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A new finite volume methodology is introduced to combat the carbuncle. The
method features a more accurate treatment of entropy in the flux formulation
at the cost of a small computational overhead. This new flux function is tested
on a hypersonic flow past a circular cylinder on both structured quadrilateral
and unstructured triangular grids, producing encouraging results.

1 Introduction

Numerical shock prediction is a very important aspect of computing aerody-
namic flows, and shock capturing finite-volume methods are commonly used
to predict shocks in various situations with considerable success. However, it
seems that most shock capturing methods fall short in predicting very strong
shocks, which is a crucial element in designing hypersonic vehicles. Except for
a few notoriously diffusive schemes ([21] and the simplest version of Harten-
Lax-van Leer [7], most schemes4 exhibit some form of anomaly when pre-
dicting strong shocks. The commonest of these is the carbuncle phenomenon,
produced when computing a hypersonic flow past a blunt body such as a cir-
cular cylinder. Instead of having a smooth bow shock profile upstream of the
cylinder, the solution features a pair of oblique shocks ahead of the stagna-
tion region (Fig 2). Such a solution is actually a true solution of the Euler
equations, and can even be produced experimentally [2]. Many have proposed
cures to the carbuncle problem [15], [14], [12], [13], [11], [3], [20] but none are
universally accepted, and most papers begin by criticizing previous work.

The most common view follows Quirk [16] in supposing that the carbuncle
manifests a two-dimensional numerical instability of the Euler equations, often
4 There are proposals to adopt a hybrid of very dissipative and less dissipative

fluxes, deploying the former near the shock and the latter away from shock but
the basis of the switch is somewhat ad hoc. Furthermore, it is not clear how any
switch would work for complex problems like shock-boundary layer interactions
or shock-contact interactions.
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Fig. 1. Quadrilateral grids on a circular
cylinder with 80 x 160 cells.
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Fig. 2. Results of the original Roe flux
with M=20. Contours of Mach number
and velocity vectors.

supposed to be an odd-even decoupling. However, Roe et al point out that
the phenomenon occurs at all frequencies and that a version can be found
in one dimension. If the physical viscosity is included as in the Navier-Stokes
equations, the tendency to form a carbuncle is reduced, but it disappears only
at very low Reynolds number [14]. Nor does it help to include the real gas
effects that would accompany very strong shocks in the real world [4], [5], [6].

Here, we propose to combat the carbuncle phenomenon by strongly en-
forcing entropy stability. First, we will describe some motivating discoveries.

2 The Root of the Carbuncle ?

A simple setting for the carbuncle phenomenon, proposed by [3], is a steady
one-dimensional shock on a rectangular two-dimensional grid. Such a car-
buncle evolves in three universal but distinct stages: “pimples”, “bleeding”
and “carbuncle” [17]. The “pimples” are an initial instability largely confined
to the vicinity of the shock, whereas the “bleeding” sees these instabilities
propagated downstream as layers of alternately high and low velocity. After
sufficient amplification the low velocities develop regions of reversed flow that
break out ahead of the shock to form the “carbuncle”. The second and third
stages weakly satisfy the Euler equations but are only observed experimen-
tally in some artificial setup. Accordingly, we seek to prevent the instability
at the pimple stage, by improving the basic process of shock-capturing.

Since anomalies appear in both entropy and vorticity, Ismail[9] investigated
preventing the carbuncle by controlling either vorticity or entropy. He found
vorticity control to be ineffective, so we focus here on control of entropy. Also,
even in one dimension, very strong shocks can be unstable both in the sense
of entropy [1], and in spontaneous relocation [18], which suggests a link.
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3 The Entropy-Stable (ES) Flux

Entropy stability can be studied in one dimension by applying a finite volume
method to the conservation laws ∂tu+∂xf(u) = 0. Semi-discrete entropy con-
servation requires [22, 1]. the numerical interface flux f∗ to satisfy [v]T f∗ = [ρu]
where v = ( γ−s

γ−1 − 1
2

ρ
p (u2), ρu

p ,−ρ
p )T are the entropy variables5 and the square

bracket denotes a difference operator. The following entropy-conservative flux
[18] is explicit and numerically well-formed.

f∗ =




ρ̂û
ρ̂û2 + p̂1

ρ̂ûĤ


 = fC (1)

The quantities (̃·) are averaged quantities at the flux-interface satisfying

ρ̂ = z̄1z
ln
3 , û =

z̄2

z̄1
, p̂1 =

z̄3

z̄1

p̂2 =
γ + 1
2γ

zln
3

zln
1

+
γ − 1
2γ

z̄3

z̄1
, Ĥ =

1
2
û2 +

γ

γ − 1
p̂2

ρ̂
(2)

where¯and ln represent arithmetic and logarithmic6 means [18] and

z1 =
√

ρ

p
, z2 =

√
ρ

p
u, z3 =

√
ρp (3)

To ensure that entropy is generated with the correct sign, we add upwind
terms to give the entropy-stable flux (one for which [v]f∗ ≤ 0)

f∗(uL,uR) = fC(uL,uR)− 1
2
R̂|Λ̂Ŝ|R̂T[v] (4)

where R and Λ denote the right eigenvectors and the diagonalized eigenvalues
of the Euler equations. The scaling factor S = diag( ρ

2γ , (γ−1)ρ
γ , ρ

2γ ) relates to
the differential identity [1], R−1du = SRT dv. The new flux function coin-
cides to second order accuracy with the original Roe-flux7, but is additionally
constrained to capture exactly pure contact discontinuities of any strength.
This property, which guarantees accuracy in boundary layers, has sometimes
been thought to induce carbuncles. To enforce the contact-capturing property
[18], the averaged speed of sound must be evaluated from â = (γp̂1

ρ̂ )
1
2 and the

density averaged using a logarithmic mean. Based on these restrictions and
for computational economy, it was proposede in [9] that the averages in the
dissipative flux are exactly the averages in the entropy-conserving flux.
5 This is the only choice of entropy variables that can be used in the Navier Stokes

equations [8] and s = ln p− γln ρ is the physical entropy.
6 The logarithmic mean is here defined as L(x, y) = (x − y)/(ln x − ln y), and has

an efficient series representation if x ' y.
7 Recall that the original Roe-flux [19] is f∗ = f̄− 1

2
R̂|Λ̂|R̂−1[u]
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Fig. 3. The ES flux at M=20, on the
grid of Figures 1 and 2.

XCoord

P

-2 -1.75 -1.5 -1.25

0

0.25

0.5

0.75

1

Fig. 4. Spurious overshoots of pressure
along the centerline.

For conciseness, we have only presented the flux-function in one dimension.
However, because it is a finite volume method, the extension to arbitrary grids
in higher dimensions is straightforward (for details see [9]).

4 Numerical Results

The test case is the steady-state flow past a two dimensional cylinder. Various
grids and Mach numbers have been employed; a typical structured quadrilat-
eral grid is shown in Figure 1. In all cases reported here, we used a first
order explicit method with ν = 0.2 and the code was run until the residual
is of O(10)−8. Second-order results were reported in [9]. All of our results for
structured grids indicate that results from the entropy-stable flux (for exam-
ple Figure 3) are quite free of the carbuncle phenomenon. However, the shock
profile is slightly broader with the introduction of a few intermediate cells
(Fig.4) and this may be the price we have to pay.

Previous studies [3] suggest that the carbuncle can be made to appear if the
cell aspect is increased, with the short dimension parallel to the shock. This
is consistent with a view that one needs numerical damping in the tangential
direction. However, our entropy-stable computations were not sensitive to this
aspect of the grid (compare Figures 5 and 6 with Figure 3).

Also, the profile around the shock exhibits spurious oscillations. This is be-
cause our flux function guarantees only the correct sign of entropy production
but not necessarily the correct amount. The actual production is of order δ2

whereas the required production is of order δ3. To achieve monotonicity, a flux
function must generate ‘enough’ entropy production across a shock. Flux func-
tions that have this property are called entropy-consistent (EC) fluxes[18]. We
therefore modify the eigenvalues of equation (4) such that |Λ̂| = |Λ̂|+ α[|Λ|]
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Fig. 5. ES flux with 20 x 200 cells.
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Fig. 6. ES flux with 20 x 600 cells.
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Fig. 7. EC-flux at M=20.
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Fig. 8. Pressure profile of EC-flux.

[10]. For the choice of α = 0.2, the entropy-consistent flux produces monotone,
carbuncle-free solutions on quadrilateral grids (Figs. 7-8).

However, the carbuncle is not yet vanquished. On unstructured triangular
grids, such as Figure 9, we discovered that it is produced even by the entropy-
consistent flux (although in less severe form than the regular flux). It seems
to be reduced (rather surprisingly, and at the expense of increasing spurious
overshoots) if we choose smaller values of α and is least when α → 0. This
strongly suggests that entropy stability is not the only cause of carbuncles.
One possibility may lie in the nature of the finite-volume method itself, with
its reliance on pairwise interactions between cells, and therefore merely one-
dimensional physics. This may be responsible for the shock being very sharp
but poorly aligned.In fact, a better solution can be obtained by creating a
better alignment of the grid with the shock, although we do not have suf-
ficient space to show these results. Analysis in [18] offers the possibility of
multidimensional extensions, that should be less dependent on the grid.
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Fig. 9. An unstructured grid. Fig. 10. ES flux on the grid of Figure
9.
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