Grids and Solutions from Residual Minimization

HIROAKI NISHIKAWA

W.M.Keck Foundation Laboratory for Computational Fluid Dynamics
Department of Aerospace Engineering, University of Michigan,

Ann Arbor, Michigan 48109

Circular Advection

$$y\,\partial_x u - x\,\partial_y u = 0$$

Circular Advection

$$y\,\partial_x u - x\,\partial_y u = 0$$

A typical solution on the regular grid.

Mesh Refinement

Mesh Movement

An Adaptive Grid

An Adaptive Grid

Why Triangular Grids?

- Easy to Create for Complex Domains
- Easy to Insert/Delete Nodes
- Easy to Change the Connectivity (Edge Swapping)
- Additional Degrees of Freedom

The Number of Elements $\approx 2 \times$ The Number of Nodes

Least-Squares Residual Minimization

FLUCTUATION:

$$\mathbf{\Phi}_T = \int_T [\partial_x \mathbf{F} + \partial_y \mathbf{G}] \, dx \, dy$$

Norm:

$$\mathcal{F} = \frac{1}{2} \sum \mathbf{\Phi}_T^t Q_T \mathbf{\Phi}_T$$

UPDATES:

$$\delta \mathbf{u}_j = -\omega_u \frac{\partial \mathcal{F}}{\partial \mathbf{u}_j}, \quad \delta \mathbf{x}_j = -\omega_x \frac{\partial \mathcal{F}}{\partial \mathbf{x}_j}$$

Example 1: One-Dimensional Problem

$$\epsilon \frac{d^2u}{dy^2} + \frac{du}{dy} - a = 0$$

A Fixed Uniform Grid

An Adaptive Grid

Example 2: Hyperbolic Problem

$$(1 - M_{\infty}^2)\partial_x u + \partial_y v = 0, \quad \partial_x v - \partial_y u = 0$$

Supersonic flow through a duct, $M_{\infty} = \sqrt{2}$ with a small incidence.

Example 3: Elliptic Problem

Regular 40x20 Grid

 C_p Distribution

An Adaptive Grid

 C_p Distribution

Linear Advection

LINEAR ADVECTION EQUATION:

$$a\,\partial_x u + b\,\partial_y u = 0$$

The solution u is convected in the direction (a, b).

CHARACTERISTIC EQUATION:

$$u = const.$$
 along $dy/dx = b/a$

Fluctuation

$$\Phi_T = \int_T [a \,\partial_x u + b \,\partial_y u] \,dx \,dy = \frac{1}{2} \sum_{i \in j_T} u_i \,(a\Delta y_i - b\Delta x_i)$$

The fluctuation vanishes if the characteristic equation is satisfied along one edge, and it is independent of the third node.

Least-Squares Minimization

NORM:

$$\mathcal{F} = \sum F_T = \frac{1}{2} \sum \frac{\Phi_T^2}{S_T}$$

UPDATES:

$$\delta u_j = -c_u \frac{\partial \mathcal{F}}{\partial u_j} = \frac{c_u}{2} \sum_{\{T_i\}} (a\Delta y_T - b\Delta x_T) \frac{\Phi_T}{S_T}$$

$$\delta \mathbf{x}_{j} = -c_{x} \frac{\partial \mathcal{F}}{\partial \mathbf{x}_{j}} = \sum_{\{T_{j}\}} \frac{c_{x}}{2} \Delta u_{T} \frac{\Phi_{T}}{S_{T}} \begin{bmatrix} -b \\ a \end{bmatrix} + c_{x} \sum_{\{T_{j}\}} \frac{F_{T}}{2S_{T}} \begin{bmatrix} \Delta y_{T} \\ -\Delta x_{T} \end{bmatrix}$$

The node moves in the direction normal to the characteristic.

Geometrical View

Minimizing the area of the triangle in the characteristic plane as quickly as possible.

A Simple Linear Advection

A degenerate element is introduced to represent a perfect discontinuity.

A Simple Linear Advection

The grid is altered only in an important region.

A Linear Hyperbolic System

SMALL PERTURBATION AERODYNAMICS:

$$(1 - M^2)\partial_x u + \partial_y v = 0, \ \partial_x v - \partial_y u = 0$$

CHARACTERISTIC EQUATIONS (SUPERSONIC CASE):

$$\beta u + v = const.$$
 along $dy/dx = -1/\beta$

$$\beta u - v = const.$$
 along $dy/dx = 1/\beta$

where $\beta = \sqrt{M^2 - 1}$.

Fluctuations

FLUCTUATIONS:

$$\Delta_T = \int_T \left[\beta^2 \partial_x u - \partial_y v \right] dx dy, \ \Omega_T = \int_T \left[\partial_x v - \partial_y u \right] dx dy$$

CHARACTERISTIC FLUCTUATIONS:

$$C_T = \frac{1}{2} \sum_{i \in j_T} (v + \beta u)_i \Delta(x + \beta y)_i = \Delta_T + \beta \Omega_T$$

$$D_T = \frac{1}{2} \sum_{i \in j_T} (v - \beta u)_i \Delta (x - \beta y)_i = \Delta_T - \beta \Omega_T$$

The Least-Squares Norm

Minimize the characteristic fluctuations in the least-squares norm.

$$\mathcal{F} = \sum_{T \in \{T\}} F_T = \frac{1}{2} \sum_{T \in \{T\}} \frac{C_T^2 + D_T^2}{S_T}$$

In terms of the original fluctuations.

$$\mathcal{F} = \frac{1}{2} \sum_{T \in \{T\}} \frac{\Delta_T^2 + \beta^2 \Omega_T^2}{S_T}$$

In the matrix form,

$$\mathcal{F} = \frac{1}{2} \sum \frac{\mathbf{\Phi}_T^t Q_T \mathbf{\Phi}_T}{S_T}$$

where

$$\mathbf{\Phi}_T = \left(\Delta_T, \Omega_T\right)^t, \ Q_T = \left[egin{array}{ccc} 1 & 0 \\ & & \\ 0 & eta^2 \end{array}
ight]$$

Small Perturbation Aerodynamics

Supersonic flow through a duct, $M_{\infty} = \sqrt{2}$ with a small incidence. 18 nodes have been removed on the final grid.

Burgers' Equation

$$\partial_y u + u \, \partial_x u = 0$$

$$\Phi_T = \frac{1}{2} \sum_{i \in j_T} u_i \left(\Delta y_i - \bar{u}_T \Delta x_i \right) \quad \Phi_T = \frac{1}{2} \sum_{i \in j_T} u_i \left(\Delta y_i - u_i \Delta x_i \right)$$

Quadrature Formulae

CONSERVATION LAWS:

$$\partial_x \mathbf{F}(\mathbf{w}) + \partial_y \mathbf{G}(\mathbf{w}) = 0$$

BILINEAR FLUX FUNCTIONS:

$$\mathbf{F}(\mathbf{w}) = \mathbf{w}^t \mathbf{C} \mathbf{w}, \quad \mathbf{G}(\mathbf{w}) = \mathbf{w}^t \mathbf{D} \mathbf{w}$$

FLUCTUATION:

$$\mathbf{\Phi}_{123} = \int \int_{123} \left[\partial_x \mathbf{F}(\mathbf{w}) + \partial_y \mathbf{G}(\mathbf{w}) \right] dx dy = \oint_{123} \left[\mathbf{F}(\mathbf{w}) dy + \mathbf{G}(\mathbf{w}) dx \right]$$

QUADRATURE FORMULAE:

$$\int_{1}^{2} \mathbf{F}(\mathbf{w}) dy = (y_2 - y_1) \left[\mathbf{w}_1^t \mathbf{C} \mathbf{w}_2 + \frac{\alpha}{2} (\mathbf{w}_1 - \mathbf{w}_2) \mathbf{C} (\mathbf{w}_1 - \mathbf{w}_2) \right]$$

Formulae for Fluctuation

$$\mathbf{\Phi}_{123}(\alpha) = \mathbf{w}_{31}^{t}(\alpha) \left\{ \Delta y_3 \mathbf{C} - \Delta x_3 \mathbf{D} \right\} (\mathbf{w}_3 - \mathbf{w}_1) + \mathbf{w}_{12}^{t}(\alpha) \left\{ \Delta y_2 \mathbf{C} - \Delta x_2 \mathbf{D} \right\} (\mathbf{w}_2 - \mathbf{w}_1)$$

where

$$\mathbf{w}_{ij}(\alpha) = \frac{\alpha}{2}(\mathbf{w}_i + \mathbf{w}_j) + (1 - \alpha)\mathbf{w}_k.$$

Or written

$$\Phi_{123}(\alpha) = \left\{ \frac{\partial \mathbf{F}}{\partial \mathbf{w}} \Delta y_3 - \frac{\partial \mathbf{G}}{\partial \mathbf{w}} \Delta x_3 \right\} (\mathbf{w}_3 - \mathbf{w}_1) + \left\{ \frac{\partial \mathbf{F}}{\partial \mathbf{w}} \Delta y_2 - \frac{\partial \mathbf{G}}{\partial \mathbf{w}} \Delta x_2 \right\} (\mathbf{w}_2 - \mathbf{w}_1)$$

(Note that there are two other rearrangements possible)

Shock Recognition: $\alpha = 1$

If $\mathbf{w}_1 = \mathbf{w}_2 = \mathbf{w}_c$,

$$\mathbf{\Phi}_{123}(\alpha) = \mathbf{w}_{31}^t(\alpha) \left\{ \Delta y_3 \mathbf{C} - \Delta x_3 \mathbf{D} \right\} (\mathbf{w}_3 - \mathbf{w}_c).$$

Take $\alpha = 1 \longrightarrow \mathbf{w}_{31}(\alpha) = \overline{\mathbf{w}}_{31} = (\mathbf{w}_3 + \mathbf{w}_c)/2$.

This corresponds precisely with the Hugoniot condition,

$$\overline{\mathbf{w}}^t(S\mathbf{C} - \mathbf{D})\Delta\mathbf{w} = 0$$

 $\Phi_{123}(1)$ vanishes if the Hugoniot condition is satisfied across a shock and "one edge is aligned with the shock".

Entropy-Satisfying Solution: $\alpha = 0$

For Burgers' equation $\partial_t u + \partial_x f = 0$ where $f = u^2/2$,

$$\frac{\partial u_j}{\partial t} + \frac{f_{j+1} - f_{j-1}}{2\Delta x} = (1 - \alpha)\Delta x^2 \frac{u_{j+1} - u_{j-1}}{2\Delta x} \frac{u_{j+1} - 2u_j + u_{j-1}}{\Delta x^2}$$

which is a second order discretisation of

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = (1 - \alpha)\Delta x^2 \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial x^2}.$$

In the case of expansion, $\frac{\partial u}{\partial x} > 0$, $\alpha < 1$ produces positive dissipation \longrightarrow physical solutions.

Characteristic Recognition: $\alpha = 0$

If $\mathbf{w}_1 = \mathbf{w}_2 = \mathbf{w}_c$,

$$\mathbf{\Phi}_{123}(\alpha) = \mathbf{w}_{31}^t(\alpha) \left\{ \Delta y_3 \mathbf{C} - \Delta x_3 \mathbf{D} \right\} (\mathbf{w}_3 - \mathbf{w}_c).$$

For the special choice $\alpha = 0 \longrightarrow \mathbf{w}_{31}(\alpha) = \mathbf{w}_2$.

For scalar problems, $\Phi_{123}(0)$ vanishes if the characteristic

0.5 pt=0.482150.5 ptequation $d\mathbf{w}=0$ is exactly satisfied along one edge and "that edge is aligned with the exact characteristic".

Detecting Compression/Expansion

Left: Element in expansion. Right: Element in compression.

Arrows indicate the characteristic speed vecors.

USEFUL QUANTITY:

$$\frac{dS_T}{dt} = \frac{1}{2} \sum_{i=1,2,3} \lambda_i \cdot \mathbf{n}_i$$

Solution Procedure

- 1. Converge the solution on a fixed grid
- 2. Assign α to each element, depending on the sign of dS_T/dt
- 3. Remove undesirable nodes
- 4. Update solutions and coordinates, with edge swappings interleaved.

A Curved Shock

Grid and Solution for a curved shock problem

A Grid-Aligned Rarefaction

Grid and Solution for a rarefaction

Cauchy-Riemann System

$$\partial_x \phi - \partial_u \psi = 0$$

$$\partial_x \phi - \partial_y \psi = 0$$
$$\partial_y \phi + \partial_x \psi = 0$$

Two-dimensional incompressible potential flows with velocity potential ϕ , stream function ψ . But all 2D elliptic systems are isomorphic with the Cauchy-Riemann system.

Least-Squares Minimization

FLUCTUATION:

$$egin{align} U_T &= \int_T \left[\partial_x \phi - \partial_y \psi
ight] \; dx \, dy = \int_T \left[\partial_\psi y - \partial_\phi x
ight] \; d\phi \, d\psi \ V_T &= \int_T \left[\partial_\phi \phi + \partial_\phi \psi
ight] \; dx \, dy = \int_T \left[-\partial_\phi y - \partial_\phi x
ight] \; d\phi \, d\psi \end{aligned}$$

$$V_T = \int_T \left[\partial_y \phi + \partial_x \psi \right] dx dy = \int_T \left[-\partial_\phi y - \partial_\psi x \right] d\phi d\psi$$

NORM:

$$\mathcal{F} = \sum_{T \in \{T\}} F_T = \frac{1}{2} \sum_{T \in \{T\}} \frac{U_T^2 + V_T^2}{S_T}$$

Equivalent to minimizing

$$\mathcal{F} = \frac{1}{2} \sum_{T \in \{T\}} \iint_T \nabla \phi \cdot \nabla \phi \, dx dy + \frac{1}{2} \sum_{T \in \{T\}} \iint_T \nabla \psi \cdot \nabla \psi \, dx dy - \sum_{T \in \{T\}} S_T^{'}$$

Equivalent to the standard finite element method applied to

$$\phi_{xx} + \phi_{yy} = 0$$
, $\psi_{xx} + \psi_{yy} = 0$ with $\psi = g(x, y)$, $\partial_n \phi = \partial_s \psi$

Mesh Movement (Spring Analogy)

The equations we need to solve, $\frac{\partial \mathcal{F}}{\partial \mathbf{x}_j} = 0$, can be written in the interative form.

$$\mathbf{x}_{j}^{n+1} = \mathbf{x}_{j}^{n} + \frac{\sum_{i \in i_{j}} \alpha_{i}^{*} (\mathbf{x}_{i}^{n} - \mathbf{x}_{j}^{n})}{\sum_{i \in i_{j}} \alpha_{i}^{*}} + \frac{1}{2} \frac{\sum_{T \in \{T_{j}\}} F_{T} / S_{T}}{\sum_{i \in i_{j}} \alpha_{i}^{*}} \mathbf{n}_{T}$$

where

$$\alpha_i^* = \frac{1}{4} \left(|J_T| \cot \theta_T + |J_{T+1}| \cot \theta_{T+1} \right)$$
$$J_T = (\partial_x \phi \partial_y \psi - \partial_y \phi \partial_x \psi)|_T$$

Cauchy-Riemann System

$$\partial_x u + \partial_y v = 0$$

$$\partial_x u + \partial_y v = 0$$
$$\partial_x v - \partial_y u = 0$$

"Solutions are continuous in doubly-connected regions."

A Potential Vortex: A Test Problem

The exact solution is q=1/r. But the Laplace equations allow another solution.

$$q = 1/r + r$$

Recovering the Second-Order Accuracy

Minimize the "unweighted norm".

$$\mathcal{F} = \sum_{T \in \{T\}} F_T = \frac{1}{2} \sum_{T \in \{T\}} \left[U_T^2 + V_T^2 \right]$$

Equivalent to minimizing

$$\mathcal{F} = \frac{1}{2} \sum_{T \in \{T\}} S_T \iint_T \nabla \phi \cdot \nabla \phi \, dx dy + \frac{1}{2} \sum_{T \in \{T\}} S_T \iint_T \nabla \psi \cdot \nabla \psi \, dx dy - \sum_{T \in \{T\}} S_T S_T' \, dx dy = \sum_{T \in \{T\}} S_T' \, dx dy = \sum_{T$$

"The last term creates the variable-coupling, and it is no longer equivalent to the FEM for the Laplace equations."

A Solution by the Unweighted Norm

Solution obtained on an 160x80 O-grid

The convergence rate is 1.7

A Third-Order Least-Squares

- (1) Evaluate the gradient of each variable.
- (2) Hermite interpolation to get mid point values.
- (3) Simpson's rule to evaluate the fluctuation.

$$\Phi_{123} = \iint_{123} [\partial_x f + \partial_y g] dx dy = \oint_{123} f dy - g dx$$
$$= \sum_{edges} (\overline{f} \Delta y - \overline{g} \Delta x) - \frac{1}{12} \sum_{edges} (\Delta p \Delta y - \Delta q \Delta x).$$

where p and q are the directional derivatives of f and g along each γ dge.

A Third-Order Least-Squares

Solution obtained on an 80x40 O-grid

The convergence rate is 3

Moving Mesh Solution

Regular 40x20 Grid

 C_p Distribution

An Adaptive Grid

 C_p Distribution

Conclusions and Future Work

- Residual Minimization has the Potential to be a very effective tool for grid adaptation
- Ready for the Euler Equations.
- Finding the Right Norms to Minimize.
- Node Insertion/Removal Procedure.
- Accelerate the Convergence (Multigrid).

