H. Nishikawa, M. Rad, and P.L. Roe, Grids and Solutions from Residual Minimisation,
Computational Fluid Dynamics 2000: Proceedings of the First International Conference on Computational Fluid Dynamics, ICCFD, Kyoto, Japan, 10-14 July
2000, Springer, 2001.

Grids and Solutions from Residual Minimisation

Hiroaki Nishikawa, Mani Rad, and Philip Roe

Department of Aerospace Engineering,
University of Michigan, Ann Arbor, MI 48109, USA

Abstract. In this paper, a least-squares method that incorporates node movement
is presented. For nonlinear hyperbolic problems with bilinear flux functions, a class
of quadrature formulae for fluctuation computation is proposed which allows a stable
structure of discrete shocks, yet preventing nonphysical shocks. Computational results
for Burgers’ equation are shown to demonstrate its sharp shock capturing ability.

1 Introduction

One way to construct solutions of partial differential equations on triangular
grids is to minimise residuals in a suitable norm with respect to nodal positions
as well as solution values. It has been shown that such a method is capable of
producing exact solutions for linear hyperbolic equations, automatically adjust-
ing the mesh into a characteristic configuration [1-4]. It is an advantage of the
method that a shock can be captured with many fewer nodes than the usual
curvature adaptation [5]. However, its extension to nonlinear problems is not
yet well-developed because of the difficulty in forming a characteristic mesh at
nonlinear shocks. In this paper, we propose a way to accomplish this, i.e. a way
to capture exact nonlinear shocks.

2 Quadrature Formulae

We consider sets of two-dimensional conservation laws of the form
0. F(w) +0,G(w) =0 (1)

where F, G, w € R™ in which each component of the fluxes is a bilinear function
of the components of w.

F(w) =w'Cw, G(w)=wDw (2)

where C and D are constant symmetric third-order tensors. This structure in-
cludes the Euler equations of compressible inviscid flow if w is taken to be Roe’s
parameter vector. We are interested in solving (1) by a least-squares method on
triangular grids in which the first step is to compute the fluctuation.

By — / /1 [0F(w)+0,G(w)] dady = 7{ (F(w)dy + G(w)dz]  (3)
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where the data is available at the vertices 1,2,3. The second step is then to
distribute some fraction of the fluctuation to each vertex. In this least-squares
method, as will be explained in Section 5, these fractions sum to zero over any
given element, so that the method will be conservative however the fluctuations
are evaluated. Therefore we focus first on different properties of various evalu-
ations. Consider a single term, arising from integrating just one component of
the flux vector over on edge of the element.

2 2
Fio :/ F(w) dy:/ w!Cw dy (4)
1 1
To evaluate this integral there is a class of simple formulae;

F12(OZ) _ (yQ - yl)

5 [(WiCWQ + whCw1) + a(w — wo)C(wy — WQ)} (5)

where « is a parameter that has only a second-order relative effect on the accu-
racy of the estimate as clearly seen.

3 Formulae for the Fluctuation

The formula for the fluctuation is obtained by summing up the contributions
from three sides. Introducing the notation,

wij(@) = (W, +w;) + (1 - a)w (6)

where i, j, k are cyclically permuted for 1,2, 3, and rearranging terms, we obtain

®103(a) = whi (o) {AysC — AzsD} (ws — wy) +
wip(@) {Ay2C — AzoD} (w2 — wi) (7)

where Ay; is the difference of y taken anticlockwise along the edge opposite
to the node 4, similarly for Azx;. Note that this formula is not symmetric with
respect to the vertices. There are two other rearrangements possible, and all
three will give the same numerical value. This particular arrangement can be
written

OF 0G
®i93(a) = {8_wAy3 - 8_wa3} (wg —wy) +
OF 0G
{8_WAy2 — 8—WA$2} (WQ —Wl) (8)

where the Jacobian matrices in the first term are evaluated at the state ws; ()
and those in the second terms at the state wi2(a), which shows that the param-
eter a acts on the Jacobian matrices. For example, taking o = 2/3 we obtain
the so-called conservative linearisation which has been utilised in the fluctuation
splitting method [6].
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3.1 Shock Recognition: a =1

Suppose that two of the states happen to be equal, w; = wo = w.. Then the
second line of (7) vanishes and the first line becomes

®103(a) = wh(a) {AysC — Az3D} (w3 — w,). (9)

For the special choice @ = 1, which gives wsi(a) = W31 = (w3 + w.)/2, this
corresponds precisely with the Hugoniot condition,

W' (SC—D)Aw =0 (10)

along the edge 31, provided the edge 12 is aligned in shock of the speed dy/dx =
S. Note that this is independent of the position of the other node. However,
unfortunately, this admits nonphysical shocks as well.

3.2 Special Properties: a« = 0

For scalar problems, the choice o = 0 has a special property. With a = 0, the
fluctuation becomes

@123(0) = Wt2 {Aygc - A.ﬁgD} (W3 - Wl) +
wh {Ay2C — AzyD} (wo — wy) (11)

where all quantities are thought of as scalar. Now suppose the edge 12 is aligned
with the characteristic whose speed evaluated at the state 2, i.e. on the edge itself.
Then the first term vanishes. And the second approximates the characteristic
equation dw = 0 exactly, again for any position of the third node.

Another important property associated with this choice is the ability to com-
pute physical rarefaction. To see this, consider Burgers’ equation dyu + 0, f =0
where f = u?/2. Discretising the spatial derivative term by the quadrature for-
mula (5), rearranging the terms, we find

fivi = fina o Ujtl — Uj—1 Ujp1 — 2Uj + Uj
ou; + 44— =(1—-a)A 12
tj + 2Azx (1-a)Az 2Azx Ax? (12)
which is a second order discretisation of
O+ 0p f = (1 — ) Az? Opu O%u. (13)

This shows that for diverging characteristics, d,u > 0, taking o < 1 gives positive
dissipation. Experimentally we find that o needs to be well below unity, and that
zero is a good choice.

4 Detecting Compression/Expansion

One possible way to take advantage of the formulae for the fluctuation is to
use a = 1 for elements in shocks and a = 0 for others, thus capturing shocks
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exactly at the same time avoiding possible rarefaction shocks. The decision can
be made based on the rate of change of the triangle area due to the virtual vertex
motion caused by the characteristic speeds. Imagine that a triangle is convected
in a characteristic field. If the characteristics are diverging, implying expansion,
the triangle area would increase. On the other hand, if the characteristics are
converging, implying compression, the triangle area would decrease. It is easy to
show that the rate of change of the area is given by

dsSr 1
&2 Z Ai-m; (14)
i=1,2,3
where n; is the scaled inward normal vector opposite to the vertex i, and A; is
a characteristic speed vector at vertex i. For system of equations, we compute
this for each wave-like component.

5 Least-Squares Formulation

The solutions are sought that minimise the norm

f:ZFT:%Zm (15)

Te{T} Te{T} St

over a set {T'} of triangular elements that divides the domain of interest. Qr is
a positive definite symmetric matrix that assigns relative weight to the different
equations [1]. The change made to each vertex {j} is the sum of the contribu-
tion from the surrounding triangles {7}, and can be written in the fluctuation
splitting format as follows.

(5Wj = —Wy Z A?‘I)T (16)
Te{T;}
0Xj = —wy Z Bi®r - ﬂn- (17)
J J ZST J
Te{T;}

where w; is a solution vector at the node, x; is the nodal position vector, and w,
and w, are small constants. The second term in (17) comes from differentiating
the weight 1/S7 in the norm. Note that the scheme is equivalent to the steepest
descent method. AJT and BJ-T are the distribution matrices given by

r_ 1 (o 0%r)
A =g (o5 (19)
r_ 1 (o001
5 =5 (o) - (19)

Here the computation of the derivative in .AjT requires careful consideration. We
have observed that taking the derivative straightforwardly can result in com-
pletely wrong solutions. As suggested in [7], it is important to linearise the
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equations first and then apply the least-squares method. This means that we
take the derivatives assuming w;;(a) are constant in (7) because these quan-
tities act on the Jacobian matrix as mentioned before. Yet this raises another
important point of consideration. Recall that the fluctuation has two other rear-
rangements other than (7). The derivative computed as above now depends on
this arrangement. Then it would be reasonable to take the arithmetic average of
the three possible forms and take the derivative, which yields

0®r  wi (o)

[(Ayl — Ay(;)C — (A.’[l — Axg)D} —+

8W1 3
T
Wl?’)(a) [(Ays — Ay2)C — (Azy — Azz)D]. (20)
6 Results

Preliminary results are available for Burgers’ equation dyu+u d,u = 0, for which
Q7 was taken to be unity. Figures 1 and 2 show the final grid and solution for a
right-moving curved shock for the boundary conditions; u = 3 for z < —0.8 and
% (x —1) for & > —0.7 where the data is interpolated linearly between z = —0.8
and x = —0.7, modeling an initial discontinuity. The grid and the solution were

obtained by repeating the following cycle.

1. Converge the solution on a fixed grid

2. Assign « to each element, depending the sign of (14)

3. Remove undesirable nodes

4. Update solutions and coordinates, with edge swappings interleaved (2000
iterations maximum)

and the method terminates when the changes to solutions and coordinates are
both small in the step 4 or the maximum number of cycles is reached, say 20.
The edge swapping is based on the norm reduction, which attempts to create
a characteristic mesh as clearly seen in the results. Also, because two edges
sometimes try to represent the same characteristic we implemented a scheme for
removing redundant nodes. The method converged at 10 cycles. And the final
values of a are 1 for the elements forming a shock, and 0 elsewhere.

A grid aligned expansion wave was computed with v = —0.8 on the left
and u = 0.8 on the right, to demonstrate the ability of the method to compute
entropy-satisfying solutions. The values of o are automatically set to be zero
everywhere in the step 2, and as can be seen the final solution is the correct
smooth expansion fan. The method converges at just 1 cycle. Increasing the
value of «, we found that a rarefaction shock appeared in the middle of the
rarefaction and it became finally a perfectly-resolved rarefaction shock when
« = 1. This is consistent with the observation in section 3.2.

7 Conclusions

A least-squares method that incorporates node movement and a class of integra-
tion rules has been presented. The preliminary results demonstrated its ability
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Fig. 1. The final grid for the curved shock. Fig.2. Solution contours for the shock.
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Fig. 3. The final grid for the expansion. Fig. 4. Solution contours for the expansion.

to compute shocks extremely sharply as well as to avoid nonphysical shocks. In
future work we will focus on improving the efficiency of the method, especially
the mechanism for removing redundant nodes, and on the extension to systems
of equations. In this latter task we expect the proper choice of Q7 in (15), which
defines the minimization norm, to be important.
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