multiplied, to the mesh movement formula based on a spring analogy.

We note here that the iterative formula (5.87) is similar to the update formula
that would have been obtained from the approach described in 5.1.3, but slightly
different. This iterative formula is missing in the denominator the additional term
that comes from differentiating the second term of the gradient, but our experience
shows that its effect is so small that the two updates do not differ significantly. This
makes sense because the missing term is directly proportional to the gradient, and
therefore vanishes at convergence. At any rate, the difference is merely a matter of

linearization.

5.1.6 Results

Numerical experiments were conducted for a two-dimensional flow in a square
domain with a source in one corner and a sink in the other. There is an exact
solution for this problem which is expressed in terms of the complex potential F'(z),

[i—even (1 — sinh’2% /sinh”;—g)]
I, _odd (1 — sinhZ%/SinhQQ—Z) J

Tz

F(z) =¢+ip =mIn [sinh <—>

(5.88)

a
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the exact solution (k=22) the exact solution (k=22)
of ¢. of 1.

where z = 2 + iy and m determines the source(and sink) strength. In fact, this
solution produces a series of square regions which are divided by streamlines. The
solution can be shown to converge quite rapidly, so that £ = 22 which we used
is sufficient. We choose the domain of interest {2 as the unit square whose upper
left corner coincides with the origin, i.e. Q = {(z,y)|0 <z <1, -1 <y < 0}.
The source strength was chosen to be m = —% and a was set to be 1, then the
stream function takes the value of zero when y = 0 and the value of unity elsewhere
on the boundary. These were used as the boundary conditions for our numerical
experiments. And also the quantity inside the square bracket was divided by itself
with z =  inserted, so that it becomes unity at z = £, i.e. the potential becomes
zero at the mid point of the upper boundary which makes the solution unique. The
exact solutions in Q are shown in Figures (5.8) and (5.9). The most difficult part

of this problem is the singularities at two upper corners: ¢ becomes infinite and v

becomes multi-valued. For this reason, the solutions at these corners are included



93

0 0
>05 > -05
15 0.5 1 o 0.5 1
Figure 5.8: Initial Delaunay grid with Figure 5.9: Adaptive grid
568 triangles and 309
nodes.

among the unknowns. For the initial values for ¢ and 1), we always use the values
of zero for both. Diagonal swapping is performed for every 50 iteration. With the
diagonal scaling and the Gauss-Seidel iteration described in Section 5.1.3, the scheme
becomes indistinguishable from SOR for ¢ and 1. Therefore, we already know that
the best value of w, lies between 1.0 and 2.0 and approaches 2.0 as the size of
the problem increases. On the other hand, for grid movement we found that it is
necessary to underrelax the iteration to prevent mesh tangling, and therefore in the
actual computations, we used w, = 0.15. The iteration may be taken to converge
when the L1-norm of the gradient goes below the tolerance 10~°. Boundary nodes
must be moved also, for it is very likely that mesh movement inside the domain
is very likely to create severe distortion near boundaries if the boundary nodes are
fixed. However, we do not move the boundary nodes by the least-squares method
because we found that their movement was not consistent with that of internal nodes

nearby each boundary node. Similar observation has been reported in a moving mesh
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Fixed grid Moving grid
Iteration number 444 20000
Loy(v)) 1.22999E-02 3.02695E-03
Ly(0) 2.40661E-02 6.16447E-03
Norm 1.18088E-01 1.47477E-01
F 2.74647E-04 4.88475E-05

Table 5.1: The results of the numerical experiments

method for interpolating a known function[5]. Here, we instead move the boundary
nodes, except for the four corners, by a Laplacian smoothing. That is, we compute
the average position of the surrounding nodes, and project it onto the boundary so
that the nodes remain on the boundary. Equivalently, we may form a mirror image,
outside the boundary, of the group of triangles that share a boundary node, and
then apply a Laplacian smoothing. Although this is quite effective in the sense that
mesh distortion created near the boundary by the movement of the internal nodes is
removed, it does not necessarily minimize the norm. Therefore we cannot necessarily
achieve convergence. Our procedure is then first compute a solution on a fixed grid,
which is going to be our initial solution, and then apply the least-squares moving
grid method for some specified number of iterations, and finally compute the solution
again with the grid fixed. In this particular example, the moving grid algorithm was

applied for 20000 iterations.

Shown in Figures 5.8 and 5.9 are the initial Delaunay grid and the final grid
respectively. As we expected, the nodes have moved towards the upper two corners
to better resolve the rapid variations of the solutions. The errors and other related
quantities are compared between these grids in Table 5.1. Firstly, we see that the

error has been reduced significantly for both solutions. Because of the presence of
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singularity in the solutions, the error is measured in the L, norm defined by

Lo(o) = Z /T(¢exact - ¢numerical)2 dxdy (5.89)

Te{T}

where the integration is performed by a Gaussian quadrature. It would be worth
mentioning that the reduction of the errors was achieved only with diagonal swap-
ping, emphasizing the importance of the connectivity. In fact, without diagonal
swapping technique, the resulting grid would have suffered from highly skew and flat
triangles with very low error reduction. Another important fact seen in Table 5.1
is that the norm is greater on the moving grid. This indicates that the minimizing
the energy norm does not necessarily minimize the L, error although it is not a bad
choice for grid adaptation. In fact, as is well known in finite-element methods, the
residual is not the only error indicator: the jump in the first derivatives across linear
elements is also directly related to the solution error[36]. On the other hand, the
residuals have been reduced significantly as seen in the bottom of the table where

F' is the unweighted norm,

/ 1

F=3 3 Ur? + Vi?]. (5.90)
Te{T}

These results suggest that we minimize not F but F . As mentioned earlier, it is

difficult with this norm to move the grid because it does not offer any mechanism

for competing for cell area. In practice, however, it does not deny the possibility

for moving the grid; it just has to be done carefully. In the next section, we shall

encounter the situation where we must use this unweighted norm.
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5.2 Cauchy-Riemann Equations: u — v Formulation

Alternatively, the equations that govern 2D incompressible and irrotational flows

can be cast, using the velocity components, (u,v), in the form.

dpu+dyu = 0 (5.91)

0, — Oyu = 0. (5.92)

This form may be preferred possibly for two reasons. Firstly, in case of dealing
with multiply-connected region, the velocity potential will be discontinuous when
circulation is involved whereas the velocity components are continuous. Secondly,
this system is a model system for the elliptic subsystem hidden in the steady-state
Euler equations in two dimensions. It is also a role of the least-squares method for

providing a good solver for this elliptic subsystem (See [78] for details).

5.2.1 A Problem of Computing Lifting Flows

It is straightforward to apply the least-squares method for this system. However,
it was soon discovered that the least-squares method as a solver for u and v had a
serious flaw especially in the case of a flow around a lifting body: the solution is
extremely inaccurate for flows with nonzero circulation. To illustrate this problem, a
flow around a Joukowsky airfoil at an angle of attack 10° was computed by the least-
squares method with the area-weighted norm, on a 160x80 O-grid as shown in Figure
5.10 which should be fine enough to obtain accurate solutions. As the boundary
conditions, we give exact solutions at the outer boundary® which is located at the

distance of 10-chord-length away from the airfoil, and use a tangency condition on the

3This is of course not a practical condition since the circulation is not known in practice. But it
is true also that if the method does not work with this condition, it will not work with the vortex
correction[89]: a usual trick in practice.
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Figure 5.10: A 160x80 O-grid. Figure 5.11: C, distribution around
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airfoil which is simply to eliminate the component of the velocity normal to the body
after each iteration. This tangency condition can be interpreted as a constraint to
the minimization in the context of the least-squares method[80], which is equivalent
also to replacing the variables (u,v) by a tangential velocity on the boundary as
usually done in finite-element methods. At the cusped trailing edge, the solutions
are computed without the tangency condition, i.e. the node is treated just like an
interior node. The method converged for 9883 Gauss-Seidel iterations making the
Ly norm (X,,04es | - |/ Nv) where Ny denotes the number of nodes except for outer
boundary) of the updates below 1.0E-08. The pressure distribution over the airfoil
is shown in Figure 5.11. It is evident that the numerical solution is far off the exact
solution, yielding an extremely small lift. The circulation around the airfoil was found

to be 1.92797E-01 whereas the one specified at the outer boundary is 5.99931E-01,

implying nonzero vorticity inside the domain. The vorticity evaluated elementwise
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is small indeed, but does not satisfy the integral constraint,

J @ drdy = Tout = Tyisgoit (5.93)

where the integration is all over the domain, and [' denotes the circulation that
is positive counterclockwise. This constraint is difficult to impose and in practice
seldom enforced explicitly, whereas the continuity constraint, no net flux through the
boundaries, can be easily ensured by the tangency condition. As shown by Baines|6]
recently, the least-squares residual minimization can be interpreted as approximate
equidistribution of the residuals, and therefore it may be inferred that the method
merely redistributes nonzero residuals over the elements, and therefore the sum of the
residuals are not necessarily small, thus creating a significant amount of gap between
the outer and inner circulations (5.93). The result shows also that the scheme is not
vorticity-preserving[68] because the iteration was started from the exact solutions. If
it had been so, we could have obtained a very accurate value for the lift. Surprisingly,
we observed from additional results on coarser grids that the method is not even first-
order accurate: the numerical solution is converging to the exact one, but extremely
slowly. Considering the nature of incompressible potential flows, we suspect that
the method has a difficulty in computing a potential vortex that is the fundamental
solution responsible for the circulation®.

Consider solving the Cauchy-Riemann system in a domain bounded by two co-
centric circles. At the outer boundary, a uniform tangential velocity is given with no

cross flows, while the tangency condition is applied at the inner boundary. Obviously,

4Tt is a fundamental result of the theory of incompressible potential flows that the force on an
object due to fluid motion comes exclusively from the fundamental solution of the Laplace equation
that describes a vortex motion[66].
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the exact solution is a potential vortex defined by

k

q=1uy= (5.94)

2 = 22 + 92, and k is a constant related to the circulation.

where ¢ = u? + v?, r
This is the only possible solution to the Cauchy-Riemann equations, but the associ-

ated Laplace equations allow another solution. In cylindrical coordinates, Laplace’s

equation for u reads

10 ou 1 0%u
"o (a_> Tage =0 (5.95)
Assume the solution of the form
u= R(r)©(0) (5.96)

which leads to, on substitution and some arrangements,

r?d®?R  rdR 1 RLS)

RN — 2
Rdr? Rdr O dp? b (5.97)

where the negative constant —3? has been chosen for the periodicity in the 6 direc-

tion. Therefore, we have

g e =0 (5.98)
@R  dR
27 7" Q2 —
g o= PR =0 (5.99)

where the first equation is a simple harmonic equation and the second is the Euler-

Cauchy equation. The general solution is given by
u = (Ayr P + Byr?)(C, cos(30) + D, sin(0)) (5.100)

where A,,B,,C,, and D, are constants determined by boundary conditions. Similarly

for v, we have

v = (Ayr P + B,r?)(C, cos(80) + D, sin(50)) (5.101)



100

where A,,B,,C,, and D, are arbitrary constants. These constants can be reduced
by boundary conditions. Firstly, we have C, = 0 because u = 0 at # = 0 on both
boundaries. Then, we immediately see that § must be nonzero integers since u
vanishes also at § = w. Secondly, D, = 0 by the symmetry of v with respect to 6,
by which we find also [ to be odd integers since v vanishes at £7/2. Thirdly, the
constancy of the flow speed along the outer boundary requires that the constants
in v and v must be the same in magnitude, but with the opposite sign so that the

velocity is tangent to the boundary, thus yielding

u = (Ar~f 4+ Brf)sin(30) (5.102)

v = —(Ar % + Brf)cos(536). (5.103)

Finally, the tangency condition at the inner boundary, u cosf+wv sinf = 0, determines

that 0 = 1, and therefore we obtain

A
u = (— + BT) sinf (5.104)
r

A
vo= — <? +Br> cost (5.105)

where A corresponds to k in (5.94). This shows that the Laplace equations have
another solution component proportional to r. It is easy to eliminate this solution
analytically (just require that the solution be bounded as r — o0), but not easy to
do so numerically. This solution represents a solid body rotation and has a nonzero
vorticity given by 2B. Therefore, it does not satisfy one of the Cauchy-Riemann
equations, but it does satisfy the Laplace equations as just shown above. Recall
that the least-squares method is equivalent to solving the Laplace equations by the
Galerkin finite-element method. Then, it would be reasonable to conjecture that

this is the solution that the least-squares scheme mistakenly computes. In fact, we
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Figure 5.12: A mesh plot of the flow speed ¢. Figure 5.13: ru versus r? along the ra-
A 20x10 O-grid. dial grid line at 6 = 90°.

found by a simple computation that this was exactly what was happening. Figure
5.12 shows a mesh plot of the flow speed obtained by the least-squares method on
a 20x10 O-grid with two circular boundaries located at » = 0.5 and r = 10, for the
exact solution with ¥k = A = 1. As clearly seen, the flow speed decays from the
inner boundary(correct behavior), but soon starts to rise towards the outer bound-
ary(wrong behavior). The reason for the correct behavior near the inner boundary
is that the scheme automatically implements the zero vorticity condition as shown
in Section 5.1.4. But it is not effective enough to completely suppress the wrong
solution component, and the solution is extremely inaccurate at the inner boundary
where ¢ =~ 0.1 whereas the exact solution is ¢ = 2. The circulation along the inner
boundary is 3.19607E-01, which is too small compared to the value at the outer
boundary 6.18034E+00. The presence of the two types of solutions was confirmed
by Figure 5.13 which shows a plot of ru verses r? along a radial grid line. The plot

shows a perfect straight line which implies ru = a + br? for some constants a and b
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and which in turn yields (5.104).

These results suggest that we should find a way to solve the Cauchy-Riemann
equations, not the Laplace equations. But remember that the problem is specific to
triangular grids. There is no problem with the least-squares method on quadrilateral
grids. The method is actually capable of producing the exact solution to this problem.
The reason is that a bilinear variation on a quadrilateral cell can represent the
solution of the form (5.94) exactly in the sense that the residuals vanish with the
exact nodal values. On the other hand, the piecewise linear variation on a triangular
cell cannot represent the correct solution exactly. But this is not a problem; the
problem is that the residual can represent the wrong solution exactly because ¢ = Br
implies linear variations in u and v. It is therefore natural that the method would
prefer to compute this wrong solution because the norm can be brought further down
by producing this solution. One thing is clear: minimizing residuals is not equivalent
to minimizing errors. This is one possible explanation for the problem, but it does
not give a single clue as to how to overcome this difficulty in least-squares methods,
for all it implies is that minimizing the residual will suffer from the same problem

whatever the norm is.

5.2.2 An Accurate Least-Squares Scheme

In this section, we propose one way to recover the accuracy of the least-squares
method. As mentioned in the previous section, we should solve the Cauchy-Riemann
equations, not the Laplace equations. This means that the decoupling that occurs
in the discretization must be prevented, and that we must retain the coupling as in

the Cauchy-Riemann equations. One way to do this is to minimize the norm of the
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form,

F=3 F=Y% l[AT2+§2T2], (5.106)
Te{T} Te{T} 2

i.e. a norm without the area weight 1/Sr, where
Ay = / (Opu + Oyv) dxdy, Qp = / (Oyu — Opv) dxdy. (5.107)
T T
It is easy to show that this can be written as

S S )
F = 2 oL // Vu-Vudrdy+ Z T // V- Vodrdy— Z SpSy (5.108)
reqry 2 T Teqry 2 T Te{T}
where S is again the area in the hodograph plane (u,v). The last term will not

vanish identically this time, and this is the term that links the two variables u and

v. Following the steps described in section 5.1.5, we obtain the gradient

oF 1 1

ou. 2 > (Srcotdr + Sy cotfriy) (u; — uy) — 9 > Srivr (5.109)
U i€i; TET;

o0F 1 1

5. = 1 > (Srcotbr + St cotbryr) (v; — v;) + 2 > SrAugp  (5.110)
Uj i€, TeT;

(cf. Figure 5.4, but remember that we are now in x —y plane.) which shows that the
last term in each equation does not vanish identically, and the variables are coupled.
There are however occasions when they vanish; all the triangles surrounding the node
7 have the same area except for boundary nodes, such as uniform grids; the solution
is uniform along the sides opposite to j; give all Aug or Avy , and all St except one
which can be solved for. To show that we are solving the Cauchy-Riemann equations,
now we are going to derive the equivalent (or modified) equations of the least-squares

scheme. Unifying the summation, we can write the gradient also as

oF 1
% == Z Z [(STCOteT + ST+1 COt0T+1) (UZ - Uj) -2 (ST - ST+1) (Ui - U])](5111)
J 1€145

oF 1
% = Z Z [(STCOth + ST+1 cot9T+1) (’U,‘ — Uj) + 2 (ST — ST+1) (U, — uj)] ,(5112)
J

1€
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Figure 5.14: A nonuniform regular triangular grid.

Consider a nonuniform stencil shown in Figure 5.14. It is clear that the contribution
from nodes 1 and 4 disappear because cot 90° = 0 and two triangles that share each
node have the same area. Now, we may assume without loss of generality that the
node j is located at the origin. Expanding u as a Taylor series around the node 7,

we have, up to the second-order,
1 2 1 2
U= uj + Uy + uyy + o Uaa® + Ugyxy + Uyl (5.113)
analogously for v,
1 1,
U =0 + U, + vyy + 5 Vaat + vy + 3Vl (5.114)

Substituting these into (5.111) and (5.112), after some algebra, we obtain

A (uy +vy) + Ao(vy — uy) — By (Ugy + Uyy) — Bovgy + Bsvyy, = 0 (5.115)

— Ay (uy +vy) + A1 (vy — uy) — Bi(Vgy + vyy) + Botlyy — Bsuy, = 0 (5.116)
where

1 1
A = §(h224T + h;B)(th — hgr), Ay = i(hiR + hip) (hyr — hyp)
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1 1
By = (R + W20) (W + 2g). By = (b, — W) (hyr — hyn):

1
Bg — Z(hzT - th)(th - th)

u and v being regarded as solutions of the discrete problem, these equations represent
equivalent equations, i.e. the equations we are actually solving. Note first that,
as expected, these equations reduce to the Laplace equations on a uniform grid,
hyr = hyr = hyr = hyp = h, for which all constants vanish except for B;. But

suppose hyp = hgy, but hyp # hyp. Then, A; = By = B3 = 0, and we obtain

Uy +Vy = AZVv— 2<hyT_hyB Ve
Vy—U, = —Vu= =-|—"——"—]|Vu
v Ay 2 \ hyr — hyp

which shows that we are solving Cauchy-Riemann equations with some added dissi-

pation. Similarly, if hyr = hyp but h,r # hyr, we obtain

_ Bi_, 1 [h2p+h\ oo
Uy + 0y = AIVU—2<th hon Vu
_ Bi_, 1 (Rgz+RL\ o
Vg — Uy = AIVU—2<th hon Vv

In general, if the grid is nonuniform in both directions, we have

1

Uy + Uy = m [Bl (A1V2U — AQVQU) + BQ (Alvm + AQUxx) — Bg(Alvyy + Aguyy)]
1
Ugp — Uy = m [Bl (A2V2u + A1v2'l)) + BQ(AQUJE — Alum) — Bg(AQUyy — Aluyy)} .

In the case of doubly-connected region, where the circulation becomes important,
computational grids would have to be nonuniform. Therefore, this least-squares
scheme will be solving the Cauchy-Riemann equations, and we expect that it gives
accurate results for the problems with nonzero circulation. The method was applied

for the same problem of the flow around the Joukowsky airfoil at an angle of attack
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10° on the same 160x80 O-grid. The solutions converged for 1758 iterations, again
making the L; norm of the updates below 1.0E-08. It is interesting that the method
converges faster for the unweighted norm than for the weighted norm. The pressure
distribution around the airfoil is shown in Figure 5.15, which is significantly more
accurate than the one in Figure 5.11, A little oscillation is seen however at the trailing
edge. This may be expected because the coefficients of the diffusion terms in the
equivalent equations are not necessarily positive. The rate of convergence is not
precisely two as seen in Figure 5.16 where the errors are computed at all the nodes

except on the outer boundary (See Appendix F for computing the exact solution)
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and measured in an L; norm. The grids used are 10x05, 20x10, 40x20, 80x40, and
160x80 O-grids. But the order of accuracy is nearly 1.7, and the improvement is
substantial compared with the previous less-than-first-order accuracy.

A final remark is that this is not the only way to couple the variables, u and v;

other types of norms may be suggested. In particular, consider the norm in the form

1 1

F=Y F= 5 — [AT2 + QTQ] . (5.117)
Te{T} Te{T} °T

where m is an integer. The weighted norm corresponds to the choice m = 1, and

the unweighted one corresponds to m = 0. The equivalent equations derived from

minimizing this norm can be written in the same form as (5.115) and (5.116), but

the coefficients now involve the parameter m as follows.

Ay = 2N R 4+ ™) (™ — hyg™), Ay = 2N (W™ + ki) (hyr™ — hyp™)

By = 2" 2 (W™ + hap ™) (hep™ 4+ hig™), Ba = 2" 2(hy™ — by g™ ) (hyp™ — hyg™),

By = 2" (hyr™ = g™ (h™ = hy™)-

This clearly shows that all the coefficients but B; will vanish identically for m =1
and the equations revert to the Laplace equations, and moreover any choice other
than m = 1 will keep some other coefficients finite and therefore retain the variable
coupling °. Our numerical experiments show however that taking m > 0 leads to
the same problem in computing lifting flows, making solutions even worse as m gets
larger, and that the solutions with m < 0 are good in the sense that they have
a reasonable amount of lift, but reducing m (i.e. increasing |m| ) gives spurious

oscillation at the trailing edge. Therefore, it would be reasonable to believe that

5The same observation can be made by looking at (5.109) and (5.110).
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there must be some other explanation to this problem which not only explains the

problem, but also offers a cure in a more precise manner.

5.2.3 A Third-Order Least-Squares Scheme

In order to obtain even more accurate solutions to the Cauchy-Riemann equa-
tions, we consider a simple third-order extension of the least-squares scheme de-
scribed in the last section. It is based on the proposition claimed by Caraeni
and Fuchs[19]: for residual distribution schemes, if the distribution coefficients are
bounded, the accuracy of the scheme is determined solely by the accuracy with which
the residual is evaluated over a cell. They developed a third-order residual distri-
bution scheme for the Euler equations using a high-order Gaussian quadrature to
evaluate the residual. Here we develop a simple third-order scheme in which we
just add a correction term to the second-order residual rather than employing the
Gaussian quadrature procedure. One way to compute the residual with higher order

accuracy is to use a higher order quadrature formula. Consider

D93 = //123 [0y f + 0yg] dudy = ]{23 fdy —gdzx (5.118)

where 123 denotes a triangle formed by three vertices 1,2, 3, and f and g can be con-
sidered as flux vectors but we assume here for simplicity that these are the variables
we compute as in the case of Cauchy-Riemann equations (i.e. f = u and g = v for
example). Suppose that we have f and g at the midpoint of each edge. Then, the

line integral can be evaluated by Simpson’s rule.

(x2 — 1)

(g1 +4gm +92)  (5.119)
6

/:fdy—gdw:@(fﬁélfmfz)—

where the subscript m indicates the value at the midpoint. Note that this is 4th order

accurate. Introducing the notations () = {( )2+ ( )1}/2 and A( ) = ( )2 — ( )1, we
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rewrite this as

[ rdy—gdr=(Fay-580) 2 [(F~ f)dy— (G- gn)Ae] (5120

which clearly shows that the second term is a correction term to the standard second-
order evaluation(trapezoidal rule). Now we turn to the computation of the midpoint
values. First, for simplicity, we do not compute these as additional unknowns, in-
stead we recover these values by way of reconstruction. Yet, in order to preserve
the compactness of the scheme, we reconstruct the solution in the form of a Hermite
polynomial along each edge. This requires the gradients of the solutions at nodes,
but these are easily estimated by area-weighted average over the surrounding trian-
gles using the solutions of the previous iteration. Then the midpoint values can be

obtained by Hermite interpolation with the pre-computed gradients, which gives

-1

Jm=[— g(p2 —p1)s 9n=9— <(02—q1) (5.121)

|~

where p; and ¢; (i = 1,2) are the gradients evaluated at node i and then projected
onto the edge 12, of f and g respectively. Substituting these into (5.120) and col-

lecting the contributions from all sides, we arrive at the final expression.

PDy; = Z (fAy — gAx) — 11—2 Z (ApAy — AgAz) . (5.122)

edges edges

The same expression can be obtained by constructing the Hermite polynomial along
each edge and performing the line integral exactly. Note that the first term is exactly
the second-order residual. Hence, to achieve high-order accuracy, we just need to add
a correction term that is the second term on the right. For systems of equations ( f
and g are now flux vectors f and g), we linearize the equations first if nonlinear and

then follow the same procedure choosing a variable for reconstruction, say u. Thus

By = Y (AUAy - BuAz) - — 3 (AArAy — BArAq) (5.123)

edges edges
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where A = 0f /Ou and B = 0g/du are Jacobian matrices whose elements are con-
stant or made constant within the triangle by linearization, and r is the nodal gradi-
ent of u projected on the edge. Again, the first term is the second-order residual and
the second term is the correction term that improves the accuracy. The method will
however not be fourth-order accurate because of the error committed in the gradient
recovery. In fact, it will be third-order accurate only if the estimates of the gradients
are second-order accurate. Now back to the scalar case, suppose that the gradient is

estimated at node 7 with m-th order accuracy.
(Vf);=Vf+0O(nm) (5.124)

where h is a length scale of the grid size. Then, the projected slope, say p; on edge

12, is written

pr=(Vf);-sta=(fo)j(@a— 1) + (fy);(y2 — 11) = Vf - sT2 + O(K™").  (5.125)

Therefore, the line integral along the edge 12 is, in fact,

2 _ 1
/ fdy—gdo = (FAy - gAw) - — (ApAy — AqAw) + O(A™)  (5.126)
1
which shows that the method will be third-order if m = 2. This can be realized on
a fairly regular grid. Consider a group {7} of triangles that share node j. Given
function values f at the nodes, we want to estimate the gradient of f at node j. The

simplest way to do this would be compute the area-weighted average, assuming that

f is a piecewise linear function within each triangle denoted by f%.

_ Yy Srfi _ Xy Srfy

)= () = 5.127
) SipySr T T Eyryy S 120
where Sy is the area of the triangle 7' € {7} and
T QST i 3 Yy 25 i i .

{ir} T iz}
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where {ir} is a list of three vertices of triangle 7. We are now interested to see how
accurate these formulas can be.
Without loss of generality, we assume that the node j is at the origin, and as-

suming f is smooth, we write

> 0 o1"
f=5H+> % lx— + ya—y] /5 (5.129)

—nl| O
which is a Taylor series expansion around the node j. Then, for a triangle 512, after

some simple algebra, we find

> 1 0 o1" > 1 0 01"
D iy =2Srfu+ 12 Y o l$1—+yl—] f=md o l$2—+y2—] e

{ir} a0z dy = Oz dy
(5.130)
This can be written,
1
{Z} filys =250 fs + (EL fro + Efy fay + By fy) + O(hY) (5.131)
ir
where
E:CT:C = (?Jﬂ% - yw%), Efy = 2192(y1 — ¥3), EZ;, = (yfyg — y1y§) (5.132)

and higher order terms have been neglected. Collecting the contribution from other

triangles, we have

EZ{TJ} (E§$f$l‘ + Efyfiy + Eg:;;fyy)

+ O(h?). 5.133
i S (%) (5.133)

(fx)] - f:c +

The error constants are identical to those derived and studied by Roe[83] in great
details for cell-vertex schemes, who discovered various error-free polygons. Here, it
is obvious, at least, that the constants will vanish for a pair of triangles that are
symmetric with respect to node j. Therefore, the estimate will be second-order
accurate on a group of triangles that can be generated by these pairs such as the one

shown in Figure 5.14 but with uniform spacings.
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Figure 5.17: C, distribution on a Figure 5.18: The solid line indicates
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curve represents the exact the radial direction of the
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The evaluation of the residual is therefore third-order accurate on a fairly reg-
ular grid such as the one shown in Figure 5.10. And it can be distributed in the
same way as the second-order scheme without deteriorating the accuracy, based on
the proposition mentioned earlier. This means that the second-order least-squares
scheme is upgraded into a third-order scheme simply by adding the correction term
to the residual. The second term in (5.122) is simply a numerical correction to the
second-order least-squares scheme, and that this is the only change made to the
second-order scheme. The results for the Joukowsky airfoil at an angle of attack
10° confirm the predicted third-order accuracy as shown in Figure 5.18. The grids
used are again 10x05, 20x10, 40x20, 80x40, and 160x80 O-grids. A sample solution

is shown in Figure 5.17. Note that third-order solution is very accurate compared
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with the second-order solutions such as shown in Figure 5.11 and 5.15 which were

obtained on twice as fine a grid as the one used here.

5.2.4 The Least-Squares Moving Grid Method

We now improve the solution further by introducing the mesh movement into the
third-order least-squares scheme. As pointed out earlier, the unweighted norm that
is necessary to compute accurate solutions does not give any mechanism with which
mesh folding is countered. But this does not mean that it is impossible to move the
grid by minimizing the norm. It is possible, and in fact expected to improve the
solutions because now we know that minimizing the unweighted norm gives accurate
solutions. The only problem is that mesh tangling can occur with the unweighted
norm. Here, we apply the least-squares moving grid method straightforwardly, but
it is checked, every time a node is moved, whether or not the node stays inside of the
group of triangles that share that node. In other words, a check is made whether the
nodal movement creates triangles with negative area, and if it does, that movement
will be rejected. This way, in principle, mesh validity can be preserved during the

mesh movement.

We consider again a flow around a Joukowsky airfoil at an angle of attack 10°. The
same techniques, the diagonal scaling and the Gauss-Seidel iteration, were employed
for both solutions and nodal coordinates. The nodal movement is allowed only when
it yields positive area for all the neighboring triangles. We now go down to even
coarser grid 40x20 O-grid (Figure 5.19), the half size in each direction of the previous
80x40 O-grid. Figure 5.20 shows the C, distribution obtained by the third-order least-
squares scheme without grid movement on this coarse grid (after 233 iterations with

the relaxation factor 1.8). It is not accurate enough: it fails to capture the suction
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peak, thus resulting a relatively small circulation around the airfoil, 4.17198E-01,
whereas the exact value is 5.99931E-01. The least-squares moving grid method is
then applied for 10000 iterations with the relaxation factors 1.8 for the solutions
and 0.1 for the grid, followed by the final iteration for solutions with the grid fixed.
The boundary nodes are moved in the same way as was done in Section 5.1.6 (the
Laplacian smoothing technique) to follow the internal node movement, and each
node is projected onto the airfoil immediately after the movement, and they are
moved only if the mesh validity is preserved. Diagonal swapping technique is also
used to alleviate the topological limitation of the grid movement (applied at every
100 iterations). The correction term in the third-order accurate residual (5.122) is
again regarded as a constant, and therefore the distribution of the residual for nodal
movement is performed just as in the second-order method. The grid and C,, obtained
by the least-squares moving grid method are shown in Figures 5.20 and 5.22. As can

be seen, the grid points have been concentrated at the leading and the trailing edge,
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12

Figure 5.21: C, distribution on the ini- Figure 5.22: C, distribution on the
tial grid. adaptive grid.

and the solution accuracy has been improved in these regions. Especially, the method

has accurately captured the suction peak, and produced the circulation that is very

accurate, 5.78325E-01. Note also that the resulting grid is very smooth, which would

not have been attained without diagonal swapping techniques. Finally, the norms

were found to be 4.394E-4 for the fixed grid case and 2.386E-4 for the moving grid

case, which shows clearly that the smaller norm now implies smaller errors.

5.2.5 Moving Quadrilateral Grids

For quadrilateral grids, we know from the discussion in Chapter II that there are
not many degrees of freedom left to move the grid. But it is also true that there exist
some. Consider computing a flow around an airfoil by solving the Cauchy-Riemann
equations (for v and v) on a fixed regular O-grid. There are 2Ny solutions at Ny
nodes, and 2N¢ equations in N¢ quadrilateral elements. Then, using (2.17), the

excess of the unknowns is found to be

INy — 2N¢ = Ny (5.134)
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Assume that the exact solution is imposed at the outer boundary, and apply the tan-
gency condition at the inner boundary. Then, the former eliminates Ny, unknowns,
and the latter Ny;/2 unknowns®. Therefore, we actually have Ny;/2 more equations
than the unknowns: the problem is overdetermined by Ny,/2 equations. Although
a very small number, we can make use of these extra degrees of freedom to move the
grid. We do not expect, however, that the method would adapt the grid as in the
triangular grid case (Figure 5.20) because the residuals would be all driven to zero
with a little movement of the grid points. Nevertheless, we may hope that something
interesting would happen since the residuals can all be made to vanish with the grid
movement. And we will see here that the something does happen.

It is straightforward to apply the least-squares method on quadrilateral grids. To
compute a residual within a quadrilateral, we first break the quadrilateral into two
triangles separated by a diagonal (Figure 5.23). And we compute the residual within

each triangle as before, and add them to obtain the residual for the quadrilateral

cell.
Ag = / (Opu + Oyv) dudy = %{) (udy — vdz) = Ag+ Ap (5.135)
Q Q
Qo = / (Oyu — Opv) dudy = —7{9 (udx 4+ vdy) = Q4 + Qp (5.136)
Q Q

where A and B denote the two subtriangles. The line integral along the diagonal is
counted twice with opposite direction, thus canceling out each other, and therefore
the choice of the diagonal does not matter. This procedure makes it very similar
to the triangular case to formulate the problem and write a code. In fact, it can
be shown that this is equivalent to the exact integration with an assumed bilinear

variation of the solution, to discretization by using the area-weighted averages of

6Note that the outer and inner boundaries have the same number of nodes for the regular O-grid.
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Figure 5.23: A set of quadrilaterals {Q);} that share a node j. Each quadrilateral is
divided into a pair of triangles A and B by dashed lines for the purpose
of computing the residual and the gradient.

the solution derivatives over the two triangles, and also to the use of the one-point
Gaussian quadrature on a quadrilateral.
For quadrilateral grids, there is no problem in computing a lifting airfoil as men-
tioned in Section 5.2.1, and therefore we minimize the weighted norm
1 Ao? + Qg

F= 3 Fy= )Y SR — (5.137)
Qe{Q} Qe{Q} Q

where the sum is over the set {Q} of quadrilaterals that covers the domain, S
denotes the area of the quadrilateral cell ). The gradients with respect to the
solution u = (u,v) and the nodal coordinates x = (x,y) are obtained as a sum of

the contribution from all the surrounding quadrilaterals.

0 OF,
a—f == a—Q (5.138)
U Qeqqy YW
F,
8_.7: — Z a_Q (5_139)
an QE{Q]'} 8Xj
where
Fo A Ay Q Az
% -2 Ay .~ A (5.140)
u; Q| _Azy, 2| Ay,
Av Au
8& _ ﬂ A ﬁ Al &HA (5.141)

an - 2SQ —AUA
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Figure 5.24: C), contours on a regular O-grid. Figure 5.25: (), distribution on the reg-
ular grid.

where the quadrilateral is divided into two triangles (Figure 5.23): one which has

the node j as its vertex and the other which does not, and the subscript A denotes

the former, so that the notations are the same as in the triangular case. With these

gradients above, the steepest descent method can be used to find a minimum. The

same techniques such as sequential updates or diagonal scaling can also be used to

accelerate the convergence.

We consider again the Joukowsky airfoil at an angle of attack 10°. First, the
least-squares solutions were computed on a coarse grid (20x10 O-grid with the outer
boundary at r = 10) without grid movement. At the trailing edge, no special condi-
tion is imposed, and the solutions are computed there just like at interior nodes. The
method converged for 133 Gauss-Seidel iterations, and the final value of the norm
was 3.09525E-02. Contours of pressure coefficients are shown in Figure 5.24, with
the final grid overlaid. This shows clearly that a spurious checkerboard mode has

appeared and contaminated the solution. C) distribution around the airfoil is disas-
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Figure 5.26: C,, contours on an adaptive Figure 5.27: C}, distribution on the
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trous as shown in Figure 5.25. In fact, it is well-known that cell-vertex schemes on
quadrilateral grids suffer from this particular error mode [67]. One way to suppress
this mode is through the boundary conditions. Imposing v = 0 at the trailing edge,
i.e. Kutta condition, we actually obtained a little better solution, but only around
the trailing edge and the checkerboard mode in the pressure coefficient remained. A
remedy suggested by Morton[67] is to add a fourth-order artificial dissipation, an es-
sential item for central schemes. Here, we demonstrate that it is possible to eliminate
this problem by the grid movement. Although we have a very small number of the
degrees of freedom, we allow all the interior nodes to move, thus creating a highly
underdetermined problem. This implies that the residuals can be driven to zero for
all the elements at the cost of the uniqueness of the solution. With the relaxation
factors 1.0 and 0.5 for solutions and nodal coordinates respectively, the method con-
verged quickly for 255 iterations, reducing the norm by several orders of magnitude

down to 3.19750E-07. The results are shown in Figures 5.26 and 5.27. It is remark-
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able that with a little grid movement the solution has been improved significantly,
which is very accurate for this size of a coarse grid. Yet the most striking result
is that the perturbation on the grid produced by the moving grid algorithm is now
checkerboard as if the error mode has been transfered from the solution to the grid.
The implication is that a difficult problem may be overcome easily by introducing
additional degrees of freedom; the grid movement is one possible approach. Finally,
the result shows that grid qualities such as orthogonality or smoothness, which have
been widely believed to be important for solution accuracy in general, are not always
important: the general-purpose criteria for grid quality do not serve, and a bad grid

can actually be a good grid.



CHAPTER VI

CONCLUSIONS

6.1 One Dimension

A least-squares moving grid method has been developed for one-dimensional
boundary-value problems, and shown to be capable of producing highly accurate
solutions by adjusting the node distribution. In one-dimension, because of the lack
of degrees of freedom, it is necessary to introduce additional equations in order to
guide the grid movement. For this purpose, an error estimate has been derived by
computing the difference between the piecewise linear approximation and the Her-
mite polynomial. The equidistribution of this quantity over the elements has proved
to be a very effective strategy and be easily incorporated with the residual mini-
mization. In addition, this study has introduced an interesting interpretation of the
numerical approximation to the solution of differential equations: approximation of
a geometrical object. There is no longer the distinction between independent and
dependent variables, i.e. grids and solutions. And this is the only means by which
we are able to grasp the mechanism of the moving grid method. It tries to place the
nodes onto the solution curve as quickly as possible. This work has just opened a
new paradigm: geometric approach. In higher dimensions, however, it is somewhat

unclear how to exploit it in a practical sense although it can be extended naturally
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to higher dimensions (See Appendix D).

In fact, taking this geometrical point of view, another new approach has been
devised. Considering a problem of approximating a one-dimensional curves in R"
(n > 0), parameterized by ¢, we have devised an algorithm to generate a node
distribution that achieves equidistribution of the error estimate. And there is more.
It is capable of achieving a desired L, error with remarkable accuracy. The generality
of the problem allows the technique to be applicable to a wide range of problems:
interpolation, numerical integration, initial-value problems for ordinary differential
equations, and boundary-value problems for ordinary differential equations. In this
approach, in stead of adjusting the grid points, we generate nodes from one end to
the other such that the error estimate is equidistributed. The algorithm has been
successfully applied to all the problems mentioned above. See Appendix A for further
details.

The work on one-dimensional problem might become important when we reach a
stage of tackling the Navier-Stokes equations. Here, there is great practical interest
on the accurate prediction of the minimum number of nodes to well resolve the

boundary layer.

6.2 Two Dimensions

For two-dimensional problems, the least-squares moving grid method is definitely
an promising approach. Above all, it provides the capability of efficiently captur-
ing discontinuous solutions with many fewer nodes than the conventional methods.
For linear hyperbolic problems, we have shown that the problem becomes a simple
minimization of a triangular area in characteristic planes, by introducing the extra

degrees of freedom. For 2x2 systems, we apply the method for each characteristic
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equation, thereby minimizing the area in each characteristic plane. For systems more
than 2x2, we expect that the method would respond to one or two waves that lo-
cally dominates the flow because, as we have seen, grids and solutions respond only
to nonzero residuals. But if more than two waves happened to be important, say
three, a possibility would be to introduce a quadrilateral element, thus increasing
an additional edge to capture the third wave. It was also demonstrated that the
method is capable of computing an exact discontinuity by the use of degenerate
elements. Presumably, no one actually ever considered seriously introducing cells
with zero area. This is natural because many numerical schemes would break down
on such a grid due to the presence of the factor 1/Sr somewhere in their update
formulas. Fortunately, in the least-squares scheme, such a singularity can be eas-
ily removed simply by minimizing the unweighted norm. Interpreted geometrically,
the method approximates a two-dimensional submanifold by triangulation treating
all the variables as independent. The manifold is a geometrical object, and there-
fore discontinuous solution is not really discontinuous but a sharp corner which can
be represented accurately by linear triangular elements. In fact, the residual can
be interpreted as representing a geometrical error. Further details can be found in

Appendix D.

Accurate and efficient nonlinear shock capturing was demonstrated. An adaptive
evaluation of the residual was shown to be effective to capture a shock as well as
avoid non-physical shocks. Also, the use of the rate of change of the element area was
proposed to tell if an element was in compression or expansion. This quantity might
find its application in other areas as a simple shock-detector. A more sophisticated
mechanism for removing nodes should, however, be devised. Note again that the

focus is on removing redundant nodes rather than inserting nodes.
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Accurate elliptic solvers have been developed that incorporate with an automatic
grid adaptation. In particular, a third-order scheme has been developed with a little
additional cost. In addition, the scheme has a good smoothing property, and therefore
can be combined with a multigrid technique to further accelerate the convergence[12],
which is left as a future work. Also, a hitherto unknown problem of computing
lifting airfoils was discovered, studied, and resolved. It is however worth further
investigation to fully understand the problem. Another way to recover the accuracy
may be found. Finally, the method was applied to quadrilateral grids for which there
are only a few extra degrees of freedom available. But it was shown that the grid
movement eliminated completely the checkerboard mode in the solution which then
appeared in the grid instead. This is an interesting result in the sense that a difficult
problem can be easily resolved by introducing additional degrees of freedom, and
that the general-purpose criteria for grid quality are not necessarily useful: a good
grid depends on the problem and may not be determined without reference to the

nature of the problem.

In this study, the relaxation factor for grid movement was determined experimen-
tally. For robustness, it is desired to establish a precise way to choose it, possibly
for some stability condition on the grid movement. The difficulty comes from the
fact that the equations for grid coordinates are typically nonlinear even for linear
problems, so that useful linear stability analyses do not apply. Nevertheless, taking
a viewpoint that we are solving equations on a grid laid in the solution space, some
nonlinear analysis may be developed. The future work should include this important

topic.

The method can be applied to any two-dimensional partial differential equations

by decomposing into hyperbolic and elliptic subproblems. The Euler equations,
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which have both hyperbolic and elliptic parts, are naturally the next target for the
least-squares method. A least-squares norm for the Euler equations that possesses a
certain number of attractive properties have actually been discovered (See Appendix

E), but no numerical results are available at the time of writing this thesis.

6.3 Three Dimensions and Beyond

A challenge is to develop a moving grid method for three-dimensional problems
where the benefit of moving grid would be enormous, especially for discontinuous
solutions. In three dimensions, as discussed in Chapter II, tetrahedral grids can
be used, which provides us with sufficient amount of extra degrees of freedom and
facility for grid alteration, face swapping and inserting/deleting nodes. In fact, it
is easy to show that for a simple linear advection problem the residual vanishes
if the solution is constant along one edge of a tetrahedron and that edge is aligned
with the characteristic direction. Further study on fundamental equations is however
necessary. For nonlinear shocks, a quadrature formula must be found that satisfies a
jump condition. For elliptic problems, its accuracy on a fixed grid must be confirmed
first before we move the grid.

Four dimensional problems, i.e. time-dependent problems, are just another chal-
lenge. In this case, for instance, the least-squares method is expected to create a
characteristic grid and compute the solution simultaneously on it in a time-accurate
manner. Again, the key feature of the method is its local property: modify the grid
locally responding to nonzero residuals alone. As mentioned earlier, it is very impor-
tant to develop accurate least-squares schemes before we move the grid. It is therefore
desired to first develop a time-accurate least-squares scheme. The development of

residual distribution schemes for unsteady problems has begun recently[61, 37, 45].
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A least-squares scheme as one of the distribution schemes should be worth particular
attention in the development, for its success as a numerical scheme means that as a
grid adaptation method as well.

The study presented in this thesis has shown that quite impressive results can
be obtained by computing grids and solutions simultaneously through residual min-
imization, especially for shock-capturing, giving also the explanations as to why and
how such results were generated, for the mechanism of the grid movement in partic-
ular. This thesis has just opened the door to the development of a new class of grid
adaptation techniques by showing that there do exist better grids and solutions than
those we are currently content with and the residual minimization does lead us to

these remarkable results.
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APPENDIX A

An Alternative Method for One-Dimensional
Problems

A.1 Introduction

Here, we extend the geometrical viewpoint taken in Chapter III to other classes
of one-dimensional problems. We begin by pointing out that in many branches of
numerical analysis, piecewise linear continuous functions are often employed to ap-
proximate one-dimensional submanifolds, whether or not one intends to do so, such
as discretization of boundaries for computational grids in two dimension, interpo-
lation of a function in one dimension, numerical solutions of ordinary differential
equations, and so on. In a terminology of modern mathematics, these problems
may be categorized as a problem of numerically approximating one-dimensional sub-
manifolds(curves), typically by piecewise linear elements. In any problems of this
kind, it is well known that adjusting the node distribution is a very effective way to
improve the approximation. A popular strategy is to place nodes so as to equally
distribute the arc length of the manifold. In White[98], such an approach is studied
in detail to improve the numerical solutions of two-point boundary value problems.
Another area of the same kind is L, fits to functions with adjustable nodes. In this

area, since the function is known, algorithms have been developed based on a direct
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minimization of the L, error such as the one in Baines[5]. Numerical integration is
yet another area in which the trapezoidal rule can be considered as approximating a
function by a piecewise linear continuous function. On the other hand, particularly
in the area of numerical initial value problems for ordinary differential equations, a
different approach is usually taken that focuses on the error at grid points. Adaptive
step-size control techniques have been developed based on an error estimate given by
the difference of numerical solutions obtained by two schemes with two consecutive

orders of accuracy such as embedded Runge-Kutta methods[39, 54, 32].

Here, we approach these problems from a unified viewpoint that all these problems
can be thought of as a numerical approximation to one-dimensional submanifolds by
piecewise linear continuous elements. Choosing the Lo error, the integral value of
the pointwise error squared, as a measure of the error of the approximation, we con-
sider the problem of constructing geometry(or solution)-adaptive node distribution
in the parameter space of the submanifold to reduce the error. A key idea to the
determination of the node distribution derives from the fact that the Lo error does
not vanish even with the exact nodal values, i.e. the interpolation error. This simple
fact implies that there exist error components in the L, that are essentially indepen-
dent of the nodal approximation. Hence no numerical schemes, which play a role of
computing the nodal values, can control these errors, thus further implying that they
can be controlled only by changing the node distribution in the parameter space. In
other words, the development of algorithms for adaptive node distribution should be
guided by these error components. As a consequence, such algorithms, unlike those
which compute the nodal values, should be equally applicable to all the areas of
application whose objective is to construct an accurate piecewise linear continuous

approximation of a one-dimensional submanifold.
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The error components that are incurable by numerical schemes can be derived by
directly computing the Ly error for a smooth submanifold as demonstrated in Sec-
tion A.2. It is shown that the leading term of these error components estimates the
L error with second-order accuracy provided the nodal approximation is more than
third order accurate. Therefore it plays an important role not only in guiding the
node distribution but also in estimating the error. Exploiting this fact, an algorithm
that constructs a piecewise linear continuous approximation for is devised in Section
A.3 based on an equidistribution strategy, that ensures a specified global Ly error
or equivalently a specified local average error. The algorithm generates nodes suc-
cessively, advancing from one end of the manifold to the other rather than adjusting
an existing nodes, which makes the computation very quick. A difficulty arises by a
singular behavior of the generating equation which is solved iteratively: a curvature
term in the denominator causes a trouble when it is very small. A modification
of the equation is proposed that damps a large number created by extremely small

curvature.

Applications of the algorithm are described in Section A.4. The first example
is the approximation of a curve in R™. Results demonstrate that the method be
capable of highly accurate approximations to known functions in one dimension that
ensures a specified Ly error. The second is numerical integration in which case the
upper bound of the integration error can be specified. The third is initial value
problems for ordinary differential equations in which the algorithm is combined with
a fourth-order numerical scheme that computes nodal solutions. Finally, the method
is applied to boundary value problems for ordinary differential equations via the
shooting technique, which requires a slight modification of the algorithm for initial

value problems.
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A.2 Error estimates

In this section, we derive an L, error estimate for a piecewise linear continuous
approximation to a smooth one-dimensional submanifold. For this purpose, we begin
by studying the simple case that the manifold is merely a function in one dimen-
sion. The error will be calculated directly assuming that the manifold we wish to
approximate is smooth. From this result, the leading terms of the error components
independent of nodal errors will be identified. The analysis will then be extended to
one-dimensional submanifolds in higher dimensions to derive a local and global L,
error estimates. Some numerical results are shown that verify the accuracy of the

error estimates.

A.2.1 Local error analysis

Suppose we have a piecewise linear continuous approximation of unknown accu-
racy, u(t), to a function z(¢) in the interval I = [0, 1] which is subdivided into a set

of elements {E'} (See Figure A.1). Within each element E = [t;,t,] € {E}, we have

AuEt ultr — urtl

~ Aty Aty (A1)

up(t)

where Aug = u, — w, Atg = t, — t;, and u; and wu, are some approximations to
x(t;) and z(t,) respectively. Assume that x(¢) is smooth within the element E and

therefore expressible as a Taylor series around the midpoint of E,

z(t) = zm + > 7’; (t—tm)" (A.2)

where ., = z(t,, = (t; +t,)/2), and z{") is the nth derivative of x(t) evaluated at

tm. Assuming Aty is small, we are going to compute the square of the local L, error,

o= wnlyim = [ (@) = us(t)’ dt (A3)
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using (A.1) and (A.2) up to some significant order. Hence we begin with

o0

(n) 2
||x—uE||%2(E)=[E<xm—uE Z D" (4t ) dt. (A.4)

Using the following relation, which is derived by approximating x,, by w,

x(t) + x(t,)

T —up(t) = — 5 + “truncation error” — ug(t) (A.5)
Aug T

g — ——(t—tm) — o O (Atg®) (A6

€E AtE( ) n_2274ﬁ2n_n E T ( E) (A.6)

where e = (e, + ¢,) = 3 {(x(t;) — w) + (x(t;) — u,)}, and neglecting high order

terms, we obtain

2
(n)
2 _ E— me n xm n
|z — up|2,m = /E<6E—\IIE(t—tm)— P +§:W(t—tm)) dt

+0 (Atg?) (A.7)

where Wy = i% — z{1). Note that the integral of (¢ —t,,)" vanishes when n is odd,

Aty (n+1)
2" (n+1)

and results in when 7 is even. Consequently, the resulting expression will

contain only odd order terms. The result is

1
|z — up|l,m = eB*Atp— E 2eme?) — @Eﬂ Aty?

1 2

1 20 5 2
_ (6) (5) _ 22,2 ,.4) _ 2 [,.3) 7
26380 [eEx +Yga,, 5 Tm T’ 3 {J}m } ] Atg
+0 (Atg°) . (A.8)

Although this looks a little complicated, it contains valuable pieces of information

about the error.

A.2.2 Leading terms

The simplest case to begin with would be a piecewise linear continuous approx-

imation of a function x(¢) with the exact nodal values. In this case (A.8) simplifies
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Figure A.1: A piecewise linear approxi- Figure A.2: A piecewise linear approx-
mation to a function in one imation to a curve in three
dimension. dimension.
to
@12 (3) (2) ()
2 {xm } 5 {xm } 7, T T 7 9
— = At At ML LYAN O (At A9
o = wslf e = 735 At + Sg5ag A" + ~jozs A" + O (Ats")  (A9)
where we have used the fact that
_1 (3) 2 4
Uy = Jal) Aty + O (Ats") (A.10)

when the nodal values are exact. This shows that the second derivative of x(t) is the
main contribution to the error, which clearly agrees to our intuition. We notice also
that the leading term estimates the error with second-order accuracy. It is, of course,
exact for quadratic functions. It is then tempting to define it as a second-order error
estimator neglecting the rest of the terms. If this is to be done, we can replace
13 by a second-order difference approximation, without altering the accuracy of the

estimate. Therefore we can write

Afrp*Atg®
2 _ 7
||ZL’—UE||L2(E) = T—FO(AtE ) (A.ll)
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where f denotes the first derivative of z(¢). Now, we remark that the leading term
fails to estimate the error accurately in the neighborhood of an inflection point where
x%) would be extremely small no matter what difference approximation is employed.
Clearly, in this case, the error must be estimated by a quantity which carries the
information of £®. Since the error terms of second-order difference approximations
to 2(2) generally do not contain 2, it follows that the largest term of such is only
the second term in (A.9). However this means also that the error will be O (AtE2)
smaller than that in the other region. Besides, since inflection points will exist
usually at a finite number of discrete points, the failure might be tolerable if we are
interested only in relatively large errors. But if that is not the case, we must retain
the second term. Then, it may be convenient to replace z{3) by Wy by using (A.10).

We thus obtain

2 | 162

|z = ugll?,m = %ﬁmﬁ +0 (Atg). (A.12)
Note that we have included only a part of the next largest term which is relevant
to z(3). Therefore the accuracy is improved near inflection points only, and so the
overall accuracy of the estimate remains second order.

Next we consider the solution of ordinary differential equations where the nodal
values are computed by a numerical scheme. In this case, we can deduce from (A.8)
that

. AfiAty®

1z = upllzym = =55 — +© (Atg®) (A.13)

provided the nodal approximation is of O (AtE3), and that we recover (A.11) with
the nodal approximations higher than third order. Therefore we must use, at lowest,
third-order methods to compute the nodal values in order for the leading term to

estimate the error. This is possible in most cases, for example using the fourth-
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order Runge-Kutta method for initial value problems or boundary value problems
via shooting technique. Then the leading term can be used to estimate ||z —ug|7, g
with second-order accuracy, and (A.12) can also be used to improve it near inflection
points. Yet, even if the leading term is disqualified for the error estimator, it will
still be a useful quantity. Suppose that a perfect scheme were devised which finds
the exact nodal solution on a grid with a finite number of elements. Then, it is seen
from (A.9) that even with such a scheme, the error, expressed by ||z — ug||7, ),
cannot be driven to zero, and that it will be dominated by the leading term or the
one in (A.13). Hence the leading term dominates the error components that are
incurable by numerical schemes. And we see that it is possible to control this error
component only through the adjustment of the grid. In other words, minimization
of this quantity can be considered as a theme of the selection or the adjustment of

the grid.
A.2.3 Error estimates

We now consider Lo error of piecewise linear approximations to one-dimensional
submanifolds in R™. The extension of the previous analysis to one-dimensional sub-

manifolds in higher dimensions is in fact straightforward. Suppose we have a piece-

wise linear continuous approximation in R™ (See Figure A.2)

u = (uy,- - uy) = (u(t), - uy(t)) (A.14)

where ¢t € I = [0,1] which is again divided into a set of elements {E}, to a smooth

one-dimensional submanifold parameterized by

X = (21, xp) = (21(t), - -, 2, (2)). (A.15)

Here n denotes the dimension of the ambient space, and thus n = 1 corresponds to

functions in one dimension. Within each element, we have a local linear function u;g
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similar to (A.1) for each coordinate. In n dimensions, it would be natural to define

the local Ly error by

|lx — u||%2(E) = /E i (2i(t) — uig(t))* dt. (A.16)

Geometrically, the quantity thus defined is the measure of the square of the area
of the surface formed by joining the two submanifolds by line segments at points
with the same ¢. Then the previous analysis applies to each 7, and introducing the

notation f; = dx;/dt, we have the result

n_ A ; 2 A 3
IIX—UIIiQ(EF{ = 123} e +0 (Atg") (A.17)

for a smooth one-dimensional submanifolds with the exact or fourth-order accurate

nodal values. Note that the leading term approximates

d?x 2 5
X At
dt2 E
—_— Al
120 (4.18)
where the second derivative can be written in terms of the arc length, s,
d?*x ds\® d?x  d’sdx
= =) =4 -7 A.19
a2 (dt) & A ds (A.19)

This means that the leading term contains the information not only about the cur-

a’s
2

vature ©% but also about the acceleration along the manifold

52 In particular, if

the manifold is parameterized by its arc length, it becomes precisely the measure of
the magnitude of the curvature.
Now, taking the square root of (A.17) and expanding, we obtain the following

local Lo error estimate

Ix = llzye) = Exmy |1+ O (Ats?)] (A.20)

CevAL "
Exm) = %; Cp = Atg,| > Afig*. (A.21)
i=1

where
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Note that Cp is related to the local average error,

JAL@/;;g(xi(t)_uiE(t))th _ ||X—A1;|}|2L2(E) _ \/01%0[1+0(At}32)].

(A.22)

In a similar manner, we can estimate the global L error defined by

Il acry = J 3 Glt) — wite)*a. (A:23)
Clearly we have

e =l = > lIlx =L, (A.24)
{£}

Then, inserting (A.17), taking the square root and expanding, we obtain
% = 2. = Exp) [1+ O (Atg?)] (A.25)

where

Exn = D Exmy = (A.26)
{E}

The accuracy of &y and &) as error estimators, as mentioned earlier, will be

second-order with the nodal approximation better than third-order, and first-order
with third-order nodal approximations, except in the neighborhood of inflection
points. To improve it near inflection points as discussed earlier, it can be shown,

extending (A.12), that we need to modify C as follows.

& 16
O = AtEJ ) {Aﬁ-E2 4 7%} (A.27)
i=1
where U, = AAL;LF - 1’57172 Although the error estimators thus defined require the

knowledge of the first derivatives at nodes, they do not have to be exact. The
estimates will be second order accurate as long as the nodal values approximating
the first derivatives f; are second order accurate at least. If the parameterization x(t)

is available, we may apply a finite-difference approximation to compute f(¢) using a
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suitable choice of a small interval. In the case of initial-value problems for ordinary

differential equations, f is always available as the right hand side of the equations.

A.2.4 Numerical tests for accuracy

This section gives the results that verify the accuracy of the error estimate. First
we consider the case where the nodal values are exact, i.e. linear interpolation of
a function. Then we consider the solution of an initial-value problem for ordinary
differential equations. In the latter, we discuss how numerical schemes affect the
accuracy of the error estimator.

We consider approximating the following function
x(t) = e *'sin(4rt) (A.28)

by a piecewise linear function on a uniform grid with Ny elements. The function and
the approximation with Ng = 5 are shown in Figure A.3. The computed errors are
given in Table A.1, where the actual Ly errors were computed by using, within each
element, the five-point Gaussian quadrature formula which is exact for 9th order
polynomials and therefore is sufficiently accurate for our comparison purpose. Note
that all the computations in this paper were performed with double precision, but
the results have been truncated for brevity. The table shows a very good agreement
between the actual Ly error and &y for which we used Cg defined by (A.21) and
f(t) is computed by using the central difference formula with a step size 1.0E-05
which was found to give the identical result as that obtained by using the exact
derivative of (A.28). In the last column of the table, the relative errors, defined

by ‘1 ~ _Bw | are shown. Starting with 1.15% error for Ng = 5, the relative

||$*UHL2(1)

error goes down as the grid is refined. The rate of convergence is found to be 1.98

which verifies the result in the last section. As mentioned earlier, the local Ly error
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Ng |z —ulle.ay Exp Relative Error
5 1.947TE —01 1.722E —01 1.152E — 01
10 4.657E — 02 4.513FE — 02 3.100F — 02
20 1.173FE —02 1.164F —02 7.740E — 03
40 2.941F —03 2.935FE —03 1.933E — 03
80 7.359F — 04 7.356F —04 4.833E — 04

Table A.1: The results for (A.28)

cannot be predicted accurately near inflection points. To see this, we computed the
relative error locally for each element with Np =160. The plots are shown in Figure
A.4. Note that the ordinates of the lower three plots are logarithmically scaled.
On the top, the first derivative f(t) is plotted so that the inflection points can be

easily located, and the upper-middle one is the plot of the elementwise relative error

it &)

— m| plotted in the middle of each element. It is seen that the relative
2

error is significantly larger near inflection points than in the other region. However,
as seen in the plot in the lower-middle, the actual local L, errors ||z — u||z,z) are
significantly smaller near inflection points than in the other region. The relative error
obtained with the modification (A.27) is in the plot on the bottom. It is seen that
the errors have been reduced nearly by an order of magnitude at inflection points.

Next we consider numerical solutions of the following linear initial-value problem.

dx(t
fle ) = —csx + cgsin(at) + cos(at) t €10,1] (A.29)
with ¢, = 20 and a = 6. The exact solution is given by
z(t) = e ' + sin(at) (A.30)

which is shown in Figure A.5 with a numerical solution. The equation was integrated
by a third-order explicit Runge-Kutta method[39] and the classical 4th order Runge-

Kutta method. Table A.2 shows the result for the third-order method. The actual



0.8r

X(t)

Figure A.3: Function

and a

(A.28)
piecewise linear represen-

tation on a uniform grid

141

f(t)

Relative Error
Y

|
ES

[
o
TS

L Error

2

[ I |
o N o O
T %

Relative Error
(Modified)

Figure A.4: Top: The first derivative
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Elementwise relative er-
ror. Lower-Middle: Ac-
tual local Ly errors. Bot-
tom: Elementwise relative
error with the modifica-
tion (A.27). The last three
are plotted in the mid-
dle of each element with

Ly errors were computed in the same way as in the previous section, and Z, was

computed without the modification (A.27). We see that &, estimates the actual

error fairly well in the sense that their first digits agree except for N = 80. The

rate of convergence of the relative error is 1.11 as we expected. For the fourth-

order method, it is seen in Table A.3 that the errors are estimated more accurately,

for example the relative error is 8% for Ny = 20 while it is 33% for the third-order

method. The rate of convergence of the relative error is 2.00 as we expected. We also

applied the modified Euler’s method which is only second-order accurate. Including

this, Figure A.6 shows the plot of the convergence histories. As we expected, using a

second-order method deteriorates the accuracy of the error estimate, and the relative
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Ng |z — ullr. Exn Relative Error
20 1.07705E — 02 1.43262FE — 02 3.30132FE — 01
40 3.13290F — 03 3.69313F — 03 1.78821F — 01
80 8.65301F — 04 9.30703F — 04 7.55830F — 02

160 2.25419F — 04 2.33147FE — 04 3.42850F — 02

320 5.73809FE — 05 5.83164FE — 05 1.63025E — 02

Table A.2: 3rd order Runge-Kutta Method.

Ng |z — ull. Exn Relative Error
20 1.42137FE — 02 1.43262F — 02 7.92006F — 03
40 3.68583FE — 03 3.69313F — 03 1.98266F — 03
80 9.30242F — 04 9.30703FE — 04 4.95826F — 04

160 2.33118F — 04 2.33147E — 04 1.23966F — 04

320 5.83146FE — 05 5.83164FE — 05 3.09921FE — 05

Table A.3: 4th order Runge-Kutta Method.

error remains large for any grids.

A.3 Algorithm

In this section, we give a basic idea of the algorithm that generates a node dis-
tribution to produce a smooth piecewise linear approximation. It is based on an
equidistribution property which is discussed below. The algorithm is described for a

simple example.

A.3.1 Equidistribution

It is desired that the node distribution is determined such that the quantity £y
is minimized. But since a direct minimization seems rather difficult, we propose to

place the nodes so as to equally distribute C'g over the elements, thus concentrating

the nodes in the region of large “fi%‘

or equivalently equidistributing the local aver-

age error. We advocate this strategy also because of the following useful property.
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Figure A.5: The exact solution (A.30) Figure A.6: —logio (Ng) VS.
with ¢, = 1.0, and the log1o (Relative Error) and
numerical solution by a the linear least-squares
third-order Runge-Kutta fits.

Method with N =20.

Suppose that we generated nodes such that Cg is equidistributed. Then we find

Cp’Atg C?Aty  C?
En=> ——=> = — (A.31)
(1)
& 120 & 120 120

where C' = Oy for all E € {E}. This shows that the global Ly error becomes identical
to the local average error on equidistribution grids. Also, more importantly, we notice
that it provides us with a means to determine C for a desired Ly or the local average
error. This will be useful when we seek an approximation that gives a desired error.
Thus this leads us to consider an algorithm that generates nodes such that Crp = C
for every element to be generated. Note that the equidistribution implies a uniform
spacing for quadratic functions whose curvature is constant.

At this point, it is not clear yet if the grid thus generated gives a better approxi-
mation than that with the uniform grid of the same size. To investigate this, we ask
how the equidistribution affects the first variation of 5(21) . For this purpose, without

loss of generality, we may consider the case n = 1 with the exact nodal values. Sup-
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pose that we have successfully equidistributed Cp = Atg|Afg| over {E}. We give a

small perturbation dt to a node at ¢t = ¢;. The first variation of 8(21) is then given by

1
d€}) = o (At 2AfL? — Atp?Afg?] dt
+ 61—0 (At AfL — At Afg| fO(t;)dt (A.32)

where f(!) = df /dt, and the subscripts, L and R, denote the elements that share the
node j. Note that the both sides are O (At4), meaning that 5(21) and the gradient
go down at the same rate. The first term vanishes by the assumption, and we have

85(21) 1

51 = oo (MM = AUPAL] FO 1) (A.33)
J

Note that this shows that we achieve a minimum for a quadratic function because
the equidistribution implies a uniform grid, and that it is a minimum of the true
Ly error because 8(21) becomes identical to the Ly error for quadratic functions. Yet
another interesting observation is that if AfgrAf, < 0, i.e. nonconvex, the only
way to achieve a minimum is to place t; at the inflection point of z(¢) where f®)
vanishes. Next we assume that AfrAf;, > 0 and that Aty # Atg, and write, using

the assumption of the equidistribution,

OE? C
) _ 2 2] £(1) (4.

where C = AtgAfr = At Afp. It is clear that we cannot have a minimum in this

case. However, if we replace f(l)(tj) by a first-order finite difference approximation

in each element, we obtain

A, T 2

0y Clpp 2 [, £21)
ot 60

At; + O (AtL2)}

A () (¢,
— Atg? { A{;: _f Q(t”)AtR +0 (AtR2)H . (A3p)
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By the assumption and also noting that C' is O (AtQ), we finally get

oEL _C
ot; 120

At + Atg’] fP (1) + O (A1), (A.36)

Hence the right hand side is now O (At5), implying that a smaller gradient can be
achieved by equidistribution and that the gradient goes down faster than 5(21) does,
implying that the error is closer to a minimum. Therefore, we conclude that the
equidistribution grid give, if not minimum, a smaller error than the uniform grid of

the same size.

A.3.2 Algorithm

Given a function x(t) in I together with its first derivative, we consider con-
structing a piecewise linear continuous approximation for a given error C' where C' is
a desired local average error multiplied by v/120. The nodal values are assigned sim-
ply by z(t), and therefore the error estimates are second order accurate. Now the idea
is to generate nodes successively starting from the initial point (¢y, z(¢y)) = (0, 2(0))
such that C'y = C over all the elements to be constructed. To generate the next
node ¢4 from ¢; which together define the element £ € {E}, we need to iterate for

tj4+1 until we have

(tjr1 — ) [Afe| = C =0. (A.37)
where Afp = f(t;j41) — f(;). A good iteration formula is

(k+1)

C(#Y, - tj)p1] ’ (A.38)

Nl

where the superscript k(> 1) indicates the number of iterations, p is a positive real
number. It is easy to show that (A.37) is satisfied at convergence. The role of p is
to damp an excessively large change, i.e. an extremely small AfF which will occur

when the iteration enters a region that is near an inflection point or where the curve
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is locally linear. Also the modification (A.27) will be effective to prevent the zero
division. But if the curve is truly linear, i.e. |AfE| as well as U are identically zero,
any choice of p or the modification (A.27) will not work. In this case, a practical
tip is to add a small constant in the denominator, thus adding a small curvature ¢.
Yet, a more sophisticated way to add the artificial curvature is to add the term in
the following form.

5= %exp (=AA17) (A.39)

where h is the desired spacing in the region where the curve is linear and A is a
constant that controls the effect of the artificial curvature. This will, of course,
destroy the error equidistribution property, but will not increase the error because

its effect is to increase the nodes.
A.3.3 Properties of the iteration formula
For simplicity, we assume that the function in consideration is quadratic, which

would be approximately valid locally in a small subdomain of nonquadratic functions

unless the curvature is zero. We write (A.38) as

AR = QUr (A5 (A.40)
where
At =D 3 Q ¢ (A.41)

INEINT)

For quadratic functions, A f/At represents the constant curvature exactly, and there-

fore @ is constant. Observe that for the choice p = 2, (A.40) becomes

Apk+D) \/5 (A.42)

That is to say, the iteration is independent of k£ as well as the initial guess, and will

converge at the first try for any initial values, producing uniform node distribution
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in t. Of course, we then achieve the equidistribution.
C
CED = AR A fID) = {AgkeD) 5-C (A.43)

In general, we have, for quadratic functions,

(1-2)k
At = /@ [A\% )] . (A.44)

It can be easily proved by induction that this satisfies (A.40). In terms of Cg, we

have -
(k+1) (k+1) {At(l)}2 o
Oy = At AT =0 g (A.45)
It is straightforward to show that for p > 1 we have
2
‘1 - <1 (A.46)
p
and C’,(;Hl) will converge to the limit C', and that for p <1 we find
2
1—-<-1, (A.47)

p
and hence it will not converge. Therefore, the value of p must be greater than 1 for the
iteration to converge. It is also important to note that it takes longer to converge with
a larger p since ‘1 — %‘ — 1 as p — oo. For nonquadratic functions with nonvanishing
curvature, we therefore conclude that p = 2 give the fastest convergence which takes
only one iteration provided the spacing At that achieves Cr = C'is so small that the
curvature is locally constant. For functions with inflection points, however, a large
value must be assigned to p to make the iteration proceed as mentioned in the last
subsection although this will make the iteration take longer in convex part of the
function. Note also that the iteration will converge faster for smaller C| i.e. smaller
At, since the function will behave more and more quadratically in the neighborhood

of such a small subdomain.
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A.4 Applications

A.4.1 Approximation of functions and curves

In this section, we describe an algorithm to construct an accurate piecewise linear
continuous approximation to a given curve in R", with the equidistribution property.
The curve is assumed to be parameterized analytically or by some approximation
such as cubic splines. The main objective is to determine the distribution of the
nodes in the parameter space such that the equidistribution is achieved. The results

are however shown for the case n =1 only.
Algorithm

Given an Lo error, we compute C such that & is equal to the specified error, and
generate nodes successively starting from an initial point (to, z1(t0), - - -, zn(t0)) =
(0,21(0), -+ -, 2,(ty)) such that Cr = C for all the elements to be generated. The

iteration formula for ¢4, a generalization of (A.38) to n dimensions, is

"3 =

-
it =t+ | a-w. (A.48)

where k indicates the number of iterations, p is a positive real number and

SRR Y PrERELI7S B0 S

i=1
The second term in the square root may be removed for strictly convex functions. If
it is desired to have a uniform grid spacing h in the region where the curve is linear,

we may set

C " 16
i=1
where ) is a user-specified constant that limits the influence of this artificial curvature

in the region where such correction is not desired.. The first derivative f(t) will be
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computed by a simple central difference formula,

Flay) = 2t h);hx(tj —h) (A.51)

with A =1.0E-5. The initial guess is always set to be t; + (¢; — ¢;_1) assuming the
curve is locally quadratic for 5 > 0, and to be 0.001 as a sheer guess for 7 = 0. The

iteration is taken to be converged when

% - 1‘ < TOL (A.52)

where TOL is set to be 1.0E-03, thus allowing 0.1 % error. The process will be
terminated when a new node exceeds ¢ = 1. The node distribution in I will be
determined independently, and therefore the nodal values can be assigned by the
given parameterization at the end of the node generation process. The algorithm is

summarized as follows.
1. compute C by C' = V120 Eory for a desired error Ep;
2. set tjp =1+ (t; —tj_1) (tj+1 = 0.001 for j = 0);
3. compute a new location ¢;,; by (A.48);
4. if (A.52) is not satisfied, go to 3;
5. if tj11 < 1, go to 2 (Next node).
6. choose the node at t = 1: end of the node-generation process.

7. assign x(t) at all the nodes generated.

In the results that follow, the endpoint has been chosen as follows. The last node
generated, the one that exceeds ¢t = 1, will be moved to ¢ = 1 if the size of the
element defined by ¢ = 1 and the previous node is greater than 20 % of its previous

element size. Otherwise, the previous node will be moved to ¢t = 1.
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Exn N noi ||z —ulr.n) Lo Loy

1.0E-02 6 74 4.711E-03 9.932E-03 6.053E-02
1.0E-04 40 2.5 6.069E-05 9.999E-05 2.073E-03
1.0E-06 384 1.2 7.409E-07 1.000E-06 2.199E-05

Table A.4: Example (a): p = 2.

Ean N noi ||z —ullp0) Le Loy

1.0E-02 15 5.2 1.018E-02 1.260E-02 1.144E-01
1.0E-04 135 2.8 9.979E-05 1.086E-04 3.723E-03
1.0E-06 1337 1.7 1.000E-06 1.048E-06 3.863E-05

Table A.5: Example (b): p = 3.

Results

We consider the case n = 1, i.e. approximation of functions in one dimension.

Numerical tests were performed for the following four different functions.
(a) at+ (1—a) {1 — e} /{1 — -1/} with € = 0.04 and a = 0.6

(b) a(t—0.5)> — 4 (1+ 8et) + (14 2ea) {1 — e ¥} /{1 = Y9} with e = 0.01

and a = 3.5
(c) tanh{20(t — 0.5)}
(d) 101 4 20/{1 + 400(¢t — 0.7)%}

(a) is a strictly convex function, and (b) has a single inflection point and also exhibits
a large variation near ¢ = 0. (c¢) is symmetric with a single inflection point in the
middle, and (d) has two inflection points. Examples (c¢) and (d) are taken from [5].
We set 0 = 0 for all the cases.

The results are summarized in Table A.4 to A.7 where &y is the specified L, error,
N is the total number of nodes, no: is the arithmetic average of the numbers of

iterations to find the next node, || — u||,(;) is the actual Ly error computed by the
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Ea(n) N noi |lz —ullL,u) Lo Lyy
1.0E-02 12 33.4 5.870E-03 1.042E-02 3.311E-02
1.0E-04 104 16.2 7.507E-05 1.001E-04 7.930E-04
1.0E-06 1026 8.7 8.899E-07 1.001E-06 8.026E-06
Table A.6: Example (¢): p = 8.
Exny N noi |z —ull,g) Lo Loy
1.0E-01 25 10.5 9.483E-02 1.084E-01 3.685E-01
1.0E-03 234 6.4 9.978E-04 1.033E-03 4.627E-03
1.0E-05 2324 3.4 9.993E-06 1.003E-05 4.660E-05

Table A.7: Example (d): p = 4.

five point Gaussian quadrature formula, L., is the maximum of the local average

error, i.e. Loo(\/”a: — || 1,(5)/Atg), and finally Ly is Ly error on a uniform grid of
the same size. The approximations constructed are shown in Figures A.7 to A.10.
The results confirm that the specified Ly errors are accurately achieved except for
Examples (a) and (b) where the actual Ly errors are smaller than expected. This
happens because of the violation of the equidistribution in the last element. Since
the functions are almost linear near ¢ = 1 in both cases, the placement of the last
node is very likely to give a smaller error for the last element. Indeed, we found that
if we excluded the last element when computing the error, the actual Ly errors were
very close to the specified values. L., norm of the local average errors are compared
with ). A good agreement can be seen for every case. Although the only L,
norm is given here, the values do not vary significantly over the elements, again
except for the last element, due to the equidistribution. L, errors on the uniform
grid of the same sizes are given for comparison purposes. In all the cases, it is seen
that extra orders of magnitude reduction has been achieved. node is usually a few

in locally convex regions, and more in the neighborhood of inflection points. As seen

in the tables, the average number of iterations decreases with the number of nodes
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04. 02

increased as we expected. Especially, in the first example which is a convex case,
the number of iteration approaches one as the number of nodes increases, which is
consistent with our observation in the last section. Similar behavior is observed also
in the second example although p = 3 was used to deal with an inflection point. Note
also that the number of iterations is large for a large p which again is consistent with
our observation in the last section.

In some applications, it may be desired to capture the end point accurately. For
instance, as shown in Figure A.9, the function is symmetric with respect to x = 0.5
but the grid is not quite symmetric, and one might wish to have a symmetric grid.
One way to do this is to apply a shooting technique such as the one proposed by
Ketzscher and Forth[52] in a related context. An algorithm developed based on this

idea is presented in Appendix B.

A.4.2 Numerical integration

The algorithm described in the last subsection was shown to be capable of pro-

ducing a highly accurate piecewise linear approximation, with a specified Lo error, to
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a known function. A byproduct is an accurate estimation of the integral of the func-
tion. But accurate prediction of the error cannot be made in this case, and only the
upper bound of the error can be specified. The results show that the method gives
errors lower than, but sufficiently close to, the specified upper bound for practical

purposes.

Algorithm

Consider the Cauchy-Schwarz inequality[25],

[ s@hdt] < Ol IOl (453

where ¢(t) and h(t) are continuous functions in I. Let ¢(t) = x(¢) —u(t) and h(t) = 1,
where z(t) is a known function we wish to integrate and wu(t¢) is a piecewise linear

approximation to x(t), then we have

[t~ ] < 12(0) — ) 1. e
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The Integration Error The Upper Bound(€yy) N
2.50E-03 1.0E-02 6
4.14E-05 1.0E-04 40
5.02E-07 1.0E-06 384

Table A.8: Example (a): p = 2.

The Integration Error The Upper Bound(&y ) N
8.07E-3 1.0E-02 15
7.82E-5 1.0E-04 135
7.82E-7 1.0E-06 1337

Table A.9: Example (b): p = 3.

which becomes, by (A.25),

[atwar— | u(t)dt‘ < &y [1+0 (A7) (A.55)

The integral of wu(t), that is easily computable by the trapezoidal rule, being our
numerical approximation to the exact integral, the left hand side represents precisely
the error of the integration. Then, the above inequality shows that the integration
error is bounded by the Ly error estimate, £y, with a possible second-order error.
Therefore, with the algorithm that can construct u(t) for a given &), we can specify
the upper bound of the integration error within the second-order truncation error.
The resulting algorithm is an adaptive step-size control technique for the trapezoidal
rule.

The algorithm is exactly the same as before except that the last node, i.e. the
one that exceeds ¢t = 1, is always pulled down to ¢t = 1 to avoid an increase in the
upper bound &1y, and that the integration of the resulting piecewise linear function

must be performed at the end of the process.

1. compute C' by C' = /120 &y for a desired error bound &y ;

2. set t]‘+1 = tj + (tj - tj—l) (tj-l-l = 0.001 fOI"j = 0),
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The Integration Error The Upper Bound(&yp)) N
4.09E-4 1.0E-02 6
5.11E-6 1.0E-04 104
4.61E-8 1.0E-06 1026

Table A.10: Example (¢): p = 8.

The Integration Error The Upper Bound(&y ) N
7.47E-02 1.0E-01 25
8.05E-04 1.0E-03 234
8.07E-06 1.0E-05 2324

Table A.11: Example (d): p = 4.

3. compute a new location ¢;,; by (A.48);

4. if (A.52) is not satisfied, go to 3;

5. if tj11 < 1, go to 2 (Next node).

6. set t;41 = 1: end of the node-generation process.

7. assign x(t) at all the nodes generated, and compute the integral [, u(t)dt.

Results

We consider numerically integrating over I the four functions used in the last
section. These functions can be integrated exactly over I, and therefore we can
compute the actual errors of the numerical integration. The results are summarized
in Tables A.8, A.9, A.10 and A.11 in which the actual integration error, i.e. the
left hand side of (A.55), the upper bound we specified, and the number of nodes
generated are shown from the left. For functions (a), (b), and (d), we see that the
integrals are very accurately estimated with the errors that are smaller than but
very close to the specified upper bounds, which demonstrate the effectiveness of the

method. In the example (c), on the other hand, the errors were found to be always
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nearly two orders of magnitude smaller than the upper bounds, but this does not
mean that we generated more nodes than necessary. This is a special case: by the
symmetry of the function, a large part of the quadrature error cancel out. It is easy to
show that a perfectly symmetric piecewise linear approximation gives the exact value
of the integration (zero) for any number of nodes. The approximations constructed
by the algorithm are, however, not perfectly symmetric (see Figure A.9). Therefore,
they do not give the exact value, but very small errors due to a large cancellation

that still can occur.
A.4.3 Initial value problems for ordinary differential equations

It is well-known that the solution of an n x n system of ordinary differential
equations is a one-dimensional submanifold in R™ (or the so-called phase space) with
its independent variable as a parameter. We consider approximating this submanifold
by a piecewise linear continuous function. Although the methodology is basically the
same as the previous, we now need to consider numerical schemes that produce the
nodal approximation since the parameterization of the solution submanifold is not

known.
Algorithm

We consider approximating the solution manifold of an n x n system of ordinary
differential equations,
dx(t)

—~5 = f(x,1) (A.56)

where x(t) = (z1(t), -+, x,(t)) and f(x,1) = (f1(x, 1), -, fu(x,t)) with suitable initial

conditions, by a piecewise linear continuous function,
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Given a desired Lo error, starting from the initial point (z,(0),- - -,2,(0)), we are
going to find the grid points successively by the node generation algorithm using the
right hand side f to compute the first derivatives. The algorithm is exactly the same
as before except that we need to compute the nodal values by a numerical scheme
this time at every iteration for ¢;;;. The generation process will be terminated
when a new node exceeds ¢ = 1.0 and the node closest to the end point will be
moved to the end point. A natural choice of the scheme would be the classical 4th
order Runge-Kutta method, which makes the error estimate second-order accurate.
For smooth solutions, the method is expected to produce nodal values accurate
enough for our purpose. However, for stiff problems, the scheme is not recommended
because of its poor stability property for such problems. Our choice here is a two-
stage 4th order implicit Runge-Kutta scheme of Gauss-Legendre type which is A-
stable[54]. Note however that A-stable methods does not necessarily imply high
accuracy. Its accuracy depends on the step size; the node generation algorithm will

play an important role in determining it. The algorithm is summarized as follows.
1. compute C by C' = /120 Exry for a desired error Eypy;
2.set tjy1 =1t 4+ (t; —t;—1) (tj41 = 0.001 for j = 0);
3. compute u(tj;1) by a numerical scheme;
4. compute a new location ;1 by (A.48);
5. compute new solutions u(t¢;41) by a numerical scheme;
6. if (A.52) is not satisfied, go to 4;

7. if tj11 <1, go to 2 (Next node).
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Exn N noi ||z —ullr,n Loy

1.0E-02 21 12,5 1.084E-02 1.37416E-02
1.0E-03 65 10.2 1.017E-03 1.36935E-03
1.0E-04 205 &5 1.005E-04 1.35032E-04

Table A.12: The results for the scalar case. p = 5.

52(]) N not ||X — 11||L2([) L2U
1.0E-01 4 8.3 9.362E-02 1.328
1.0E-02 11 4.6 1.158E-02 8.701E-01
1.0E-03 34 3.5 1.014E-03 2.747TE-01

Table A.13: The results for the stiff system. p = 2.

If it is known that the solution tends to become linear, including ¢ will be effective

as described earlier, producing a uniform grid in such a region.
Results

We first consider a scalar problem,

dx(t)
dt

= —cex + [0-305 — aﬂe_Cst} sin(arnt) + 0.3amcos(ant) t € [0,1] (A.58)
with ¢, = a =5 and x,(0) = 1. The exact solution is given by
x(t) = e *'cos(art) + 0.3 sin(ant). (A.59)

Since this solution is smooth, we use the classical 4th order Runge-Kutta method
for this problem. The modification (A.27) is not used here for simplicity, and ¢ is
also set zero. The method produced results shown in Table A.12. Although the
improvement of the error over the uniform grids is not impressive, the desired errors
have been achieved quite accurately for all the cases. As seen in Figure A.11, the
nodes are concentrated in the regions where the curvature is relatively large.

The second test case is a stiff 2 x 2 system of equations taken from [39].

d.ﬁEl (t)
dt

= 998z + 1998, (A.60)
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with the initial conditions x,(0) = 1 and z4(0) = 0. The exact solutions are given by
2y =2t —e 0 g = et 4 10008 (A.62)

We will compute the solution up to ¢ = 1. The nodal values are computed by the
two-stage 4th order implicit Runge-Kutta scheme. As can be seen in Table A.13,
the desired errors have been achieved accurately for all the cases, and also nearly
two orders of magnitude reduction of the error over the uniform grid can be seen.
The numerical solutions and the exact solutions for & =1.0E-03 are shown in
Figures A.12 and A.13. We see that the generated grid is very smooth inside as
well as outside the transient region. Figure A.14 shows the exact solution(solid line)
and the numerical solution(circles) in the phase space which we actually intended to
approximate. It is clearly seen, as we expected, that more nodes are placed between

t =0 and ¢ =0.005 where the arc length changes very rapidly with respect to ¢ than



160

1.5r

- Q.5 kkkrktkok sk ko ok kK ko ok ik * * *
i
x
0,
-0.5
_1— ‘ ‘
0 1 2 3 4 5 6 25
t x10°
Figure A.13: The transient region of Figure A.14: The numerical and ex-
the solutions shown in act solution curves in the
Figure A.12. phase space.

those in the rest of the curve, and that the nodes are concentrated in the portion
with large curvature near ¢ =0.005.

A final remark is on extremely stiff problems. The algorithm was tested for
the scalar case with ¢, =1.0E+10 and &) =1.0E-01. We found that the method
generated a few nodes in the extremely narrow transient region and about 700 nodes
in the smooth region which are too many, but that the equidistribution was accurately
achieved on that grid. It seems that this was caused by the large error in f(u,1?)
produced by the product of ¢; and a small error in the solution u. In other words,
the method seems to have achieved the equidistribution by adjusting not the step

size but the solution. Further study is necessary on this problem.
A.4.4 Boundary value problems for ordinary differential equations

In this section, we describe the application of the node generation algorithm to
boundary value problems for ordinary differential equations. It is well known that

the problem can be transformed into two initial value problems via the shooting



161

technique. Therefore our algorithm can be applied just as described in the previous

section, but a slight modification is necessary.

Algorithm

We consider approximating the solution of the linear boundary value problem,

d?x dx

— P —az =) te01] (A.63)

with 2(0) = « and (1) = 3, by a piecewise linear continuous function u(t). We
assume that p(t), ¢(t) and r(t) are continuous in I and ¢(¢) > 0 in I. Then the
problem has a unique solution[51]. It is well known that this unique solution can be

written as

B —x(1)

x(t) = z1(t) + =)

2109, (A.64)

where 1 and zy are the solutions of the following initial value problems [51].

d2f1:1 dxl dxy

ol p(t)ﬁ +q(t)ry +r1(t), 21(0) =a, T(0)=0 (A.65)
d*x dx

dt22 = p(t)d—; +q(t)z, 12(0) =0, £2(0) = 1. (A.66)

Therefore, each problem can be solved, rewritten as a first order system, by the
algorithm described in the previous subsection. It is however important to notice
that we are interested not in the solution manifold of these systems but the solution
of (A.63). That is to say, we want to use f = dz/dt to compute Cp. It appears
possible to compute f during the integration of the initial value problems since we

have from (A.64)

B — (1)

f(t) = fl(t) + 372(1)

fa(t) (A.67)

where f; = dx1/dt and fs = dxy/dt which are to be computed together with x4

and zy. However, it requires the knowledge of x;(1) and x9(1) which are available
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Eaxn N noiy noiy ||z — ullL,y Lev

1.0E-01 10 10.6 22.0 1.394E-01 5.043E-01
1.0E-02 17 10.1 15.8 1.105E-02 3.855E-01
1.0E-03 43 9.8 11.1 9.914E-04 1.518E-01

Table A.14: The results for (A.68). p = 5.

only after the integration. This leads us to a two-step method; first solve the initial

value problems with Cp = Atpy/Af2 + AfZg, and second repeat the computation
with Cg = Atgy/AfZ. In the first step, the focus is on to approximate the solution
manifold in (z1,x9) space accurately because we seek accurate values of z;(1) and
x5(1). In the second step, we focus on approximating the solution of (A.63) as f is
now computable by (A.67). In general, the grids generated in the two steps can be

quite different. The algorithm is summarized as follows.

1. compute C' by C' = /120 &y ;) for a desired error Expy;

2. Apply the node generation algorithm to the two initial value problems (A.65)
and (A.66) with Cp = Atp\/Afig + Afg;
3. Repeat the step 2 with Cy = Atg\/Af2.

Results

We consider the following linear problem.

d? 1ld
d—tf + gd—f = g [enmsin(nmt) — cos(nmt)]  t € [0,1] (A.68)

with the boundary conditions z(0) = 0 and z(1) = 1, and ¢ = 0.001 and n = 1.
Although ¢(t) = 0, there exists a unique solution given by

1 et/
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We use the two-stage 4th order implicit Runge-Kutta scheme again to integrate the
equivalent initial value problems. As can be seen in Table A.14, in which noi; is the
average of the numbers of iterations at the first step and noiy at the second step,
the specified errors are achieved accurately for each case. On the other hand, the
errors on the uniform grids are significantly larger for each case and decrease very
slowly as the grid is refined. The reason for the latter is that no grid points are
placed inside the narrow region near ¢t = 0 even with N =44. Figures A.15 and A.16
show the exact solution and the numerical solutions obtained at the first and the
second steps respectively, for &) =1.0E-03, where grid points are indicated by stars
as before. It can be seen clearly that the two grids differ significantly. As mentioned
earlier, this happens because in the first step we seek a good approximation to the
solution curve in x; — x5 space, not x(t). Although x5 does have a narrow region of
nearly the same width near ¢t = 0, its magnitude is of the same order as that width.
Therefore the method does not place many points in this region. At this stage, we
found that ||z — u|[z,(;) =3.310E-02; the prescribed error has not been achieved. In

the second step, this solution is magnified by the constant B ;f(ll()l) which was found to

be 996.8 after the first step, and therefore the narrow region becomes very important,
thus making the method place many nodes within it. As shown in Table A.14, the
iteration to generate each node took 10 to 20 on average with p = 5. The choice of

p = 5 was necessary for the iteration to converge near the infection point.

Finally we remark that the method works for extremely stiff boundary value
problems. We applied the algorithm to the case ¢ =1.0E-10 with &) =1.0E-01
and p = 5. The algorithm generated 721 interior nodes, giving the error ||z —
|| Loy =1.045E-01. The resulting grid looks almost identical to the one in Figure

A.16 outside the narrow region, but has many more nodes inside. This result is a
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total contrast to the one for a stiff initial value problem mentioned in the previous
section. The reason for this success lies in the fact that the equivalent initial value
problems are not really stiff and that the effect of the stiffness appears only in the

constant 2 ;f(ll()l) and does not affect the numerical solutions.

A.5 Remarks

In this study, the value of p in the algorithm was fixed in the entire domain.
Although very effective, it would be more efficient if it could be changed in such a
way that a large value is assigned near inflection points and p = 2 is assigned in
other convex part. This is because the larger the p is the more iterations it takes
in convex regions where p = 2 is the best value. This would become an important
issue when the method is applied to nonlinear stiff ordinary differential equations
where the iteration is required for nodal values as well, and also for large scale

problems for which the evaluation of the right hand side is very expensive. Further
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study is necessary also for extremely stiff initial value problems, concerning accurate
evaluations of the first derivatives of the solutions, i.e. the right hand sides.
Compared with node adjustment approach (LSMGM), the node generation ap-
proach is more efficient and robust. However, in terms of the extension to higher
dimension, its ability may be limited because two-dimensional submanifolds, espe-
cially as solutions of partial differential equations, cannot be constructed always by
marching from a boundary. In addition, although the expression for the L, error es-
timate has also been derived for a triangular element (See Appendix C), it seems too
complicated for a practical use. But it may be possible that simpler error estimates

could be found in other norms, which is left as a future work.
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APPENDIX B

A Shooting Method for A Node Generation
Algorithm

In this appendix, a shooting method is studied to capture the endpoint by adjusting
C. The idea is taken from [52] where a shooting method for the construction of an L,
optimum node distribution is studied. In [52], the nodes are generated successively
starting from a pair of nodes to minimize L, error, and therefore the position of the
last node depends upon the choice of the second node. The second node is then be
found by the minimization technique of Brent’s, which guarantees that the last node
is placed at the specified endpoint. In this study, we need to find the value of C' such

that

B.1 Node-Generation Algorithm

We cousider generating nodes for interpolation of a function x(¢) in ¢t € I = [0, 1]
which will equidistribute the leading term of the local average error (See Section

A41)

Cr  Atg
V120 V120

where f(t) = dx/dt, Atp =t —t;, Afp = f(tj41) — f(t)),

16
\/AfE2 + 7\1/%. (B.1)

. AZL’E

Vp=———f(tn), tm=
"= A f(tm)

L1+
2 Y
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and E denotes the element defined by two consecutive nodes, ¢; and ¢;,,. The nodes
can be generated successively starting from the initial point (¢, z(t)) = (0, 2(0)) once
we specify the value of Cp. Let C denote this desired value, then given a node t;,

we must find ¢;,; such that

Cp(tjs) — C =0, (B.3)

The iteration formula proposed in Chapter 2 is

(S

o
it =t+ || a-w. (B.4)

the superscript £ indicates the number of iterations, p is a positive real number. The
role of p is to damp an excessively large change, i.e. an extremely small AfEk which
will occur when the iteration enters a region that is near an inflection point or where
the curve is locally linear. We terminate the iteration when the equidistribution is

achieved within 3% error. The node generation algorithm is summarized as follows.
1. compute C' by C' = V120 Eoqry for a desired error Eopy;
2.set tjy1 =t 4+ (t; —t;—1) (tj41 = 0.001 for j = 0);
3. compute a new location ¢;;; by (B.4);
4. if |Cg/C — 1| > 1.0E-03, go to 3;
5. if t;11 < 1.0, go to 2 (Next node).

Let N denote the total number of nodes generated by the above algorithm, including
the initial node. Then note that we always have ty > 1.0. In order to make it finish
at t = 1, we adjust the value of C by a shooting method. The idea is taken from [52]
where a shooting method for the construction of an L; optimum node distribution

is developed. In [52], the nodes are generated successively starting from a pair of
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nodes to minimize L, error, and therefore the position of the last node depends upon
the choice of the second node. The second node is then found by the minimization
technique of Brent’s, which guarantees that the last node is placed at the specified

endpoint.

B.2 Shooting Method

Given a set of N nodes generated by the node generation algorithm, we consider

solving the following nonlinear equation for C.
ty(C)—1.0=0. (B.5)

Note that this has many solutions unless /N is fixed. For a convex function, this
equation has a unique solution for a fixed N since ty is a monotone function of C'
[52]. However it is not guaranteed for nonconvex functions, and therefore we allow
N to change, relaxing the requirement for the solution. But the solution we seek is
the one with the total number of nodes close to the original number N. Since the
explicit functional relationship between ¢y and C' is not known, we use the Secant
method to solve the problem. Given another set of nodes with C® = 1.0001C and

the initial one C(Y) = C, we therefore compute C by

tN(C(nil)) —1

o = ¢o-1) _
[t (C1) — tx (CH-2)] ] [CT=D) — O]

(B.6)

where n is the iteration index greater than two, and when generate another set of
nodes and also at each iteration, we modify the step 5 such that the node generation
terminates if the number of nodes reaches N 4 1. The iteration will be terminated
when the error in capturing the endpoint becomes less than 5% of the size of the last

element,

[tn(C) = 1.0] < 0.05 [ty (C) — ty 1 (C™)]. (B.7)



169

Eaxn Ny Tteration N ||z —ul/z,m
1.0E-02 6 9 6 3.6504E-03
1.0E-04 40 3 40 6.2812E-05
1.0E-06 383 4 383 T7.6735E-07
Table B.1: Example (a): p = 2.
Eany N, TIteration N o —ull L.
1.0E-02 15 5 16 8.0120E-03
1.0E-04 135 2 135  9.9683E-05
1.0E-06 1337 1 1337 1.0001E-06
Table B.2: Example (b): p = 3.
52(]) N1 Iteration N ||Jf — U||L2(I)
1.0E-02 12 8 13 5.4500E-03
1.0E-04 104 5 105  7.6247E-05
1.0E-06 1026 6 1026 1.0001E-06
Table B.3: Example (¢): p = 8.
Exn N, TIteration N |z — ullr.
1.0E-01 25 3 26 8.5046E-02
1.0E-03 234 417 235 9.7102E-04
1.0E-05 2324 1 2325  9.9872E-06

Table B.4: Example (d): p = 5.

The algorithm is summarized as follows.
1. compute ty, for CV) = C;
2. compute ty, for C?) = 1.0001C with N, < N; + 1, set n = 3;
3. compute C™ by (B.6);
4. compute ty, for C™ with N,, < Ny + 1;
5. if (B.7) is not satisfied, set n =n + 1 and go to 3;

6. set ty, = 1.0.
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B.3 Results

Numerical tests were performed for the same four different functions as those

used in Section A.4.1.
(a) at + (1 — a) {1 — e(*t/e)} / {1 — e(*l/e)} with € = 0.04 and ¢ = 0.6

(b) a(t—0.5)> — 4 (1+ 8et) + (1+2ca) {1 — ¥} /{1 = e=Y/9}  with e = 0.01

and a = 3.5
(c) tanh{20(t — 0.5)}
(d) 10e(=1) 4 20/{1 + 400(¢ — 0.7)%}

(a) is a strictly convex function, (b) and (c¢) have a single inflection point, and (d)
has two inflection points.

All the computations were done with double precision. The value of p was chosen
such that the node generation algorithm converges for all the nodes. The results
are summarized in Table B.1 to B.4 where &) is the specified Ly error, N; is the
initial number of nodes, N is the final number of nodes, and ||z —u||.,(s) is the actual
Ly error computed by the five point Gaussian quadrature formula. Some selected
results are shown in Figures B.1 to B.4 where circles indicate nodes, and stars are
their projection onto t-axis. In almost all cases, the shooting method converges
quickly at less than 10 iterations. For nonconvex functions, this is due to the option
that it is allowed to increase the total number of nodes by 1. Without it, it would
take extremely long or even fail to converge. However there still can be seen a
pathological case. In the last example, the method took very long to converge for
Eyn=1.0E-03. One way to make it converge faster is to change the input value C

by a very small
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Figure B.1: Example (a). £y =1.0E-04.

x(t)

Lok L L%
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25

Figure B.2: Example (b). £y =1.0E-02

Figure B.3: Example (c). &y =1.0E-02 Figure B.4: Example (d). £y =1.0E-01
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amount. We found that &£;)=1.01E-03 instead of 1.0E-03 made it to converge at
the first iteration.

However it should be remembered that there can be in principle two sets bad
scenarios in the method. First, C(™ can go negative during the iteration. Second
the final number of nodes can be significantly less than the starting value. These
problems could arise when the method is applied to functions with a large number
of inflection points. In fact we have found that C™ became negative during the
iteration for an oscillatory function such as z(t) = e !sin(10¢). Further study is

necessary on this robustness issue.
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APPENDIX C

Lo Error Estimates On Triangular Grids

C.1 Ly Error for Quadratic Functions

Suppose we have a quadratic function f(x,y) in a domain €2 and its piecewise
linear continuous approximation of unknown accuracy, i.e. triangulation of the
quadratic function. We are going to compute its local Ly error on a triangle ex-
actly. Let {T'} denote the set of triangles that fills Q, and 7" € {T'} be formed by

vertices 1,2 and 3. We define the local Ly error on triangle 7" by

2 2
(22) = [ [fla.y) —u"(@y)] doay. (C.1)
Here u®(x,y) is the restriction of the approximation to triangle 7 which can be
written as
—  Ou? ou®
ut(z,y) = uT + %ch + GLyAyC (C.2)
where
oul 13 ou’ 138
oz 2STZ§u Yo Ty QST;u ! (G:3)

u; are approximations of f at vertices, ul = (u1 + uy + u3)/3, ST is the area of T,
Te = (1 +x9+123)/3, Ax, = 1 — x, Ax; is the difference of x taken counterclockwise

along the side opposite to j, and similarly for y. Being a quadratic function, f(z,y)
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can also be written similarly in the form of Taylor series around the centroid of the

triangle.
1 0 01°
= ¢y Ye CAC CAC _Ac_ Ac— A4
[, y) = f(@e, ye) + pelre + g y+2[x8x+ yay]f (C4)
where
0 0
Pe = a_xf(xcv yc)v qec = a_yf(xca yc)- (05)
The difference then becomes
_ 1 0 01
f(xa y)—uT(x, y) = f(xca yc)_uT—f—\pgAajc"'\DgAyc'i'i leca + Ayca_y] f (CG)
where
ou” oul
Ul =p, — — Ul =g, — —. )
e =P Yy = e (C.7)
The first two terms can be written as
1 0 o1
T = T o | A Ay .
f(ae,ye) —ul = €F — o | Aicm - + vieg | I (C.8)

where €7 is the average of the nodal errors defined by %Z?Zl {f(zs,y;) —w;}, and

Axie = x; — ey, AYie = yi — Y. Therefore, introducing the notation,

Sc(Aze, Ay,) = \I/foC+\Il§Ayc

1 0 o1°
Qc(Axc;Ayc) — ilec£+Ayca_y‘| f
1 0 01’
ic — 4 A icH A icH
@ 6;[ o 8:r+ 4 8y] !
we have
flay) —u (2, y) = € + S + Qe — Qi (C.9)

Now the local L, error can be written as

(Lg)2 - /T [e_T2 + 502 + Qz + Q?c + 2SCQC - 2QCQ’iC + 26_T (Qc - ch) - 2‘Scc‘?ic + Ze_TSc] dl’ dy

(C.10)
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The integrals of the last two terms identically vanish, and we are left with

(£8)’ = /eT d:rdy+2/eT — Q) dxdy+/sgdxdy+/cg§dxdy
T T

n /Q dxdy+2/ TSCQCd:L’dy—Z/ 0.Qse daz dy. (C.11)
A A

Integrating, we obtain

T2_ —2 T —ST 3 a 8 T2 AT
(L2) — T2 g _eT?z;(A% -l—Ayzay f—ﬁs ST
g 3 . . g 3 o 2 2
UL Az + UT Ay, Azi— + Ay,
T 36 - ( 5+ U Ay) +2160 Z}( S y8y> d

=1
ST

0 0 0 0
— UEAT e + U Ayic) (| ATpe=— + AYpe=— | | Azie= + Aype—
+ 30121(:9 Tie + ¥, y)<$kax+ y’“ay><’”ax+ yzay>f

ST 3 0 o\ .\

2
8T 9 Kl 2
3

where
r 1 ’
The result can be written as
2 ST 3 0 0 2
L) = T8 _ Az, — + Ay, ——STST
(£2) @9 9§<xa+ yay>f 1357 v
2
ST 3 13 (&3 o0\’
UL Az + Ul Ay, Avy; ST
AT ( vit U Ag) 6480{;< P y8y> d
ST 3 0 0 0 0
\DTA i + UEAY) | Azpe— + Aype— | [ Azje— + Aype—
* 30 ¢ ( Ti y y)<xkax+ yk8y><xlax+ yl8y>f

where the subscripts k£ and [ take 1,2,3, and are permuted cyclically for i. To simplify

this further, we rewrite the curvature term as follows.

0 AN T 0 0
. rw = Y Azf—+2) AnA A2l
izzl <ALEZ o + Ayz ay) f Zzzl Z; 12 + 1221 yza 8 —+ Z Yi 8y2
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— ZA +2Ax,Ay,gy+ZAx,Ay, +ZA 28q

p dp dq aq
_ B et A PR O : Ax; + —Avy; | .
i:ZIAxZ <8xA:L’1+ ayAy,) +i:zlAyZ (8 T; + By y)

Now, for quadratic functions the following is an identity.

op dp
A i = —Ax € —A 7 C.13
P = 5 A0+ 5 A (C.13)
and similarly for q. Hence we have
3 a a 2 3
i=1 dx Iy i=1
Using this exact relation, we obtain
1 7\ 2 2 T3 13 T T 2
1 3
13 (& ’
— ApiAz; + AgAy;) p — —STST C.15
+ 6480{;( pildz; + Ag y)} R (C.15)

We first consider the interpolation error, i.e. exact nodal values. In this case, it can

be shown that this simplifies to

m2  CzsT
= 1
(LQ) 2160 (C.16)
where
3 3 2
Cyp = ZKE+4{ZKZ} —1657S?, (C.17)
i=1 i=1
and

Adding this over the set of triangles {7} and taking square root, we obtain the
following L, interpolation error

C2.8T
L) =, Y =t (C.19)
iy 2160
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This is exact for quadratic functions and second-order accurate for nonquadratic
functions.

Next let us consider the case that the nodal values are not exact. In particular,
we are interested in the numerical solutions of some partial differential equation. It
can be easily deduced from (C.15) that the interpolation error (C.19) estimates the
Lo error with first-order accuracy for third-order accurate nodal values, and second-
order for fourth-order accurate nodal values. Even if such high accuracy cannot be
attained, the interpolation error is still an important quantity. It represents the
error components that are irrelevant to numerical schemes. In other words, it can be
controlled only by the grid configuration. But the precise way to use this quantity

for grid adaptation remains open.
C.2 Numerical Tests

Results are shown that verify the analysis in the last section. We use the following

exponential function.
f(x,y) = exp{~100(a + y*)} (C.20)

The first derivatives are computed by a second-order difference approximation with
h = 1.0E — 06. The domain is a triangle, which contains the peak of the function,
and it is systematically refined by connecting the mid points of the sides. The results
are shown in Figures C.1 and C.2 where L is the arithmetic average of the sides of
the triangle, and the relative error is the absolute value of the difference between
the error estimate computed by (C.19) and the actual L, error computed by the
seven-point Gaussian quadrature. Figure C.1 shows the result for the domain of
the equilateral triangle with the centroid placed at the origin and the side length

0.1. Figure C.2 shows the result for the domain of a skew triangle defined by the
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vertices (0,0), (0.01,0) and (0,0.1). In both cases, the second-order convergence can

be observed clearly.
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APPENDIX D

A Geometrical View in Two Dimensions

We consider a geometrical viewpoint for two-dimensional problems: the least-squares
moving grid method is attempting to approximate a geometrical object which can be
regarded as the solution of differential equations, as in the one-dimensional problems.

In general, a solution of a set of differential equations, with (n — p) dependent
variables and p independent variables, can be regarded as forming a p-dimensional
submanifold in an n-dimensional manifold. In the theory of exterior differential
forms, a set differential equations are replaced by a set differential forms, and the
solution to the set of forms are then understood as a submanifold (or integral man-
ifold) whose tangent vectors annul the forms everywhere on it, in contrast with a
solution to differential equations as a function of independent variables.

In particular, we shall consider a numerical approximation to a solution manifold,
typically by triangulation in which each triangular element is thought of as form-
ing a two-dimensional tangent space. Approximation errors are obtained on each
triangle by requiring a set of differential forms to vanish when they are contracted
with approximate tangent vectors defined by two sides of the triangular element. We
shall show that the resulting expressions are identical to residuals, thus proving the

geometric interpretation of residuals, and that this viewpoint can be useful in inter-
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preting the least-squares moving grid method, especially for hyperbolic problems.

D.1 Hyperbolic Equations

D.1.1 Linear Advection
We first consider a linear advection equation
aug + bu, =0 (D.1)

for which the solution u is a function of z and y. Geometrical statement of the
problem is: Find a two-dimensional submanifold in the manifold R? with coordinates

(u,z,y) that annuls a two-form a defined by
a=aduAdy—bduA dz, (D.2)

Note that we now treat all the variables as independent. To get back to the original
equation, we impose the independence of (z,y) by du = uydz + uyczy, substituting

this into the two-form, we obtain
a = (aug + buy)dz A dy, (D.3)

and requiring the coefficient to vanish leads to (D.1), thus verifying the equivalence
to the original problem. We can obtain also other governing equations by choosing
other pairs of independent variables: the choice of the independent variables are
completely at our disposal. For example, imposing the independence of u and z, by

dy = yudu + ydx, substituting this into the two-form, we obtain
o = (ay, — b)du A d. (D.4)

Vanishing coefficient gives the governing equation for y in u-z plane, y, = b/a, which
is just an ordinary differential equation for y with respect to x. This is quite natural

for advection problems.
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With the two-form, the problem now becomes finding a two-dimensional sub-
manifold, whose tangent vectors annul the two-form. Mathematically stated, the
contraction of the tangent vectors with « vanish at every point on the submanifold:
a(U,V) =0 where U and V denote tangent vectors that define the solution surface.
Note that such tangent vectors form a vector space of dimension two at a point on
the integral surface, whose elements are tangent to the surface at that point. A
simple solution is a characteristic solution, which can be found by rearranging the
two-form as follows.

—du A d(bz — ay) = 0. (D.5)
Clearly, the solution submanifold is given by

u = const. and bx — ay = const. (D.6)

These together form lines starting from initial values of u which in turn mesh to-
gether to form a solution submanifold of dimension two. Now, we consider numerical
approximation of the solution submanifold. We shall construct an approximate sub-
manifold by triangulation defined by a set {T'} of triangles in which each triangle is
considered as approximating the tangent space of dimension two at a nearby point.
Consider a typical triangular element 7" € {T'} with vertices 1, 2 and 3. The tangent
space being two-dimensional, we may define the two tangent vectors that represent

the tangent space by two of the three sides of the triangle,
Vi = (Aug, Azy, Ay,)” (D.7)
Vo = (Aug, Ay, Ays)" (D.8)

where Auy = (ug —uy), Auz = (u3 —uy) and similarly for x and y. Contracting these

vectors with the differential forms, we get

a(Vi, Vo) = adu A dy(Vy, Vo) — bdu A dz(Vy, V5) (D.9)
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Using the formula wy A wq(V1, V2) = %{wl(vl)wQ(Vg) — wi(V2)wy (V1) } where wy and

wy are one-forms, we obtain, after some rearrangement,

1€jr

where jr = {1,2,3} and A( ); denotes a difference taken counterclockwise along
the side opposite to 7. This &, is nothing but the residual which is obtained by
integrating the differential equations on a triangular element in z —y plane. But our
viewpoint here is that ®, represents an error in aligning the tangent vectors along
the solution surface: a geometrical interpretation of residual. So, by minimizing this
error in a least-squares norm, we are in effect attempting to align the triangular
element along the solution surface in R?, which means that the unknowns are the
positions of the vertices in R3, and therefore it is natural to include x and y as
additional unknowns.

Note that
Oy = adu A dy(Vy,Va) — bdu A de(Vi, Va) = Sy, — DSys (D.11)

where S, is the area of the triangular element projected onto u — y plane, and
analogously S,, is that projected onto v — x plane. This is a fundamental property
of differential forms. We will make use of this fact in the rest of the section. It is

interesting that by (D.5) we have
Oy = —du A d(bz — ay)(Vi, Va) = —Sue (D.12)

where Sy, is the area of the triangle projected onto u — ¢ plane and ¢ = bx — ay.

Indeed we can write (D.10)

Or == > wA (ay — ba), (D.13)
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Then, it is obvious that the residual will vanish if the characteristic relations are sat-
isfied along one of the edges of the triangle, implying collapse of the edge into a point,
and thus vanishing area. Therefore, by minimizing this, the least-squares method

attempts to minimize the area S,. so that the characteristic relation is satisfied.

D.1.2 Linearized Aerodynamics

We consider

FPuy — v, =0, Uy — Uy =0 (D.14)

where 2 = M? — 1 and M > 1, the supersonic case. On a manifold R* with

coordinates (u, v, z,y), we define two-forms
6 = [Pdundy+dvAde (D.15)
w = dvAdy+duAdz. (D.16)
The equivalence with the original problem can be shown as before. Imposing the
independence of x and , du = uzdz + uydy and dv = v,dz + vyCZy,
6§ = [PuydrNdy+ Uy dy A dx = (P, — vy)dx A dy (D.17)
w = vydx Ady+u,dyAdr = (v, —u,)de Ady (D.18)
and requiring that the coefficients vanish, we obtain the original system (D.14). On

the other hand, imposing the independence of u and v, dr = zydu + z,dv and

ciy = ychu + yvczv, we obtain

§ = By,duAdo+ z,dvAdu= 6%y, — x,)du A dv (D.19)

w = yydoAdu+ z,dudv= (y —yu)JuAch. (D.20)
Vanishing coefficients implies the hodograph equations

52% — Ty = 07 Ty — Yu = 0. (D21)
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The two-forms are therefore an unified representation of both physical and hodograph

equations. In this case also, we can find the characteristic solution. Consider a linear

combination of the two-forms
§+kw=dundy+dvAde+kdvAdy+kduA dz.
We will require that this can be written
8+ kw = d(Au +v) Ad(z + \y)

which leads to

N =5 A=k
This gives, for M > 1, A = k = £, and therefore we have
8+ fw = d(v £ fu) A d(z + By)
which imply the characteristic representation of the solution submanifold

u+ fv = const. and x + Sy = const.

u— v = const. and x — By = const..

(D.22)

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

Now, we consider approximating the solution submanifold by a triangulation. As

before, we have discrete tangent vectors on each triangular element.

‘/]. - (Au% Av?: Al‘?; AyQ)T

Vo = (Aus, Avs, Axs, Ay,)T
Contraction with the two-forms o and s results

1 1
AT = )\(‘/17 ‘/2) = ﬁQSuy + Svac = ﬁQ_ Z uszz + = Z Uz'Axi
2 €47 2 (ASyI
1
QT - W(‘/la%) = Svy+Su:r: 5

€571 €gr

(D.28)

(D.29)

(D.30)

(D.31)
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Again, we have obtained residuals. Consider now instead defining characteristic

fluctuations

Cr = d(v+ fu) Ad(z+ By)(Vi, Va) (D.32)

Dy = d(v—pu) Ad(z — By)(Vi, Va) (D.33)

and minimizing this in a least-squares norm

F= Y Fr=7 Y [Gi+D] (D.34)

Te{T} Te{T}
where the factor 1/4 has been introduced for convenience. This is a norm that
recognizes characteristic relations. Hence, for each element, F; vanishes when a
characteristic relation is satisfied along one of its sides, and the other is satisfied

along another side. If it is desired to write this using the original fluctuations, one

can make the following substitutions, due to (D.25),
Cr = (04 pw)(V1,V2) = Ar + Q7 (D.35)
Dy = (0— pw)(V1,Va) = A — Q. (D.36)

Then, the norm becomes

F= Y Fi=y ¥ [M+59]. (D37)

Te{T} Te{T}

which suggests the choice of weighting matrix Qr for &7 = [Ar, Q7]
Qr = : (D.38)

This norm does recognizes characteristic relations as discussed in Section 4.1.2.

D.1.3 Burgers’ Equation

We consider

Oyu + ud,u = 0. (D.39)
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On a manifold R? with coordinates (u,x,y), we define a two-form «
a = —duAdr +udu A dy. (D.40)
Note that this has a nonconstant coefficient u. We may write
a = du A (udy — dz) (D.41)

from which we find a characteristic relation

d
u = const. and d_:r = u. (D.42)

Y

Again, we consider constructing an approximate submanifold by triangulation. The

discrete tangent vectors are

Vi = (Aug, Awy, AyQ)T (D.43)

Vo = (Aus, Axs, Ayy)t . (D.44)
The discrete error is then given by

Oy = Vi, Vi) = —du A dz(Vi, Vo) + udu A dy(Vy, Va) = —% Z u; (Az; — ulAy;) .
o (D.45)
Now the question remains as to how to evaluate the nonconstant coefficient u, or
where to evaluate the two-form, in other words. The simplest choice would be @, =

(uy + ug +u3)/3 which corresponds to evaluating the two-form at the centroid of the

triangular element or the so-called conservative linearization.

1

(I)T: 2

Z w; (Azy; — wpAy;) . (D.46)

1€jT
Obviously, this vanishes when the linearized characteristic relations, (D.42) with

dx/dy = Ty are satisfied along one of the sides.
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It is obvious that there are infinitely many choices as to where to evaluate the
form on a triangular element. Then, it would be reasonable to define the error by
integration of the two-form over the triangular element, which represents a sort of

average error.

@T:/a:/(—ciu/\cix-l—udu/\dy). (D.47)
T T

Note that the integrand can be written as —d(udz + (u?/2)dy), and therefore by

Stokes’ theorem we have
P ——/a——— do + (u?/2)d D.48
T . 8Tu x + (u®/2)dy ( )

in which u may be considered as a function of 2 and y since du is absent. This is of
course equivalent to the usual definition of the fluctuation. But here it is interpreted
as an integral error in aligning the discrete tangent vector to the solution surface

represented by the nonconstant two-form.
D.2 Cauchy-Riemann equations
We consider the Cauchy-Riemann system
Uy + vy = 0, Uy — Uy =0 (D.49)

where u and v denote velocity components. On a manifold R* with coordinates

(u,v,x,y), we define the two-forms oy and «y as

o = duAdy—dvAda (D.50)

ay = dvAdy+dunds . (D.51)

The equivalence with the original equations may be verified by imposing the inde-

pendence of x and y. On substituting du = u, dz + Uy dy and dv = v, dz + Uy dy, we



188

have

ar = (up+v,)deAdy (D.52)

ay = (v, —uy)ds Ady (D.53)

and retrieve the original equations by requiring the coefficients to vanish. Note that
integrating these forms, assuming the linear variation of « and v, over a triangle
in the physical plane (x,y), we obtain the fluctuation as usual, i.e. integrating
the differential equations. The hodograph equations are derived by imposing the

independence of u and v as before,

o = (yv-l—:vu)ciu/\dv (D.54)

ay = (—yu+x,)du A dv (D.55)

Integrating these forms, assuming the linear variation of x and ¥, over a triangle in
the hodograph plane (u,v) yields exactly the same fluctuations as shown in section
123. Here, the fluctuations are obtained, as in the previous sections, from the two-
forms which is the unified representation, by applying the two tangent vectors as the

two of the three sides of the triangle.

‘/1 - (Au27 A,U?; Ax?; Ay2)T (D56)
Vo = (Aus, Avs, Azs, Ay,)" (D.57)
The results are

Ur = ay(W,Va) = Z u; Ay; — Z v; Az, (D.58)

zE]T lEjT

1 1

VT == 042(‘/1, ‘/2) = = Z viAy,- + = Z UZAJI, (D59)

2 i€jr 2 1€JT

Alternatively, we can define them by integration

UT:/oq, VT:/ s (D.60)
T T
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which can be written as line integrals by Stokes’ theorem
Ur = ]{ udy — vdx, Vi = ]{ vdy + udzx (D.61)
oT oT

in which u and v may be considered as functions of z and y. And assuming the linear

variation, we obtain U, and V.
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APPENDIX E

A Least-Squares Norm for the Euler Equations

E.1 Introduction

We consider numerically solving the Euler equations in two dimensions by mini-
mizing a norm of the form

F= > FT:% > 21Qrer (E.1)

Te{T} Te{T}

over a set {T'} of triangles where ®7 is a vector of residuals for the Euler equations
and Q)7 is a positive definite symmetric matrix that assigns relative weight to the
different equations. The most important part of the least-squares formulation is the
definition of the norm to be minimized which greatly affects the numerical solutions.
In the class of norms defined above, it is the choice of the matrix ()7 that determines
the properties of the numerical solutions.

Assuming that we evaluate the residual based on its conservative from, we derive
the matrix Q7 that gives a certain number of properties to the minimization scheme.
Keep in mind that we retain time dependent terms in the analysis, but our primary

concern is steady state solutions.
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E.2 A Dimensionally Consistent Set of Variables and Its
Equations

We begin with the Euler equations in the conservative form.

ou JOF 0G
e i ) E.2
ot "o o (E:2)
where i i i i i i
p pu pv
2
pu pu” +p puv
U= , F= , G= (E.3)
pU puv pv? +p
pE puH pvH

where p is the density, u and v are the velocity components in the x and y direction,

respectively, and p is the static pressure. The specific energy and enthalpy are given

by
1 p 1, 2
E = — Y4 = E.4
7_1p+2ut+v) (E.4)
vop 1l 5 0,
H = —_~4+= . E.5
7_1p+2( +v7) (E.5)

One important consideration on defining a least-squares norm is the dimensional
consistency. Clearly, the set of equations are not dimensionally consistent in the
conservative form. To make it consistent, we introduce a set of variables that is

dimensionally consistent.

dp

2
pq-06
IV = (E.6)

dp — a*0p

| 9p+pgdq |

where 0 is the flow angle, ¢ is the flow speed, a is the speed of sound, and the

third and fourth components represent the entropy and the enthalpy respectively.
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Note that the components now have the common physical dimension. To transform

the conservative variables into the consistent variables, it is convenient to use the

primitive variables.

which is linked with the consistent and conservative variables through the transfor-

mations

OV = T, 0W, 0U = T, 0W (E.8)

respectively where

|

It follows that

00 0 1 0 0 0
0 —pv pu u p 0 0
, Ta= (E.9)
—-a> 0 0 v 0 p 0
1, 1
0 pu pu | 54 Pu pU T
oV = T,T;'0U = ToU. (E.10)

The transformation matrix 71" is thus given by

1
“(v—=1)g?
2(7 )q
0

1
9

1
—(v=3)¢

—(y=Du —(v-1v 7v-1

(E.11)
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Now, we can transform the conservation form into a dimensionally consistent form

by multiplying (E.2) by T from the left.

ouU OF aG
T-— 0 E.12
o T < ) (E-12)
U U
Taa— +T <Aa— + B—) 0 (E.13)
ou ouU
T— +T (AT 'T— + BT~ 1T 0 (E.14)
ot ox
oY% oY% aV
— +TAT '— + TBT! =0 E.15
ot o o (E-15)
where A = 35, B = 6U’ and we thus find
W2 s 0
—v U 0 0
TAT ! = (E.16)
0 0 u 0
L MM;1 _# 0 MMerl _
w0

TBT ' = (E.17)

M?-1 u M?+1
V}W wr U vhp

where M = ¢/a is the Mach number. This is the form of the Euler equations that
is dimensionally consistent in terms of the variable V. The equations already being

dimensionally consistent, in the least-squares method, we may therefore define the

norm as

1 1
F= > Fr= 5 > (T®7)'T®r = 3 Y ®LT'T®, (E.18)

Te{T} Te{T} Te{T}

which suggests

Qr =T'T. (E.19)
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Note that

ou oF 0G

which is evaluated by some quadrature rule. There are formulas that endow the
scheme with a certain property such as exact shock capturing as discussed in Section

4.2..

E.3 A Decomposition Matrix

For simplicity, we write the dimensionally consistent Euler equations (E.15) in
terms of the natural coordinates: the streamline and its normal.

ov ov ov

— +A,— +B,— =0 E.21
ot + 0s + on ( )
where
¢t 00 5h
0 ¢ 0 0
A, = TAT ‘'cosf + TBT 'sind = (E.22)
0 0gq O
M27 M2
¢ 00 ¢
(0 40 0
g 0 00
B, = TBT 'cosf — TAT 'sinf = : (E.23)
00 00
10 5= 00

Note that the equation for the entropy has been decoupled, but not for the enthalpy.
Now, we seek a matrix P, that decouples the enthalpy as well by following the

technique of preconditioning. We consider an altered system, preconditioned by P,.

A av oV
E + Py (Avg + Bva—n> =0 (E.24)
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and require that

g(M?2=1) 0 0 0 0 q 00
0 ¢ 00 ¢ 000
PA, = , P,B, = (E.25)
0 0 ¢q 0 0000
0 00 ¢ 0000

which imply that we have two advection equations for the entropy and the enthalpy
and a 2 X 2 acoustic subsystem in the resulting system. The matrix P4 can be

determined from the first equation. The result is

(M2+1 00 -1

P, = (E.26)

L—1 00 1

and an a posteriori check confirms that it satisfies the other requirement for By.

Therefore, the system (E.24) becomes

%H(Mtn%wq?’g—z = 0 (E.27)
pq2%+ pq?’%-f- qg—fb = 0 (E.28)
o T (E.20)
on boadt = (E.30)

where the first two compose the 2 x 2 acoustic subsystem and the others are com-
pletely decoupled advection equations for the entropy 0S = 0p — a?dp and the
enthalpy 0h = Op 4+ pgdq. In the least-squares method, we may therefore multiply

the residual by the matrix P, to decompose the residual, and then minimize the
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decomposed residual in the least-squares sense.

1 1
F=5 Y (PT®)PT®r =2 Y @ TP,P TP, (E.31)
2 retry 2 reqry

which suggests

Qr = T'P;P,T. (E.32)

E.4 A Matrix for the Acoustic Subsystem

We consider the subsystem in its steady state form.

op o0
M2 —1)22 I E.
q( )83 g 0 (E.33)
o0 ap
300 o9 _ E.34
e 0 (E.34)

The system is then hyperbolic in supersonic flow (M > 1) and elliptic in subsonic

flow (M < 1). Let us write the system in the matrix form.

OV OV

A, B, =0 E.35
Os N on ( )
where V,; = [p,0]" and
q(M*—1) 0 0 pg’®
A, = , B, = . (E.36)
0 pq° g O

In the hyperbolic case, we can diagonalize the system as follows. Multiplying A;*

from the left, we have

oV,
0s

oV,
on

The matrix A;'B, has the eigenvalues +1/4 where 8 = /M2 — 1 and the eigenvec-

+A;'B, 0. (E.37)

tors which are arranged into the columns of a matrix R

1 1
T 9B

R, = . (E.38)
D S U
3B pgcp
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Then, the characteristic form is obtained by multiplying the system by R;!.

V, vV

R;la +R;1A;1BSRSR;18 =0 (E.39)
0s on
OW, OW,

A =0 E.40

0s + on ( )

where OW, = Rglavs is the characteristic variables and A is the diagonal matrix
whose diagonal elements are the eigenvalues. Now, note that we obtained the char-
acteristic system by multiplying the original system (E.34) by A ! and then R, or
the matrix P, = R;'AJ! from the left. Then, denoting the residual corresponding

to the original system by W, we obtain the residual for the characteristic system as
P,V (E.41)

We then minimize this characteristic residual in the lease-squares norm.

Fo= Y (Py¥;)P,¥r= ) WiP.P, ¥y (E.42)
Te{T} Te{T}
where
1| L ER
P, = 9 , D,=P,P,= B : (E.43)
L p 0 (2

With this weighting matrix, the minimization scheme recognizes the characteristic
equations: the norm vanishes if the characteristic equations are satisfied for simple
as well as non-simple waves just as in the linear case. To deal with subsonic cases,

we define, following the analysis of Roe[82],

L -1 V18 R
P,=- , D,=P'P,=- . (E.44)

2
INNRVALS 0 |5
Then, in subsonic case, with area weighting, the discretization becomes identical

to the standard finite element discretization for the equivalent second-order partial

differential equations.
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E.5 The Norm for the Euler Equations

We now put everything together. Assume that we have evaluated the residual
from the conservative form, ®,. First, for dimensional consistency, we multiply the

residual by T.

T®; (E.45)

Second, to decompose the system, we multiply this by T.
P,T®, (E.46)
Finally, for the acoustic system, we multiply this by Pj.
P.P,T®, (E.4AT)

where Py is now 4 x 4 matrix defined by

(—1/2 V1821/2 0 0]
P, = 12 Iz 00 . (E.48)

We then minimize this residual in the least-squares sense, i.e. minimize

F= Y (P;P,T®;)'P,P,T®; (E.49)
Te{T}
or
Te{T}
where

Qs = T'P\P'P,P,T. (E.51)
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E.6 Implementation

Since the matrix Qy is complicated, it would be simpler to implement the weight

by computing the transformed residual vector.

3! — P&, = P,P,T®; (E.52)
where
2 u v v u — ]
( 41+ R) g-5y182 g1 M
2 u v v U —
TA+R) S -5/I2 =S +5/182 TM
p_ (E.53)
T —at —(y =1 —(y=Dv -1
L —q° u v 0

where R = 1+ (7 —1)M?. This matrix is evaluated within each triangle by the value
in accordance with the linearization of the conservation form. Then we minimize
F= Y Fr= Y (2))®} (E.54)
Te{T} Te{T}

by a steepest descent method
0Zj = —wer=—w > ——r (E.55)

where w is a small constant and Z; is a set of variables with respect to which the

norm is minimized. The gradient in the cell T is given by

oFy b 0P i OPT
— = = P .

(E.56)

E.7 Summary

The norm derived here has the following properties.

1. It is dimensionally consistent.
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2. It is equivalent to a least-squares norm for the decomposed Euler equations.

3. In supersonic flows, it is equivalent to a least-squares norm for the character-
istic equations, and thus the norm can vanish for simple or non-simple wave

solutions.

4. In subsonic case, with area weighting, the method becomes identical to the
standard finite element discretization for the second-order partial differential

equations equivalent to the elliptic subsystem.

Shock capturing capability is given by a particular linearization of the conservative

form via a parameter « as discussed in Section 4.2.
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APPENDIX F

Computing the Exact Solutions for Airfoil
Problems

Our concern here is to compute the exact solutions (the velocity components) of
the incompressible irrotational flow around a Joukowsky airfoil at a specified location
in the space where the airfoil resides. A conventional method to obtain the exact
solution to the flow around an airfoil is based on a direct transformation: from a
flow around a cylinder onto a flow around an airfoil. This means that we choose a
point in the plane of the cylinder, compute the solution there, and transform the
location as well as the solution onto a point in the plane of the airfoil to obtain the
exact solution. In this manner, however, it is difficult to obtain the solution at a
desired location in the airfoil plane which is exactly what we wish to do in order to
obtain the solution on a given grid point for the purpose of computing the numerical
error. To achieve this, we need to reverse the transformation, which, however, must
be performed carefully.

We begin by outlining the direct procedure. Let ( = & +in and Z = x + 1y
denote the complex planes of the cylinder and the airfoil respectively. Consider the

Joukowsky transformation

Z=C+— (F.1)
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by which the circle || = [ in {-plane is transformed onto the line segment joining
the points Z = £2[ in Z-plane and the exterior of the circle is transformed onto the
exterior of the line segment. To generate an airfoil, we choose a circle that passes
through the point ¢ = [, which corresponds to the trailing edge, but whose center is
shifted by a small amount = —el + ikl where € and k are small positive constants
that control the thickness and camber of the resulting airfoil respectively. The circle
is thus defined by
(o= p+ ae” (F.2)
where
a=1/(1+¢€)?+ K2, (F.3)

and 0 < 0 < 27. We define an angle, 3, by
Crp=1=p+ae™. (F.4)
It is easy to show that this angle is computable by

B =sin! <E> : (F.5)

a

The generating circle is now completely defined and the airfoil can be obtained simply
by mapping the points on the circle by (F.1). The exact solution is available for a

flow around a cylinder defined by (F.2) in the form of the complex velocity

W) dFEQ)/Ve) w—iv  _  2aisin(a+ j3) a’et®
Vo o dg T " C—p (- p)? (F-6)

where F(¢) denotes the corresponding complex potential, an angle of attack is
denoted by «, and the circulation has been determined by the Kutta condition

W (¢rg) = 0. To obtain the complex velocity in Z-plane, we use the chain rule.

dg

W(Z) _ dEZ)Va) _ dEQVor) de _ d(F(S)/ Vo) (dz)l (F.7)
Vo iz ¢ dz a6 -



203

Note that the derivative dZ/d¢ becomes zero at (g and therefore W (({rg) = 0 is
required to obtain a finite velocity at the trailing edge. The velocity there can be
found by using L’Hospital’s rule. The result is

W (ZrE)
Voo

= éemﬂcos(a + ). (F.8)
Now, everything is set up and we can do the following: pick up a point in {-plane;
transform it into a point in Z-plane by (F.1); compute the velocity at that point by
(F.7) or (F.8). It is important to note that the velocity is a function of ¢ alone and
therefore can be computed without knowing the corresponding point in Z-plane.
Therefore, to compute the velocity at a given point in Z-plane which is what we
want to do, we just need to find the corresponding point in {-plane, thus leading to
the inverse transformation. Consequently, the discussion that follows will be purely
geometrical.

In order to invert the transformation (F.1), we first write it in an alternative

form. Note that adding +2[ to the both sides of (F.1) gives

C2+l2i2l§: (CE1)?

Z+2=
¢ ¢

(F.9)

and division yields

Z—2  [(¢-1\
Z+2l_<m> (£.10)

which is the desired result. It then follows immediately that

Z =2l -
arg <Z+§l> =2 arg (%) : (F.11)

This shows that the angle formed by two line segments, the one joining the point of

interest and Z = —2[ and the other joining the point and Z = 2/ is always twice the
angle formed by the segment joining the corresponding point and ¢ = —[ and the one

joining that point and ( = [. It follows from this that the Joukowsky transformation
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maps the circle |(] = [ in {-plane onto the line segment joining the points Z = £2[ in
Z-plane and the exterior of the circle onto the exterior of the line segment. The map
is bijective (one-to-one and onto), and therefore the inverse transformation exists. It

is obtained from

Z-2\T (-l
<Z+m> T+ (F.12)

<:(2+mﬁ+42—2n‘ (F.13)
(Z+20)% — (Z —21)

and solving for ¢ gives

=

M

It is now possible to compute the exact solution at a given point in the airfoil plane:
pick any point Z outside the airfoil; transform back to the corresponding point in
¢-plane by (F.13); compute the velocity by (F.7) or (F.8).

However, the inverse transformation fails for cambered airfoils. The reason is
that the transformation is not injective (one-to-one) if the inside of the circle || =1
is included in its domain. In fact, it is easy to show from (F.11) that the lower-half
region of the circle is mapped onto the upper-half of Z-plane while the upper-half
region of the circle is mapped onto the lower-half of Z-plane. The cambered airfoils
are generated by a circle part of which goes inside of the core circle |(| = [, due to
nonzero k, typically near but less than § = —(3. Therefore the region inside of the
core circle, which is below the real axis, is now transformed a region that is above
the real axis in Z-plane, thus creating a camber. It can be shown that this happens

if a point ¢ = re® lies in the region defined by
2 — (2sin *(Ik/|p]) — B) <0 <27 — B and (| <71 <L (F.14)

This shows conversely that it never happen only if kK = 0, i.e. symmetrical airfoils. If
k is nonzero and the point in consideration happens to be a map from a point inside

of the core circle, the inverse transformation (F.13) fails, transforming the point into
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the one outside of the circle. A correct transformation is obtained by putting the

minus sign on the left side of in (F.12), and solving for (, thus giving

(Z+2l)
(Z +21)

—(Z -2
+(Z - 20)

. (F.15)

(M (M
(M (M

It is however not easy in practice to tell if the point in Z-plane belongs to this
domain to switch the inverse transformation. A more practical way to overcome this

difficulty is to employ von Karman-Trefftz airfoils generated by

Z—nl _ (¢C—1\"
Z+nl (ﬁ) (£.16)

where

.
=2—-—. F.17
n=2-1 (F.17)

This is a generalization of the Joukowsky transformation which replaces the cusp at
the trailing edge by a point with two distinct tangents creating a finite interior angle
of the trailing edge that is specified by 7. It can be shown that the von Karman-
Trefftz transformation is bijective in the domain that includes a bit of inside of the
core circle. Therefore the inverse transformation, (F.13) with 2 replaced by n, exists

even for cambered airfoils although the camber must be small.
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