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Circular Advection
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Circular Advection
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A typical solution on the reqular grid.
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Mesh Refinement
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Mesh Movement

0.5




0.8

021

An Adaptive Grid
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Why Triangular Grids?

Easy to Create for Complex Domains
Easy to Insert/Delete Nodes
Easy to Change the Connectivity (Edge Swapping)

Additional Degrees of Freedom

The Number of Elements ~ 2 x The Number of Nodes




Least-Squares Residual Minimization
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Example 1: One-Dimensional Problem
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Example 2: Hyperbolic Problem

(1—M2)0,u+ 0yv=0, Opv—0,u=0
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Supersonic flow through a duct, Mo = /2 with a small incidence.




Example 3: Elliptic Problem
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Linear Advection

LINEAR ADVECTION EQUATION:
a0,u~+boyu=0

The solution u is convected in the direction (a,b).

CHARACTERISTIC EQUATION:

u = const. along dy/dx =b/a




Fluctuation

1
By — /T[a Opu+bdyu] dedy = = > us (ady; — bAw;)

1€JT

The fluctuation vanishes if the characteristic equation is satisfied
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along one edge, and it 1s independent of the third node.
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Least-Squares Minimization
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The node mowves in the direction normal to the characteristic.




Geometrical View
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Minimizing the area of the triangle in the characteristic plane as

quickly as possible.




A Simple Linear Advection
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A degenerate element is introduced to represent a perfect discontinuity.




A Simple Linear Advection
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The grid is altered only in an tmportant region.




A Linear Hyperbolic System

SMALL PERTURBATION AERODYNAMICS:
(1 - M?*)0pu+ dyv =0, O,v—yu=0
CHARACTERISTIC EQUATIONS (SUPERSONIC CASE):

Bu+v = const. alongdy/dr=—-1/p3
Bu—v = const. alongdy/dx=1/0




Fluctuations

FLUCTUATIONS:

AT:/ [52&6‘&—%1}} dz dy, QT:/ [0zv — Oyu| dxdy
T T

CHARACTERISTIC FLUCTUATIONS:

Cr = 33 (04 Bl + By) = Ar + B
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Dr = 3 (v Buid(z— By); = Ar — B
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The Least-Squares Norm

Minimize the characteristic fluctuations in the least-squares norm.

1 C2 + D?
— Fr== L L
F=2 Fr=5 ) —4
Te{T} Te{T}

In terms of the original fluctuations.

1 A% + (2Q7,

Te{T} St

In the matrix form,

where




Small Perturbation Aerodynamics
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X =
x

Supersonic flow through a duct, M = v/2 with a small incidence. 18

nodes have been removed on the final grid.




Burgers’ Equation

Oyt + uO0yu =0
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Quadrature Formulae

CONSERVATION LAWS:
0. F(w)+0,G(w) =0
BILINEAR FLUX FUNCTIONS:
F(w)=w'Cw, G(w)=wDw

FLUCTUATION:

Bos — / /1 0 F(w) +0,G(w)] dady = 7{ F(w)dy + G(w)da]

23

(QUADRATURE FORMULAE:

/12 F(w)dy = (y2 — v1) [W§CW2 + %(Wl — w2)C(wy — wa)

&



Formulae for Fluctuation

(1)123(04) — ng(a) {Ang — Aﬂng} (W3 — Wl) +
W§2(Oé) {AyzC — AZCQD} (W2 — Wl)

where
o
wij(a) = 5 (Wi +w;) + (1 - a)ws.
Or written
OF 0G
(1)123(04) — {8—WAy3 — 8—WAZC3} (Wg — Wl) -+
OF 0G
{8—wAy2 — 8—WA$2} (W2 — Wl)

| % (Note that there are two other rearrangements possible )



Shock Recognition: a =1

If wi =wy =wy,
Po3(a) = wgl(oz) {AysC — Ax3D} (wz — we).

Takea =1 — W31(Oé) = W3] = (Wg -+ Wc)/2
This corresponds precisely with the Hugoniot condition,

w (SC —D)Aw = 0

1

®,535(1) vanishes if the Hugoniot condition is satisfied

across a shock and “one edge is aligned with the shock”.




Entropy-Satisfying Solution: o = 0

For Burgers’ equation d;u + 0, f = 0 where f = u?/2,

Ou,; n fivr — Ji1 _ (1— a)Ag2latt —Ui-1 i1 = 2uj +uj—1

ot 2Ax 2Ax Azx?

which is a second order discretisation of

ou N of
ot Ox

ou 0%u
_ _ 277 = 7
=(1-a)Az Or 0x?

In the case of expansion, g—g > 0,

a < 1 produces positive dissipation — physical solutions.




Characteristic Recognition: o = (

If wi =wy =wy,

P 193(a) = wh(a) {AysC — AzzD} (w3 — w,).

{Egor scalar problems, ®,53(0) vanishes if the characteristic



0.5pt=0.482150.5pt
equation dw = 0 is exactly satisfied along one edge

and “that edge is aligned with the exact characteristic”.




Detecting Compression/Expansion

=

Left: Element in expansion. Right: Element in compression.

Arrows indicate the characteristic speed vecors.

USEFUL QUANTITY:




Solution Procedure

. Converge the solution on a fixed grid
. Assign « to each element, depending on the sign of dSt/dt
. Remove undesirable nodes

. Update solutions and coordinates, with edge swappings

interleaved.




A Curved Shock
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Grid and Solution for a curved shock problem




A Grid-Aligned Rarefaction
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Grid and Solution for a rarefaction




Cauchy-Riemann System

0y — Oyt = 0
0y + Oyt

I
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Two-dimensional incompressible potential flows with velocity
potential ¢, stream function . But all 2D elliptic systems are

isomorphic with the Cauchy-Riemann system.




Least-Squares Minimization

FLUCTUATION:

Ur = [ 10:6=0,0) dady = | [0y~ 0ua) do

Vi - / 0,6+ 0y dar dy — / [~ 0yy — Byz] ddp
T T

NORM:
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— Fr== T T
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Equivalent to minimizing
1 1 ,
F=3 > //Tqu-quda:dy—l—i > //Tw-wda;dy— > Sy
Te{T} Te{T} Te{T}

Equivalent to the standard finite element method applied to




Mesh Movement (Spring Analogy)
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The equations we need to solve, % = 0, can be written in the

J
interative form.

Zieij af (X} — X?) n EZTE{TJ'} Fr/St
Zz‘ez‘j a; 2 Zz‘ez‘j a;

X"t = X5 + nr

J

where

af:% (|JT| C0t9T+|JT_|_1 | C0t9T+1)

J1=(02 00y Y =0y $p0zv) |




Cauchy-Riemann System

Ozu+0yv = 0
00 —0yu = 0

“Solutions are continuous in doubly-connected regions.”




A Potential Vortex: A Test Problem

The exact solution is ¢ = 1/r. But the Laplace equations allow another

solution.

% qgq=1/r+r



Recovering the Second-Order Accuracy

Minimize the “unweighted norm”.

F= Y FT% > [UF+ V]

Te{T} Te{T}

Equivalent to minimizing

F = % 3 ST//T V-V da:der% 3 ST//T Vip-Vip dvdy— Y~ SrSy

Te{T} Te{T} Te{T}

“The last term creates the variable-coupling, and it is no
longer equivalent to the FEM for the Laplace equations.”




A Solution by the Unweighted Norm
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Solution obtained on an 160x80 O-grid The convergence rate is 1.7




A Third-Order Least-Squares

(1)Evaluate the gradient of each variable.
(2)Hermite interpolation to get mid point values.
(3)Simpson’s rule to evaluate the fluctuation.

Pio3 = // 02 f + 0yg] dxdy = fdy—gdx
123 123

1

= D (FAy—gAz)— = }  (ApAy— AgAz).

edges edges

where p and ¢ are the directional derivatives of f and g along each
ge.




A Third-Order Least-Squares

Solution obtained on an 80x40 O-grid
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The convergence rate is 3




Moving Mesh Solution
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Conclusions and Future Work

Residual Minimization has the Potential to be a very effective tool

for grid adaptation

Ready for the Euler Equations.
Finding the Right Norms to Minimize.
Node Insertion/Removal Procedure.

Accelerate the Convergence (Multigrid).
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