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Abstract. A residual distribution technique is presented for the Euler equations, one
which splits the updates into purely elliptic and hyperbolic contributions. The scheme
combines fluctuation splitting methods ideal for scalar advection and a least squares
minimisation appropriate for the elliptic subsystem. The minimisation is constrained to
maximally decouple effects of the entropy, enthalpy and acoustic parts from each other.
Results show that for subcritical flows where potential solutions should be obtained, the
enthalpy is constant to machine zero, and the entropy is constant to an extremely high
degree of accuracy. Still under investigation, fluctuation calculations with dissipative
effects are presented. They are capable of breaking rarefaction shocks for fluctuation
splitting schemes in grid-aligned cases.

1 Introduction

Fluctuation splitting (FS) schemes for Euler and other equations that share sim-
ilar structure have made it well in their way into the literature. As in past efforts,
the present work takes a physical approach to strongly discontinuous flows while
avoiding the defects of upwind methods applied to almost incompressible flow.
Using the decomposed form of the Euler equations together with a residual dis-
tribution scheme provides the advantage that the elliptic and hyperbolic parts
of the problems are handled separately, with maximal decoupling. To illustrate
the scheme’s accuracy and test its properties, we choose a set of flow problems
containing difficult features to capture. Further robustness study reveals that
FS is not immune to grid dependency and in combination with certain choices
of meshes will produce non-physical solutions.

2 Uniquely Decomposed Form of the Euler Equations

Different properties of the Euler equations are emphasized by proper selection
of the set of unknowns. For computing compressible flow, the most fundamental
choice is the set of conserved quantities u = (p, pv, pE)? associated with the flux
tensor F = (pv, pv @ v + pL, v(E + p))! since they satisfy the Rankine-Hugoniot
conditions across discontinuities.

For computational convenience we use another set of unknowns, the parame-
ter vector z = \/p(1,v, h)', where h is the total specific enthalpy. This set allows
the construction of local linearizations having conservation properties [1] [6]. Fur-
thermore, of significance to the present approach, are the natural variables [3].
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They are written as x = (S, h,p,v/|v|)t and x = (S, h, W, W)t respectively
in subsonic and supersonic flow. In the supersonic regime, the acoustic Riemann
invariants are OW T = [dp + pg?06 , OW~ = BOp — pg>d6. 1t is uniquely in
these variables that the Euler equations can be decoupled into maximally in-
dependent subsystems [3] [7] [9]. These variables enable the inherently different
hyperbolic and elliptic behaviour to be computed independently with the mini-
mum of ”crosstalk”. The decomposed form of the Euler equations can generically
be written as flxs + an = 0 or more precisely as follows.

(1 = M?*0sp — pg?9,0 =0 (8Os + 0n)WT =0

pq20s0 + 0,p =0 (8Os — )W~ =0

8,8 =0 8:8 =0 (1)
Osh =0 Osh =0

3 Advection of Entropy, Enthalpy and Acoustic
Invariants

Throughout this paper, the term 'update matrix’ will reappear frequently be-
cause it is a convenient way to think about FS schemes. Let the twelve scalar
quantities W™ = (w,, wy, W) represent the initial state of a cell (in two dimen-
sions) with vertices (a,b,c) and w be the quantity stored at the vertices. The
update matrix is the constant matrix within the cell that defines the update
Wt — W = wUW?™. Among its nine blocks, U; j would be the (7, j) block of
the update matrix, signifying the effect of vertex i on j (i,j = a, b, ¢).

As shown in (1), the Euler equations always exhibit a hyperbolic behaviour
through entropy and enthalpy (S&h) advection. In supersonic regime, this be-
haviour is extended to the acoustic part. Through a rotation transformation,
(1) becomes Ax, + Bxy = 0 where A = diag(u,u,uf — v,v0 + u) and B =
diag(v,v,uf + v,v0 — u). The fluctuation then becomes

1 - - 0
¢ = G Z D (Aij - BAa:j) 6_}z(Zj

J=a,b,c

The acoustic part of the fluctuation is split apart from the S&h part using
respectively the diagonal matrices D = diag(0,0,1,1) and D = diag(1,1,0,0).
This splitting becomes important in the subsonic regime where the S&h part
is treated identically as in the supersonic case. Meanwhile the acoustic part
becomes an elliptic subsystem and is handled using a distribution scheme with
no directional bias.

The fluctuation is then distributed by the favorite FS scheme having distri-
bution coefficient matrix ®. Assuming that we are storing the parameter vector
z at the vertices, the (i, j) block of the update matrix becomes

1 ax\ " < ~ ox
Ui,j - F§ E D (AAy] - Bij) a
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where
1—2 2 2
z12a( 73+7(22+23) —29 —23 21
<1

0x —f—;‘ 0 0 1

o, = —17 -1 —1 —1
0z —V,, Bz4 ——’Y,Y Bzz — 23 ——Vv Bzs + 22 —77 Bz1

y—1 ~y—1 y—1 y—1
Tﬂ24 —Tﬂzz + 23 —Tﬂz?, — 22 Tﬂzl

4 Treatment of the Elliptic Subsystem

This section briefly describes the solution method for the independant acoustic
subsystem in (1). For a more detailed account, refer to [5]. If we choose to store
the natural variables x, the four residuals ¢x in (1) can be written as a linear
function of the vertex values

b= D R

Jj=a,b,c

Since in fact we are storing the parameter vector z we must estimate the quantity

to be minimised as
ox
= D Rign
j=a,b,c
Standard methods are used to evaluate R;, the matrix of derivatives frozen
during the update. The first two components of this vector comprise the elliptic
part of the problem, if M < 1, so the norm to be minimized is

ox .
Dy Rj5, % where D = diag(1, V1 — M2,0,0)

j=a,b,c
where the relative weighting of the continuity and vorticity residuals follows from
[9]. To converge towards steady-state, we choose a least squares minimisation
using a steepest descent method. Steepest descent minimization is selected for
illustration purposes only, one would revert to more efficient (mainly Newton-
like) methods for any practical Euler code. After determining the gradient of the
norm to be minimised, we conclude that the update matrix is given by
t
ox 9 ox
R o

j=a,b,c j=a,b,c

The update found in this manner has the disadvantage of changing the convected
quantities, S&h. Since we intend complete decoupling at the update level between
the elliptic and hyperbolic parts, the elliptic part of the residual should only
contribute to changes in pressure and flow angle and not to S&h. A necessary
step is to perform a constrained minimisation of the elliptic residual. This means
that the updates from the elliptic residual should be in directions where only
pressure and flow angle change. For the natural variables, the direction of a
vector along which only that variable changes is rg = (%%, 29, 23, %%)t,

2 2
23123

2 2
rh = (0, 22,23, 2 72)", 1y = (3521, 22, 23, Tia—24)" and rg = (0, —23, 25, 0)".
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5 Entropy Satisfying Solutions

In a study to test the robustness of FS schemes, we found situations where they
can produce non-physical solutions. As shown in figure 3, FS is not immune to
grid dependency and in combination with certain choices of meshes will produce
rarefaction shocks. Figure 3 is a simulation of supersonic flow over a diamond
shaped airfoil and a cut across segment AA’ will show a jump in pressure as
well as an increase in entropy. Confined within a single band of cells, expansion
rays do not fan out properly because they are parallel to grid lines. In search of
a remedy, our investigation has lead us to focus on the fluctuation calculation
rather than a suitable distribution rule. More specifically, for the conservative
form of the Euler equations, where the fluxes F, G are bilinear functions of the
parameter vector z, the cell fluctuation can be written as

b= //(%F(z) +8,G(z) = ]{F(z)dy — G(z)dz = ?{ZTCzdy — 2" Dazdx

This leads to an alternative expression for the fluctuation, a formula containing
a parameter « which has only a second-order effect on the fluctuation’s accuracy.

?=[5(@m" +23")+ (1 —)z2"] {(y2 —91)C — (z2 — 21)D} (21 — 23) +
[%(le +z27) + (1 - Oé)ZST] {(y3 —y1)C — (z3 — 71)D} (21 — 22)

Similarly, the above expression can be rearranged in two other ways by per-
muting the vertex indices. A family of fluctuations is obtained by varying the
parameter o and at least three choices reveal interesting properties. For a = 1,
the fluctuation vanishes when two vertices are in the same state and the edge
connecting them is aligned with the local characteristic. Work presented in [4]
illustrates how this property is used to capture shocks exactly. For a = %, one re-
covers the common method for computing the fluctuation with z varying linearly
along each edge and a single characteristic evaluated at the cell center. Finally,
a = 0 produces a fluctuation which has nice dissipative effects and breaks up
rarefaction shocks. This is illustrated for a scalar example (Burgers equation)
in figure 1 where a solution profile free of discontinuities can be obtained for
a = 0. The extension from the scalar to a system (i.e. Euler) is currently under
progress and should eventually lead to entropy-satisfying solutions.

Fig. 1. Rarefaction solution to Burgers equation: a = 0, a = %, cut across AA’
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6 Computational Examples and Concluding Remarks

Figure 2 shows computation of subcritical flow around a cylinder at M, = 0.38
where constrained least-squared is used for the elliptic part and PSI for the
hyperbolic. A potential flow solution should be obtained with perfect fore and
aft symmetry. Note the satisfactory behaviour of the solver at stagnation points.
Levels of entropy generation were low with S,in maez = —8.5 % 1076,7.3 x 1076,

Figure 3 shows calculations around a supercritical cylinder at My, = 0.75
with shock capturing. PSI is used for all advected quantities. The sonic transition
is not treated in any special way. Even though the two schemes meeting at M =1
are of very different nature, the solution there is still satisfactory. Note in figure
3, a benign jump in pressure at the sonic line but the levels of entropy are small
enough that the discontinuity is neglected

To test the coupling between elliptic and hyperbolic parts, we consider in-
compressible flow with nonuniform enthalpy at inflow (figure 4). The difficulty
in this test case is in exhibiting the recirculation zone which would not be well
captured with excessive entropy generation. Convergence tests revealed that our
solution approached the exact solution [2] with second order accuracy.

We have illustrated the properties of residual distribution schemes when used
in combination with the uniquely decomposed form of the Euler equations. Resid-
ual splitting proved appropriate for maximum decoupling between the hyperbolic
and elliptic parts. Accurate results are obtained at sonic and stagnation regions,
as measured by levels of spurious entropy generation. Still under investigation,
new fluctuation calculations with dissipative effects are presented. They are ca-
pable of breaking rarefaction shocks for FS schemes in grid-aligned cases.

References

[1] DECONINCK, H., ROE, P. L., STRUIJS, R. J., A multidimensional generalisation
of Roe’s flux difference splitter for the Euler’, Computers and Fluids, 22, 1993.

[2] FRAENKEL, L. E., ’On Corner Eddies in Plane Inviscid Shear Flow’, Journal of
Fluid Mechanics, Vol. 11, Part 3, November 1963.

[3] HaYEs, W, PROBSTEIN, R. F., Hypersonic Flow Theory, Academic Press, 1963.

[4] NisHikawa, H., RaDp, M., ROE, P. L., ’Grids and Solutions from Residual Mini-
mization’, ICCFD Proceedings, Kyoto. Springer-Verlag, 2000.

[5] RaDp, M., RoE, P. L., ’An Euler Code that Can Compute Potential Flow’, 2nd
Inter. Symposium on FV Proceedings, Duisburg. Hermes, 1999

[6] Roe, P. L., ’Approximate Riemann solvers, parameter vectors and difference
schemes’, J. Comput. Phys., 43, pp357-372, 1981.

[7] RoE, P. L., MEsARrRos, L. M., ’Solving steady mixed conservation laws by E/H
splitting’, 13th Inter. Conf. on Num. Methods in F1l. Dyn., Monterey, July, 1996.

[8] Rok, P. L., TurkiL E., 'The quest for diagonalization of differential systems’,
Workshop on Barriers and Challenges in CFD, NASA Langley 1996. Springer, 1997.

[9] Rok, P. L., ’Compounded of Many Simples, reflection on the role of model problems
in CFD’, Workshop on Barriers and Challenges in CFD, NASA Langley, August,
1996. Springer, 1997.

[10] ROE, P. L., RAD, M.,’A Form of the Euler Equations Conserving Potential Flow’,
AIAA CFD Meeting Proceedings, Norfolk, VA June, 1999.



6 Mani Rad et al.

Subcritical Cylinder Flow, M=0.15
Mach number isolines
Mmax = 0.8893
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Fig. 2. Subcritical Cylinder Flow at Mo, = 0.38. Mach contours and entropy distribu-
tions along vertical cut through center of cylinder
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Fig. 3. Supercritical Cylinder Flow at Mo, = 0.75. Mach contours and pressure dis-
tributions across AA’ cut. Even with no special treatment at the sonic transition, the

two separate schemes match well at M = 1.

Non-Uniform Enthalpy Inflow, M=0.15

Fig. 4. Non-uniform enthalpy inflow at Mo, = 0.15 showing symmetrical recirculations
zones. Mo = 2.0 flow over a diamond shaped airfoil, showing rarefaction shock.



