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We propose arbitrary high-order discontinuous Galerkin (DG) schemes that are designed 
based on a first-order hyperbolic advection–diffusion formulation of the target governing 
equations. We present, in details, the efficient construction of the proposed high-order 
schemes (called DG-H), and show that these schemes have the same number of global 
degrees-of-freedom as comparable conventional high-order DG schemes, produce the same 
or higher order of accuracy solutions and solution gradients, are exact for exact polynomial 
functions, and do not need a second-derivative diffusion operator. We demonstrate that 
the constructed high-order schemes give excellent quality solution and solution gradients 
on irregular triangular elements. We also construct a Weighted Essentially Non-Oscillatory 
(WENO) limiter for the proposed DG-H schemes and apply it to discontinuous problems. 
We also make some accuracy comparisons with conventional DG and interior penalty 
schemes. A relative qualitative cost analysis is also reported, which indicates that the 
high-order schemes produce orders of magnitude more accurate results than the low-order 
schemes for a given CPU time. Furthermore, we show that the proposed DG-H schemes are 
nearly as efficient as the DG and Interior-Penalty (IP) schemes as these schemes produce 
results that are relatively at the same error level for approximately a similar CPU time.

Published by Elsevier Inc.

1. Introduction

Designing schemes based on a reformulation of the target governing equations as a first-order hyperbolic advection–
diffusion system [1–3] have proven to possess some key features, such as consistent advection and diffusion discretization, 
elimination of the second-derivative diffusion operator, and O (1/h) speed-up in the number of linear relaxations. The 
schemes that are designed with the first-order hyperbolic advection–diffusion system have shown [4–8] to produce the 
same high-order solutions for both the primal variables and their gradients on irregular grids. We have also shown [7,9]
that one can design high-order schemes to obtain oscillation-free solution gradients on arbitrary triangular elements. The 
price to pay for these high-order schemes is the increase of the degrees-of-freedom (DoF) compared to the conventional 
schemes, that are designed based on the target governing equations. (Note that, throughout this paper, we refer to schemes 
that are not based on hyperbolic first-order system formulations, as conventional.) For example, the DoF for the Navier–
Stokes equations jumps, after being reformulated as a first-order hyperbolic advection–diffusion system, from 5 to either 14, 
17, or 20 [10], depending on the number of extra gradient variables created with the reformulation strategy. Even though, 
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the quality of these schemes (higher-order in the advective term and the solution gradients and O (1/h) speed-up) may 
outweigh the additional expense per iteration, much work needs to be done to assess the quality of the solutions per 
computational time for various problems and across different applications. The recent development of high-order Residual-
Distribution (RD), aka fluctuation-splitting, schemes designed based on the first-order hyperbolic advection–diffusion system 
[4,7] provide good solution gradients on fully irregular triangular elements, while taking the full advantage of the compact-
ness in the RD method. In this method, one can design a Newton solver, with which machine-zero convergence can be 
obtained within a few residual evaluations. Combining the higher-order gradients with elimination of the extra expense of 
evaluating the second-derivative diffusion operator in a compact RD stencil may one day be proved to be more economical 
(for some applications), even with the extra DoF, than the conventional RD schemes.

In some applications, such as large eddy simulations, compact schemes that are of higher order than three are also 
desired and sometimes necessary [11]. In our previous efforts, we could design up to third-order multi-dimensional Finite-
Volume (FV) and RD schemes without compromising the compactness of the stencil. Constructing fourth- and higher-order 
multi-dimensional FV and RD schemes that are compact appears to be very difficult. This drawback applies to both the con-
ventional FV and RD schemes, as well as those that are designed so far with the first-order hyperbolic advection–diffusion 
system approach.

In this work, we focus on a discontinuous Galerkin (DG) method, and propose an efficient procedure to construct ar-
bitrary high-order DG schemes for the first-order hyperbolic advection–diffusion system formulations that have the same 
number of global DoF as that of a conventional DG scheme for a comparable level of accuracy, do not need a second-
derivative diffusion operator, and yet give the same high-order accurate solution and solution gradients on irregular 
elements for general advection–diffusion problems. We refer to these proposed schemes as DG-H schemes. We choose 
the DG method, because compact arbitrary high-order schemes can be constructed systematically, and significant advances 
have been made in the development of high-order DG schemes, and as a result, various classes of DG schemes have been 
developed for both hyperbolic and elliptic problems. These include the method of Bassi and Rebay [12,13], Interior Penalty 
(IP) methods [14–21], Local DG (LDG) [22–27], Compact DG (CDG) [28,29], Direct DG (DDG) [30,31], Hybridizable DG (HDG) 
[32–36], and Recovery-DG [37–40] schemes. Our proposed DG-H scheme is not an addition to these powerful classes of the 
DG schemes, but rather we are simply interested in keeping the benefits of the first-order hyperbolic advection–diffusion 
system by replacing the second-derivative diffusion operator with a hyperbolic diffusion operator, and constructing efficient 
arbitrary high-order schemes without the additional DoF resulted by reformulating the target governing equation as a first-
order hyperbolic advection–diffusion system, thus obtaining the same DoF over a conventional DG scheme for a comparable 
level of accuracy. Applying DG to hyperbolic problems has been very successful since it was first introduced in 1973 by 
Reed and Hill [41] for steady neutron transport equations, and independently in 1977 by Van Leer [42] for time-accurate 
advection equations. Since then, Cockburn, Shu, and their collaborators have carried out significant developments in the 
DG methodology for nonlinear hyperbolic conservation laws [43–45,24]. These advances are beneficial and can be carried 
over to our proposed DG-H schemes, because our scheme is based on a reformulation of the target governing equation as a 
first-order hyperbolic advection–diffusion system.

Consider the following two-dimensional nonlinear advection–diffusion equation:

∂t u + ∂x f + ∂y g = ∂x(ν∂xu) + ∂y(ν∂yu) + s̃(x, y, u), (1)

where the diffusion coefficient is ν = ν(u), and the advection speeds in the x- and y-direction are defined as a(u) = ∂ f /∂u
and b(u) = ∂ g/∂u, respectively. Following a similar preconditioned formulation as in Ref. [46], we construct a hyperbolic 
system as

∂τ u + ∂x f + ∂y g = ∂x(νp) + ∂y(νq) + s, (2)

Tr∂τ p = ∂xu − p, (3)

Tr∂τ q = ∂yu − q, (4)

where Tr = L2/ν , L = 1/2π , τ is the pseudo-time, and s includes s̃ (arising from e.g., chemical reactions or turbulence), 
and the temporal terms (for time-dependent problems). For example, the source term s̃, for a second-order backward-
differencing-formulation for the time discretization, takes the following form

s = s̃ − 3

2

u

�t
+ u0

�t
,

where �t is the physical time step, and u0 denotes the solution evaluated at a previous physical time iteration (see Refs. [3,
4] for more details on time-dependent hyperbolic first-order system simulations). The variables p and q are, in the pseudo 
steady state, equivalent to the gradients of the primal variable u in the x and y directions, respectively. We remark that this 
does not imply that the formulation is only valid for steady-state problems as we have shown time-dependent calculations 
in Refs. [3,4,47]. We also note that the relaxation parameter Tr is a free parameter and can take any value, but we use the 
optimal value (i.e., L2/ν) recommended in Ref. [1] to enhance the convergence.

We write the system as a preconditioned conservative equation in a vector form with the preconditioning matrix P as

P−1 ∂U + ∂F + ∂G = Q, (5)

∂τ ∂x ∂ y
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where

P−1 =
⎡
⎣ 1 0 0

0 Tr 0
0 0 Tr

⎤
⎦ , U = Ua + Ud =

⎡
⎣ u

0
0

⎤
⎦ +

⎡
⎣ 0

p
q

⎤
⎦ , (6)

F =
⎡
⎣ f − νp

−u
0

⎤
⎦ , G =

⎡
⎣ g − νq

0
−u

⎤
⎦ , Q =

⎡
⎣ s

−p
−q

⎤
⎦ , (7)

where superscripts a and d refer to the advection and the hyperbolic diffusion terms. If we apply the DG method di-
rectly (naively) to this first-order hyperbolic advection–diffusion system, we end up with three times more DoF than the 
conventional DG schemes that are designed based on the target equation, Eq. (1). For the Navier–Stokes equations in three-
dimension, for example, we will have 14/5 = 2.8, 17/5 = 3.4, or 20/5 = 4 times more DoF compared to the conventional 
DG schemes that are not constructed from the hyperbolic Navier–Stokes equations [10,48].

In this paper, we propose a strategy in constructing arbitrary high-order DG schemes with the first-order hyperbolic 
advection–diffusion system approach that maintains the same DoF obtained with comparable high-order DG schemes. With 
this efficient construction, we present new DG schemes with the same property of the conventional schemes plus additional 
benefits arising from the first-order hyperbolic advection–diffusion formulation (e.g., O (1/h) speed up in linear relaxations 
with grid refinement), equal order of accuracy for primal and gradients quantities, and an order higher primal accuracy 
in the inviscid region. The proposed approach can also be directly applied to, for example, the Flux Reconstruction (FR) 
schemes [49–51]; the construction of this approach will be reported in the future.

The rest of the paper is organized as follows. In Section 2, we review the basics of the DG method, which is used as a 
basis for construction of our proposed DG-H schemes. The details of formulating high-order DG schemes with the first-order 
hyperbolic system approach, including our proposed DoF reduction technique, are given in Section 3. Weighted Essentially 
Non-Oscillatory (WENO) limiter procedure for the proposed DG-H schemes is provided in Section 4. Numerical experiments 
are conducted in Section 5 followed by some concluding remarks in Section 6.

2. Discontinuous Galerkin (DG) discretization

Consider a triangulation Th of the domain � in the finite element space of discontinuous functions Vh = {υ ∈ L∞(�) :
υ|E ∈ Pk, ∀E ∈ Th}, where Pk denotes the set of polynomials of degree up to k on every irregular triangular element E . 
Numerical solution Uh is defined within the element E as a polynomial degree of order k, P k , for the variable vector U as:

Uh(x, y, τ ) =
∑

k

ϕk(x, y)Uk(τ ), (8)

where ϕk(x, y) ∈ Pk is the k-th polynomial basis function, and Uk is the vector of unknowns corresponding to the k-th 
polynomial basis. For the purpose of our discussion, it is convenient to express the numerical solution in the following 
form

Uh = Bkuk, (9)

where

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pk︷ ︸︸ ︷
P 3︷ ︸︸ ︷

P 2︷ ︸︸ ︷
ϕ1I︸︷︷︸
P 0

, ϕxI, ϕyI

︸ ︷︷ ︸
P 1

, ϕxxI, ϕxyI, ϕyyI, ϕxxxI, ϕxxyI, ϕxyyI, ϕyyyI, . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)
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uk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pk︷ ︸︸ ︷
P 3︷ ︸︸ ︷

P 2︷ ︸︸ ︷
U

T︸︷︷︸
P 0

, ∂xUT , ∂yUT

︸ ︷︷ ︸
P 1

, ∂xxUT , ∂xyUT , ∂yyUT , ∂xxxUT , ∂xxyUT , ∂xyyUT , ∂yyyUT , . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (11)

where, I is an N × N identity matrix, N is the number of equations (e.g., for the hyperbolic advection–diffusion system 
studied here, N = 3), and the superscript T denotes the transpose. Here, we followed Luo et al. [52], and defined the 
polynomial based on the local Taylor series expansions with the cell averaged value (shown with over-bar) and its derivatives 
at the cell centroid.

The local Taylor basis functions, ϕm(x, y) ∈ Pk , for triangular elements that are used in this study are:

ϕ1 = 1, ϕx = x − xc, ϕy = y − yc,

ϕxx = 1

2
ϕ2

x − 1

2AE

∫
E

ϕ2
x d�, ϕxy = ϕx ϕy − 1

AE

∫
E

ϕx ϕy d�,

ϕyy = 1

2
ϕ2

y − 1

2AE

∫
E

ϕ2
y d�, ϕxxx = 1

6
ϕ3

x − 1

6AE

∫
E

ϕ3
x d�,

ϕxxy = 1

2
ϕ2

x ϕy − 1

2AE

∫
E

ϕ2
x ϕy d�, ϕxyy = 1

2
ϕx ϕ2

y − 1

2AE

∫
E

ϕx ϕ2
y d�,

ϕyyy = 1

6
ϕ3

y − 1

6AE

∫
E

ϕ3
y d�, ϕxxxx = 1

24
ϕ4

x − 1

24AE

∫
E

ϕ4
x d�,

ϕxxxy = 1

6
ϕ3

x ϕy − 1

6AE

∫
E

ϕ3
x ϕy d�, ϕxxyy = 1

4
ϕ2

x ϕ2
y − 1

4AE

∫
E

ϕ2
x ϕ2

y d�,

ϕxyyy = 1

6
ϕx ϕ3

y − 1

6AE

∫
E

ϕx ϕ3
y d�, ϕyyyy = 1

24
ϕ4

y − 1

24AE

∫
E

ϕ4
y d�,

ϕxxxxx = 1

120
ϕ5

x − 1

120AE

∫
E

ϕ5
x d�, ϕxxxxy = 1

24
ϕ4

x ϕy − 1

24AE

∫
E

ϕ4
x ϕy d�,

ϕxxxyy = 1

12
ϕ3

x ϕ
2
y − 1

12AE

∫
E

ϕ3
x ϕ

2
y d�, ϕxxyyy = 1

12
ϕ2

x ϕ
3
y − 1

12AE

∫
E

ϕ2
x ϕ

3
y d�,

ϕxyyyy = 1

24
ϕxϕ

4
y − 1

24AE

∫
E

ϕxϕ
4
y d�, ϕyyyyy = 1

120
ϕ5

y − 1

120AE

∫
E

ϕ5
y d�,

where AE is the area of the element E . The volume integrals can be evaluated either exactly (analytically) or using quadra-
ture rules that are exact for polynomial degrees of 2k. In this study, we use the quadrature rules (see also Sec. 5).

The DG method for solving Eq. (5) is defined by finding a unique solution Uh ∈ Vh such that for all the test functions 
υ ∈ Vh , we have

P−1
∫
E

υ∂τ Uh d� = −
∫
E

υ
(
∂xF + ∂yG

)
d� +

∫
E

υQ d�,

= −
∮
∂�

υH · n̂ d
 +
∫
E

∇υ · H d� +
∫
E

υQ d�,

= −
∑

e∈∂�

∫
υH · n̂ d
 +

∫
∇υ · H d� +

∫
υQ d�,
e E E
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Fig. 1. Schematic of elements E+ and E− sharing the edge e along with the corresponding unit outward normals and the bi-valued Uh on either side of 
the interface boundary at the quadrature points, χ , shown with black dots (number of quadrature points varies depending on the polynomial order used). 
Negative superscript refers to local interior element while positive superscript denotes neighboring (exterior) element.

≈ −
∑

e∈∂�

∑
χl

wl υl Ĥl · n̂�se +
∑
χm

wm [∇υm · Hm + υm Qn] AE , (12)

where we performed the integration by part once. Here, the flux and source terms are a function of Uh , e refers to an 
element edge, ∂� denotes the element boundaries, χl and χm are the quadrature points for the edge and the interior (aka 
volume) integrals, respectively, w is the quadrature weighting function, �se is the length of each element edge, AE is the 
element area, H = (F, G), and Ĥ is the numerical flux at the interface boundary between the two elements (see Fig. 1), 
which we will define in Sec. 2.1.

Employing the numerical solution as expressed in Eq. (9), we arrive at the pseudo-time evolution equations for the vector 
of unknown polynomial coefficients in the element E as

Mk∂τ uk = −
∫
E

BT
k P

(
∂xF + ∂yG

)
d� +

∫
E

BT
k P Q d�,

= −
∮
∂�

BT
k P H · n̂ d
 +

∫
E

∇BT
k : P H d� +

∫
E

BT
k P Q d�, (13)

where the mass matrix is defined as

Mk =
∫
E

BT
k Bk d�. (14)

Remark on pseudo-time integration: In the time-dependent hyperbolic advection–diffusion formulation, the physical time, 
t , as shown earlier is included in the source term (see Refs. [3,4,47] for more details), and integrated the same way as 
the interior integrals with the same quadrature rules used for other source terms. We are then left with the pseudo-time 
integration on the left hand side, which we evaluate it with a volume quadrature rule that is exact for polynomial order of 
degree 2k. This results in an evaluation of a mass matrix as given in Eq. (14).

2.1. Numerical flux

The flux at the element interface, Ĥ, is bi-valued (i.e., discontinuous) and therefore, needs to be approximated. The 
numerical flux also plays a significant role in coupling the DoF of each element with the neighboring elements. Here, 
we use the local Lax–Friedrichs (LLxF) scheme, which we briefly describe them next in the framework of the first-order 
hyperbolic advection–diffusion system formulation.

2.2. Local Lax–Friedrichs (LLxF) flux

We define the LLxF flux for the hyperbolic advection–diffusion system as

Ĥ = 1

2

[[
H(U+) + H(U−)

] − P−1(αa + αd)(Ua+ − Ua−
)n̂ − P−1αd(Ud+ − Ud−

)n̂
]

(15)

where the negative and positive superscripts denote the local interior and its neighboring (exterior) elements, respectively, 
and n̂ = (n̂x, ̂ny) is the outward unit normal vector to the edge (or face in 3D) of the interior element. Note that the 
numerical flux is given for an interior element and the numerical flux for the neighboring (exterior) element is simply −Ĥ, 
and therefore, the numerical fluxes are conservative. Here, we define the advection and the hyperbolic diffusion spectral 
radii αa and αd locally at each quadrature point as

αa = max(|λa(û)|), αd = max(|λd(û)|), û = 1
(u+ + u−). (16)
2
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Separating the dissipation term into advective and hyperbolic diffusion terms allows us to directly apply the proposed 
schemes to more complex governing equations, such as Navier–Stokes, where the advective and the hyperbolic diffusive 
eigen-structures [10] are available.

3. Proposed DG schemes for the first-order hyperbolic system (DG-H)

In this section, we describe, in details, the construction of high-order cell-centered DG-H schemes for arbitrary polyno-
mial orders on irregular triangular elements. We start the discussion by first introducing some notations.

We construct a DG method with the first-order hyperbolic advection–diffusion system approach, and a reduced number 
of polynomial coefficients, such that the numerical solution can be expressed as

Uh = CkVk (17)

where subscript k denotes the polynomial order approximation, Ck is a modified basis matrix, and Vk is a reduced vector 
of unknown polynomial coefficients. We will define the constructions of Ck , Vk , and their relations to the original basis 
functions, Bk , and the vector of unknown polynomial coefficients, uk , which are given in Eq. (9), shortly in this section. At 
the end of this process, we apply the Galerkin discretization by multiplying the hyperbolic advection–diffusion system by 
the modified basis functions, Ck , and perform an integration by part to arrive at

Mk∂τ Vk = −
∮
∂�

CT
k P H · n̂ d
 +

∫
E

∇CT
k : P H d� +

∫
E

CT
k P Q d�, (18)

where the mass matrix is defined as

Mk =
∫
E

CT
k Ck d�. (19)

Equation (18) describes the pseudo-time evolution equations for the reduced vector of unknown polynomial coefficients, Vk , 
for the element E .

The modified basis functions, Ck , and the reduced number of unknown polynomial coefficients, Vk , are described next 
for polynomial orders of zero, one, two, and k ≥ 3. In essence, we are seeking a new finite-element space based on the 
information available from the auxiliary variables, which are the gradients of the primal variable. A similar approach is 
used in defining a new finite element space, for example, for Maxwell [53] and ideal MHD [54,55] equations, where a local 
divergence-free polynomial vector is used to approximate the gradients of the magnetic field. This resulted in a reduced DoF 
by about a factor of two for two-dimensional problems. In our approach, we reduce the DoF by seeking a new finite element 
space by utilizing the information that is already available from the polynomial space of the auxiliary variables. Imposing 
divergence-free polynomial space for the gradient variables could further reduce the DoF of the proposed DG-H schemes; 
this is left for future investigations. For our discussion, we believe it is beneficial to explicitly spell out the proposed new 
finite element bases starting with the polynomial order of zero, which is done next followed by the polynomial orders of 
one, two and k ≥ 3. We then give a simple step-by-step instruction to define a new finite element spaces for a general 
polynomial order of degree k.

3.1. DG-H scheme with a polynomial order of zero (P 0)

The polynomial order of zero, P 0, is an exceptional case and no reduction in the number of unknown polynomial co-
efficients can be performed. Therefore, the proposed DG-H(P 0) scheme is constructed straightforwardly by applying the 
Galerkin discretization to the hyperbolic advection–diffusion system as described here.

We start the process by first expressing the numerical solution as a polynomial degree of order zero (i.e., k = 0)

Uh = ϕ1I = B0 u0, (20)

where

B0 =
⎡
⎣ ϕ1 0 0

0 ϕ1 0
0 0 ϕ1

⎤
⎦ , u0 = U =

⎡
⎣ u

p
q

⎤
⎦ . (21)

Therefore, we have one DoF for each variable for the total of three DoF per element:

uh = ϕ1 u,

ph = ϕ1 p,

qh = ϕ1 q.
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For the P 0 polynomial, u, p, and q are the minimum required number of unknowns and thus, B0 = C0, u0 = V0, and the 
numerical solution can be expressed as

Uh = B0 u0 = C0 V0. (22)

We then directly apply Eq. (18) and solve for the three DoF per element. As we will show later, the constructed P 0

scheme is first-order for both solution and solution gradients on irregular elements, making this scheme ideal for consistent 
p-multigrid.

We can further upgrade the polynomial representation of uh by one order with the available polynomial coefficients as

uh = ϕ1 u + ϕx ux + ϕy u y,

ph = ϕ1 p,

qh = ϕ1 q, (23)

where ux and u y are the gradients of u at the cell centroid and therefore, we can evaluate them with the polynomial 
representations of ph and qh as

ux ← ph(xc, yc) = p

u y ← qh(xc, yc) = q.

Thus, we arrive at the following upgraded polynomial

uh = ϕ1 u + ϕx p + ϕy q,

ph = ϕ1 p,

qh = ϕ1 q. (24)

We can use the upgraded polynomial only in the flux evaluation and/or incorporate it, as well, in the modified basis 
functions matrix, C0, as given below:

C0 =
⎡
⎣ ϕ1 ϕx ϕy

0 ϕ1 0
0 0 ϕ1

⎤
⎦ . (25)

The incorporation of the upgraded polynomial uh in the C0 matrix is optional and will not affect the order of accuracy 
of the scheme for diffusion problems. This upgrade, which does not increase the DoF, makes the DG-H(P 0) scheme exact 
for exact linear solution, and increases the order of accuracy of the primal variable to second-order in the advection-limit 
(ν → 0), while the solution gradients remain at first-order.

We remark that employing polynomial approximations of the auxiliary variables p and q for the evaluation of the 
first derivatives of the primal variable u does not imply that the constructed scheme is only applicable to steady-state 
calculations. We realize that the evolution equations are in pseudo-time, and as we mentioned earlier the source term of 
our hyperbolic first-order system contains the physical-time discretization. It is also important to note that we always seek 
a pseudo-steady state solution in both steady-state and time-dependent calculations. Thus, utilizing, for example, ph for 
approximating ux is perfectly valid.

3.2. DG-H scheme with a linear polynomial (P 1)

We start the construction of the P 1 scheme by expressing the numerical solution with a linear polynomial approximation

uh = ϕ1u + ϕxux + ϕyu y,

ph = ϕ1 p + ϕx px + ϕy p y,

qh = ϕ1q + ϕxqx + ϕyqy,

which can be written in a vector form as

Uh = B1 u1, (26)

where

B1 = [
ϕ1I, ϕxI, ϕyI

] =
⎡
⎣ ϕ1 0 0 ϕx 0 0 ϕy 0 0

0 ϕ1 0 0 ϕx 0 0 ϕy 0
0 0 ϕ1 0 0 ϕx 0 0 ϕy

⎤
⎦ , (27)

u1 = [
U, Ux, Uy

]T = [
u, p, q, ux, px, qx, u y, p y, qy

]T
. (28)
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We now introduce a unified notation for the qx and p y as

vxy ≡ qx = p y, (29)

and expressed the cell-centered ux and u y values as

ux ← ph(xc, yc) = p + �
��

0
ϕc

x px +
�
��

0
ϕc

y p y = p,

u y ← qh(xc, yc) = q + �
��

0
ϕc

x qx +
�
��

0
ϕc

y qy = q,

where sub/superscript c denote evaluation at the cell centroid. That is, the polynomial approximation can be written in a 
modified form as

uh = ϕ1u + ϕx p + ϕyq,

ph = ϕ1 p + ϕx px + ϕyvxy,

qh = ϕ1q + ϕxvxy + ϕyqy,

or in a vector form as

Uh = B1 ũ1 = B1Z1V1 = C̃1V1, (30)

where

ũ1 = [
u, p, q, p, px, vxy, q, vxy, qy

]T
, (31)

V1 = [
u, p, q, px, vxy, qy

]T
, (32)

Z1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

Note that u1 represents the unknown polynomial coefficients resulted from the direct DG construction, while V1 is a vector 
of reduced unknown polynomial coefficients.

Similar to the proposed P 0 scheme, we can improve the polynomial order of uh by one degree using the available 
independent coefficients and arrive at

uh = ϕ1 u + ϕx p + ϕy q + ϕxx px + ϕxy vxy + ϕyy qy, (34)

ph = ϕ1 p + ϕx px + ϕy vxy, (35)

qh = ϕ1 q + ϕx vxy + ϕy qy, (36)

where the quadratic terms of the polynomial representation of uh can either be used only for the flux evaluations or also 
be incorporated into the basis functions to arrive at the following polynomial approximations

Uh = B̃1 ũ1 = B̃1Z1V1 = C1V1, (37)

where

B̃1 =
⎡
⎣ ϕ1 0 0 ϕx ϕxx ω1ϕxy ϕy (1 − ω1)ϕxy ϕyy

0 ϕ1 0 0 ϕx 0 0 ϕy 0
0 0 ϕ1 0 0 ϕx 0 0 ϕy

⎤
⎦ . (38)

The presence of the ω1 constant, which can take any value, is the result of the equality given in Eq. (29), and has no effect 
in the final answer because it will be disappeared in the modified basis functions as shown bellow:
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C1 = B̃1Z1 =
⎡
⎣ ϕ1 ϕx ϕy ϕxx ω1ϕxy + (1 − ω1)ϕxy ϕyy

0 ϕ1 0 ϕx ϕy 0
0 0 ϕ1 0 ϕx ϕy

⎤
⎦

=
⎡
⎣ ϕ1 ϕx ϕy ϕxx ϕxy ϕyy

0 ϕ1 0 ϕx ϕy 0
0 0 ϕ1 0 ϕx ϕy

⎤
⎦ = B1Z1 + rucT

1 , (39)

where ru is a vector indicating which variable is given the extra terms and cT
1 is a vector containing the extra basis 

functions:

ru =
⎡
⎣ 1

0
0

⎤
⎦ , cT

1 = [0,0,0,ϕxx,ϕxy,ϕyy].

With the introduction of the modified basis function, C1, and the reduced vector of unknown polynomial coefficients, V1, 
we simply apply the Galerkin discretization as given in Eq. (18).

The proposed DG-H(P 1) scheme is second-order for both solution and solution gradients. Furthermore, the proposed P 1

scheme is exact for exact quadratic solution, and in the advection-limit, the order of accuracy of the solution u is third-order, 
while the gradients remain at second-order.

3.3. DG-H scheme with a quadratic polynomial (P 2)

The procedure in constructing the P 2 scheme starts with a quadratic polynomial approximation of the numerical solution 
as

uh = ϕ1u + ϕxux + ϕyu y + ϕxxuxx + ϕxyuxy + ϕyyu yy

ph = ϕ1 p + ϕx px + ϕy p y + ϕxx pxx + ϕxy pxy + ϕyy p yy,

qh = ϕ1q + ϕxqx + ϕyqy + ϕxxqxx + ϕxyqxy + ϕyyqyy,

which can be written in a vector form as

Uh = B2 u2, (40)

where

B2 = [
ϕ1I, ϕxI, ϕyI, ϕxxI, ϕxyI, ϕyyI

]
,

=
⎡
⎣ ϕ1 0 0 ϕx 0 0 ϕy 0 0 ϕxx 0 0 ϕxy 0 0 ϕyy 0 0

0 ϕ1 0 0 ϕx 0 0 ϕy 0 0 ϕxx 0 0 ϕxy 0 0 ϕyy 0
0 0 ϕ1 0 0 ϕx 0 0 ϕy 0 0 ϕxx 0 0 ϕxy 0 0 ϕyy

⎤
⎦ , (41)

u2 = [
U, Ux, Uy, Uxx, Uxy, Uyy

]T
,

= [
u, p, q, ux, px, qx, u y, p y, qy, uxx, pxx, qxx, uxy, pxy, qxy, u yy, p yy, qyy

]T
. (42)

Similar to the proposed P 1 scheme, we can unify some of the polynomial coefficients as

uxx ≡ px,

vxy ≡ qx = p y,

vxxy ≡ qxx = pxy,

vxyy ≡ qxy = p yy,

u yy ≡ qy,

and replace the cell centered ux and u y with the following expressions

ux ← ph(xc, yc) = p + �
��

0
ϕc

x px +
�
��

0
ϕc

y p y + ϕc
xx pxx + ϕc

xyvxxy + ϕc
yyvxyy = p + ϕc

xx pxx + ϕc
xyvxxy + ϕc

yyvxyy,

u y ← qh(xc, yc) = q + �
��

0
ϕc

x qx +
�
��

0
ϕc

y qy + ϕc
xxvxxy + ϕc

xyvxyy + ϕc
yyqyy = q + ϕc

xxvxxy + ϕc
xyvxyy + ϕc

yyqyy,

where, again, sub/superscript c denotes the evaluation of the basis functions at the cell centroid. This leads to the following 
quadratic polynomial approximation for the numerical solution:
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uh = ϕ1u + ϕx(p + ϕc
xx pxx + ϕc

xyvxxy + ϕc
yyvxyy) + ϕy(q + ϕc

xxvxxy + ϕc
xyvxyy + ϕc

yyqyy)

+ ϕxx px + ϕxyvxy + ϕyyqy,

ph = ϕ1 p + ϕx px + ϕyvxy + ϕxx pxx + ϕxyvxxy + ϕyyvxyy,

qh = ϕ1q + ϕxvxy + ϕyqy + ϕxxvxxy + ϕxyvxyy + ϕyyqyy .

Here, it is important to closely examine the polynomial representation of the primal variable, uh , which we rewrite it as

uh = ϕ1u + ϕx p + ϕyq + ϕxx px + ϕxyvxy + ϕyyqy

+ ϕxϕ
c
xx pxx + ϕxϕ

c
xyvxxy + ϕxϕ

c
yyvxyy + ϕyϕ

c
xxvxxy + ϕyϕ

c
xyvxyy + ϕyϕ

c
yyqyy .

We immediately note that this polynomial is no longer a valid polynomial approximation, because it corresponds to the 
following basis functions

ϕ1, ϕx, ϕy, ϕxx, ϕxy, ϕyy, ϕxϕ
c
xx, ϕxϕ

c
xy, ϕxϕ

c
yy, ϕyϕ

c
xx, ϕyϕ

c
xy, ϕyϕ

c
yy,

which are not completely independent (e.g., ϕx and ϕxϕ
c
xx are not independent) and therefore, leads to an underdetermined 

problem. For instance, the Galerkin discretization of the advection equation ∂xu = 0 with a polynomial uh = ϕ1a +ϕxb +ϕxc
will result in two independent discrete equations for three coefficients (a, b, c). Consequently, the coefficients cannot be 
determined uniquely, thus will lead to inconsistency. For instance, some coefficients could be obtained accurately while 
other coefficients are not accurate at all; e.g., a and b could be accurate but c could be inaccurate. In the P 2 scheme we 
have thus far, this, for example, could lead to accurate p and q predictions and very inaccurate pxx, vxxy , vxyy , and/or qyy

results. In a more general situation (or a worse case), there is no guarantee that any of the variables could be predicted 
accurately. To remedy this issue, we upgrade the uh by one degree. This is possible without a reconstruction or increase of 
DoF because pxx , vxxy , vxyy , and qyy correspond to the cubic terms for the cubic polynomial u. With the unified notation 
for the pxx and uxxx , i.e.,

pxx ≡ uxxx,

the upgraded polynomial approximation for the P 2 case reduces to

uh = ϕ1u + ϕx p + ϕyq + ϕxx px + ϕxyvxy + ϕyyqy

+ (ϕxϕ
c
xx + ϕxxx)pxx + (ϕxϕ

c
xy + ϕyϕ

c
xx + ϕxxy)vxxy + (ϕxϕ

c
yy + ϕyϕ

c
xy + ϕxyy)vxyy + (ϕyϕ

c
yy + ϕyyy)qyy,

ph = ϕ1 p + ϕx px + ϕyvxy + ϕxx pxx + ϕxyvxxy + ϕyyvxyy,

qh = ϕ1q + ϕxvxy + ϕyqy + ϕxxvxxy + ϕxyvxyy + ϕyyqyy,

which corresponds to the following independent modified basis functions:

ϕ1, ϕx, ϕy, ϕxx, ϕxy, ϕyy, (ϕxϕ
c
xx + ϕxxx), (ϕxϕ

c
xy + ϕyϕ

c
xx + ϕxxy), (ϕxϕ

c
yy + ϕyϕ

c
xy + ϕxyy), (ϕyϕ

c
yy + ϕyϕ

c
yy).

Thus, the one degree polynomial upgrade for uh is no longer an option but required for our proposed DG-H(P 2) scheme. In 
fact, this procedure is required for any DG-H(P k) scheme with k ≥ 2.

Expressing the polynomial approximation in a vector form, we arrive at

Uh = B̃2 ũ2 = B̃2Z2V2 = C2V2, (43)

where

ũ2 = [u, p, q, (p + ϕc
xx pxx + ϕc

xyvxxy + ϕc
yyvxyy), px, vxy, (q + ϕc

xxvxxy + ϕc
xyvxyy + ϕc

yyqyy),

vxy, qy, px, pxx, vxxy, vxy, vxxy, vxyy, qy, vxyy, qyy]T , (44)

and

V2 = [
u, p, q, px, vxy, qy, pxx, vxxy, vxyy, qyy

]T
, (45)
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B̃2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1 0 0
0 ϕ1 0
0 0 ϕ1
ϕx 0 0
0 ϕx 0
0 0 ϕx

ϕy 0 0
0 ϕy 0
0 0 ϕy

ϕxx 0 0
ϕxxx ϕxx 0

ω1ϕxxy 0 ϕxx

ϕxy 0 0
(1 − ω1)ϕxxy ϕxy 0

ω2ϕxyy 0 ϕxy

ϕyy 0 0
(1 − ω2)ϕxyy ϕyy 0

ϕyyy 0 ϕyy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, Z2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 ϕc

xx ϕc
xy ϕc

yy 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 ϕc

xx ϕc
xy ϕc

yy
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (46)

where, again, ω1 and ω2, which can take any value, appear because qxx = pxy and qxy = p yy , and have no effect on the result 
as they will be canceled in the modified basis function, C2 = B̃2Z2, which is the one used in the Galerkin discretization. 
Similar to the proposed P 1 scheme, we can also expressed the resulting polynomial approximation using the original basis 
functions, B, as

Uh = B2 ũ2 + rucT
2 V2 = (B2Z2 + rucT

2 )V2, (47)

where, again, ru is a vector indicating which variable is given the extra terms and cT
2 is a vector containing the extra basis 

functions:

ru =
⎡
⎣ 1

0
0

⎤
⎦ , cT

2 = [0,0,0,0,0,0,ϕxxx,ϕxxy,ϕxyy,ϕyyy].

Note that Eqs. (43) and (47) are identical. With the formulations of the modified basis function, C2, and the reduced vector of 
unknown polynomial coefficients, V2, we apply the Galerkin discretization, Eq. (18), and solve for the pseudo-time evolution 
equations.

Our proposed P 2 scheme is third-order for both the solution and the solution gradients, and is exact for exact cu-
bic functions. In addition, the scheme becomes fourth-order in the advection-limit for the primal variables. For general 
advection–diffusion problems, the proposed scheme is equivalent to the conventional DG(P 3) scheme for the same order of 
accuracy of the solution gradients and the total number of DoF.

3.4. DG-H scheme with a kth-order polynomial (P k)

In a general case, starting with the reformulation of the target governing equation as a first-order hyperbolic advection–
diffusion system, we construct the proposed high-order DG-H scheme for an arbitrary polynomial order of k with the 
following simple steps:

• define a numerical solution for the independent variables of the first-order hyperbolic advection–diffusion system with 
a kth-order polynomial approximation. For the hyperbolic advection–diffusion system studied here, we arrive at

Uh = [uh, ph,qh]T ∈ Pk,

where Pk denotes a vector space polynomial of degree k that is spanned by the Taylor basis functions;
• unify the coefficients with the process described in the previous sections (e.g., define vxy as a unified notation for qx

and p y , and so forth);
• upgrade the polynomial approximation for the primal variables by one-degree with the available independent poly-

nomial coefficients. Note that this step is only required for the polynomial approximations of order k ≥ 2. This step, 
however, is optional for the proposed P 0 and P 1 schemes. Regardless of the chosen polynomial order k, this step re-
sults in a (k + 2)-order accurate solutions for the primal variables in the advection-limit (high-Reynolds number). Thus, 
we highly recommend this upgrade for all the polynomial orders as it does not increase the DoF and yet increases the 
order of accuracy of the primal variables for inviscid problems;
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Fig. 2. The WENO stencil.

• express the numerical solution vector Uh in a vector form as

Uh = Bkũk,

where ũk is a vector of unknown polynomial coefficients, and Bk is the basis functions;
• define the reduced vector of unknown polynomial coefficients Vk by identifying the independent polynomial coefficients.
• express the numerical solution with the modified basis functions as

Uh = B̃kũk = B̃kZkVk = CkVk,

where Ck = B̃kZk = BkZk + rucT
k is the modified basis functions, and Zk may be regarded as an operator that transforms 

the ũk to the reduced vector of unknown polynomial coefficients Vk . Note ru is a vector indicating the primal variables 
are given the extra terms and cT

k is a vector containing the extra basis functions needed to upgrade the polynomial 
approximation for the primal variables by one-degree;

• apply the Galerkin discretization, Eq. (18).

4. WENO limiting procedure for the proposed DG-H schemes

Here we simply follow the compact WENO reconstruction procedure outlined by Zhu et al. [56,57] for triangular ele-
ments, and apply it to the proposed DG-H schemes. The main advantages of this WENO limiter over other proposed WENO 
limiters [58,59] are its compactness, depending only on the information from the target cell and its immediate neighbors, 
and the ability to reconstruct the entire polynomial (point values and all the moments) in one shot. For completeness and 
better clarity, we briefly describe the procedure here in the context of our DG-H schemes.

We start the WENO limiting procedure by replacing the cell averaged values of the neighbors of the target cells, on 
which the WENO reconstruction is being performed, with the cell averaged values of the target cell. This process, which 
ensures that the reconstructed polynomial maintains the original cell averaged values, can be expressed as

Ũ(i)
h = U(i)

h − U
(i) + U

(0)
, i = 1,2,3 (48)

where the superscript (i) denotes the local cell number as depicted in Fig. 2, and the over-line corresponds to the cell 
averaged values on the target cell, E(0); i.e.,

U
(i) = 1

AE(0)

∫
E(0)

U(i)
h d�

where AE(0) is the area of the target cell. We then create a new polynomial for the target cell by a convex combination of 
the modified polynomials obtained in the previous step on the WENO stencil (see Fig. 2), and arrive at

U(0)new

h =
3∑

i=0

WiŨ
(i)
h , (49)

where Wi are the normalized nonlinear weights defined as [60–62,57,63]

Wi = Wi∑3
j=0 W j

, Wi = γi

(1 + β2
i )r

, (50)

and γi are the linear weights (such that 
∑3

i=0 γi = 1),

γi =
{

0.001, i �= 0 (neighboring cell)
1 − ∑

j γ j, i = 0 (target cell) , (51)

j �=0
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which is based on the recommendations made by Zhong and Shu [63] and Dumbser and Käser [64]. Here, the smoothness 
indicator, βi , [60] is defined for each component of the Ũh vector. For example, the smoothness indicator for the primal 
variable ũh may be expressed as

βi =
k∑

|l|=1

A|l|−1
E(0)

∫
E(0)

(
∂ |l|

∂xl1∂ yl2
ũ(i)

h

)2

d�, l = (l1, l2), |l| = l1 + l2, (52)

and similarly for other variables. The r parameter in the denominator of the Eq. (50) is an integer; the higher the value 
of r, the more rapid the transition is from smooth to discontinuous regions, hence the better non-oscillatory performance 
as well as accuracy in smooth regions, but the less robust to steady state convergence (which relies on the smoothness of 
the WENO weights) [65]. In our simulations, we use r = 2 but observed no noticeable difference in solutions with either 
r = 1 or r = 2 for the problems studied here.

Note that for better efficiency the WENO limiter is usually applied only to the trouble cells [66] (that is the cells that 
contain oscillatory solutions), but can also be applied to smooth regions without the loss of accuracy.

In summary, and in the context of our proposed DG-H schemes, we repeat the following steps starting with a polynomial 
Uh = CkVk until convergence is obtained:

• solve the DG-H scheme to get a candidate polynomial for the next nonlinear iteration;
• apply the WENO limiter of Zhong and Shu [63] (to all or only to the trouble cells), and compute a new polynomial 

approximation, U(0)new

h , using Eq. (49). In this work, we apply the WENO limiter to all the cells;
• compute the moments (or polynomial coefficients) of the reconstructed polynomial as

Vk = M−1
k

∫
E(0)

CT
k U(0)new

h d�.

5. Numerical experiments

In this section, we present some numerical experiments to demonstrate the performance of the proposed DG-H schemes. 
Here, for clarity and without loss of any ambiguity, we drop the subscript k corresponding to the polynomial order.

We obtain all solutions with Newton iterations by constructing an implicit solver as

M ∂τ V = Res(V), (53)

where V is a global vector of unknown polynomial coefficients. We then solve Eq. (53) for the pseudo steady state:(
M

�τ
I − ∂Res

∂V

)
�V = Res(V),

where �τ is a pseudo-time step taken as infinity for problems with no discontinuity. For problems containing discontinu-
ity, we usually start with �τ = O (1) and gradually increase it with Newton iterations to �τ = 107. Note that the physical 
time derivatives are discretized and included in Res(V) (see Ref. [3]). Here, we only report steady state solutions. We com-
pute �V by solving the above system of linearized equations with the exact residual Jacobians evaluated by an Automatic 
Differentiation algorithm using the operator overloading technique through the chain rules [4,7], and then we update the 
solution by Newton’s method V + �V. We solved the system of linearized equations both with MUMPS direct sparse linear 
solver [67,68], and iteratively using Gauss–Seidel algorithm. For two-dimensional problems considered here, we found that 
the direct linear solver is more efficient than the Gauss–Seidel iterative solver with three order reductions in the linear 
residuals.

We perform the numerical experiments on fixed irregular unstructured triangular grids. We generate these irregular 
grids in two steps; 1) we randomly modify the orientations of the triangular edges of a uniform grid, 2) we then apply 40% 
random perturbations to both the x and y coordinates of the nodes. For example, the new x nodal coordinates are taken 
to be x ± 40%(random number − 1/2)�x, where �x is the distance between the node’s immediate right and left neighbors 
along the x-direction. We repeat a similar procedure for the y nodal coordinates. Fig. 3 shows a representative of irregular 
unstructured triangular grids. In our experiments, we do not perform grid adaptation nor do we use specialized grids for 
any of the test cases presented here.

For all the computational results, we use the local Lax–Friedrichs (LLxF) numerical flux and the quadrature rules that 
are exact for polynomial orders of (2k + 1) and 2k, respectively, for edge and interior integrals [44]. These, along with the 
corresponding DoF per element are tabulated in Table 1.

All the presented results for the DG-H schemes are based on the numerical approximation given in Eq. (17). That is, the 
DG-H(Pk) schemes correspond to Pk+1 polynomial approximation for the primal variable u, while the gradients of u (i.e., p
and q) are approximated with a polynomial degree of order k.
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Fig. 3. Representative of an irregular unstructured triangular grid.

Table 1
Number of quadrature points used for the proposed DG-H and the conventional DG schemes on irregular trian-
gular elements.

Polynomial (Pk) Edge (2k + 1) Interior (2k) DoF per element

DG-H DG DG-H DG DG-H DG

P 0 2 2 3 3 3 1
P 1 2 2 3 3 6 3
P 2 3 3 7 7 10 6
P 3 4 4 13 13 15 10
P 4 5 5 19 19 21 15

5.1. Accuracy verifications

Consider the steady advection–diffusion equation

a∂xu + b∂yu = ν
(
∂xxu + ∂yyu

)
, ν =

{
1 or 10−8, for DG-H
1 or 10−8, for DG

,

with a Dirichlet boundary condition in a unit square domain. The exact solution has an exponential form [69]

u(x, y) = C cos(Aπη)exp

(
1 − √

1 + 4A2π2ν2

2ν
ξ

)
,

where A and C are arbitrary constants, ξ = ax + by, and η = bx − ay. We take a = 2, b = 1, A = 2, and C = −0.009 (see 
Ref. [7]). For the vanishingly small viscosity coefficient (advection problem), we compare the results with conventional 
DG schemes. These are shown in Fig. 4 (Note: the comparison plots are on the same scale). In the advection limit, we 
obtain (k + 2)-order of accuracy for the primal, and (k + 1)-order of accuracy for the solutions gradients with the DG-H 
schemes. For the DG schemes on irregular elements, we achieve (k + 1)-order accurate for primal and (k)-order accurate 
solution gradients. Thus, the DG-H(Pk) schemes are equivalent to DG(Pk+1) schemes for the same order of accuracy for both 
solution and solution gradients and the same numbers of DoF. We again note that the DG-H(P k ) schemes use the polynomial 
approximation of order k that is implicitly upgraded (without any reconstruction) to a polynomial degree of order (k + 1)

for the primal variable u. Thus both DG-H(Pk) and DG(Pk+1) give (k + 2)-order accurate solution and (k + 1)-order accurate 
solution gradients, and they both have identical DoF.

The accuracy results for the advection–diffusion problem with ν = 1 are shown in Fig. 5, where the results are compared 
with interior penalty (IP) schemes (see Appendix A for the IP formulation used in this work). The (k + 1)-order of accuracy 
is achieved for both solution and solution gradients with the proposed DG-H schemes. The results obtained with the IP 
schemes are also provided in this figure. For irregular triangular elements, the IP schemes achieve (k + 1)-order accurate 
solution if k is an odd number. For even k, we observed (k + 1/2)-order accurate for the solution variables u. For any 
polynomial approximation of order of k (i.e., both odd and even), the IP schemes give kth-order accurate solution gradients 
for advection, diffusion, and advection–diffusion problems. Note that a formal proof of (k +1/2) accurate solution for general 
random grid is given in Refs. [70,71]. However, (k + 1)-order accurate solution is often observed in practice.
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Fig. 4. Accuracy verification for the proposed DG-H schemes compared with the conventional DG schemes on irregular triangular grids for advection 
equations.

Table 2
Order of accuracy comparisons between the proposed DG-H and high-order DG and IP (Pk) schemes on irregular 
triangular elements.

Problem DG-H order of accuracy DG order of accuracy IP order of accuracy

Solution Gradients Solution Gradients Solution Gradients

Advection k + 2 k + 1 k + 1 k k + 1 k
Diffusion k + 1 k + 1 – – k + 1a k
Advection–diffusion k + 1 k + 1 – – k + 1a k

a For k even we observed k + 1/2; see Fig. 5.

We remark that both the DG-H and the IP schemes produce excellent quality solution and solution gradients on irregular 
triangular elements. We also note that the DG-H schemes produce equal order of accurate solution and solution gradi-
ents for general advection–diffusion problems, without requiring a second-order diffusion operator. Equal order of accuracy 
for solution and solution gradients could potentially be beneficial in, for example, multigrid applications, which we will 
investigate in future.

In a general term, we can summarize the accuracy features of the DG-H and DG schemes as tabulated in Table 2. These 
results are based on the results presented in Figs. 4 and 5. Order of accuracy of the advection and diffusion terms as well as 
the solution gradients obtained by the DG-H and the DG schemes are also compiled with in terms of DoF. These are given 
in Table 3, which shows that the same order of accuracy is achieved without increasing DoF, for the advective term and the 
gradients. Obtaining high-order accurate gradients is an objective of this work.

We would also like to remark on the relative computational costs of the proposed DG-H schemes in comparison with the 
high-order DG schemes. All computations are performed on a Macbook Pro with a 2.3 GHz Intel Core i7 chip and a 16 GB 
1600 MHz DDR3 ram. We did not attempt any code optimization. It is also necessary to note that our code is a research 
code, and thus the reported CPU times is only qualitative. Figs. 6 and 7 show the relative errors of the solution and solution 
gradients versus the CPU time for various polynomial orders for DG-H, DG, and IP schemes. In general, both figures show 



744 A. Mazaheri, H. Nishikawa / Journal of Computational Physics 321 (2016) 729–754
Fig. 5. Accuracy verification for the proposed DG-H schemes on irregular triangular grids for advection–diffusion equations compared with the interior 
penalty (IP) scheme.

Table 3
Order of accuracy of the advective term, the diffusion term, and the gradients for the proposed DG-H 
and the conventional DG schemes with an identical DoF.

DoF DG-H DG/IP

Advection Diffusion Gradients Advection Diffusion Gradients

3 2 1 1 2 2 1
6 3 2 2 3 3 2

10 4 3 3 4 4 3
15 5 4 4 5 5 4
21 6 5 5 6 6 5
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Fig. 6. Relative error vs. CPU time for solution and solution gradients computed with the high-order DG-H and DG schemes.

that for a given CPU time, higher order schemes produce results that are orders of magnitude more accurate than the ones 
predicted with the lower order schemes and therefore, high-order schemes are more efficient than the low-order schemes. 
The results also indicate that the proposed DG-H schemes cost nearly the same as the DG schemes to achieve relatively 
the same error. In comparison with IP schemes, both the DG-H and the IP schemes produce relatively the same error for 
the solution gradients for a given CPU time. However, it appears that the high-order IP schemes are slightly more efficient 
than the proposed DG-H schemes, but a more comprehensive analysis for more complex simulations (e.g., Navier–Stokes) 
is needed to better characterize these two schemes. Thus, the reported CPU times are not completely conclusive. It is also 
important to conduct such analysis with a code that is optimized for each of the presented schemes; we performed no 
optimization for any of the presented schemes in our study. We plan to report on such a comprehensive cost analysis for 
the Navier–Stokes equations in future studies.

5.2. Burgers equation

Consider the steady Burgers equation

∂x

(
u2

2

)
+ ∂yu = ν

(
∂xxu + ∂yyu

)
, ν =

{
10−8, for DG-H
0, for DG

,

with u(x, 0) = 2x − 1.5 as a boundary condition. Fig. 8 shows the contour plots of the solution computed by the proposed 
DG-H and the conventional DG schemes with and without the WENO limiter. Both the proposed DG-H and the DG schemes 
produce good solutions with and without the WENO limiter. We observed no noticeable difference between the solutions 
obtained with and without the WENO limiter. This is similar to the observation provided in Ref. [57] that the DG schemes 
can compute, without any limiter, solutions that are smooth or contains not strong-enough shocks. It appears that the 
Burgers equation do not produce a strong-enough shock and therefore, it is not surprising that the schemes without WENO 
limiter perform equally well.

Solution gradients across the compression fans are discontinuous. As shown in Fig. 9, both DG-H and DG schemes of all 
polynomial orders accurately predict the discontinuous solution gradients on the irregular triangular grids. These results are 
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Fig. 7. Relative error vs. CPU time for solution and solution gradients computed with the high-order DG-H and IP schemes.

particularly remarkable compared with the high-order RD schemes proposed in Refs. [7,9], which despite its attractiveness 
and ability to predict discontinuous solutions accurately, predicted less accurate discontinuous solution gradients.

We also observed that sufficient reduction in the residual of the first moments (i.e., ux and u y) are required for both the 
DG-H and the DG schemes to obtain accurate solution gradients. This is demonstrated in Fig. 10.

It is also interesting to note that predicting good solution gradients does not necessarily require high-order DG schemes. 
The first-order solution gradients obtained with the DG-H(P 0) and the DG(P 1) on a 60 × 60 irregular triangular grid, which 
is shown in Fig. 11, are also very good.

5.3. Buckley–Leverett equation

Consider a two-dimensional non-convex Buckley–Leverett equation,

∂x

(
4u2

4u2 + (1 − u)2

)
+ ∂yu = ν

(
∂xxu + ∂yyu

)
, ν =

{
10−8, for DG-H
0, for DG

,

in (x, y) ∈ [−1, 1] × [0, 1] with u(x, 0) = 1 for − 1
2 ≤ x ≤ 0 and u(x, 0) = 0 otherwise. The exact solution to this equation is 

a mixture of shock, rarefaction, and contact discontinuity. The three-dimensional contour plot of the solution obtained with 
the fifth-order DG-H schemes, as shown in Fig. 12, illustrates the composite wave structure of this equation, which may be 
regarded as a model equation for two-phase flow. As pointed out by Qui et al. [72], some high-order methods may fail to 
converge to the correct entropy solution for this problem.

The contour plots of the high-order solution obtained with the proposed DG-H and the conventional DG schemes are 
presented in Fig. 13. The high-order solutions with and without the WENO limiter are nearly the same and have no notice-
able under/overshoots. Again, this is because the shocks generated by the Buckley–Leverett equation, similar to the Burgers 
equation test case, are not strong-enough to admit solution oscillations for either the DG-H or the DG schemes. To gen-
erate strong-enough shocks, we will revisit similar comparisons (in future studies) when we apply these schemes to the 
Navier–Stokes equations.

The predicted solutions are compared with the exact solution at y = 0.4 [63,73]. As shown in Fig. 14, both the DG-H and 
the DG schemes of various orders give a correct entropy solution, and are very accurate in predicting the composite struc-
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Fig. 8. Burgers test case: Contour plots of the solution u using 60 × 60 irregular triangular elements.

tures. We also observed no noticeable improvements in the solutions between the third-, fourth-, and fifth-order schemes. 
Note that the solutions are compared on the same given grid without post-processing the solutions with a high-order 
visualization [74].
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Fig. 9. Burgers test case: Discontinuous solution gradients ux and u y at y = 0.3 with 60 × 60 irregular triangular elements. The solid lines are the reference 
values and the symbols are the solution gradients at the cell center.
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Fig. 10. Burgers test case: Importance of the residual convergences of the first moments in accurately predicting solution gradients. Shown are the results 
obtained with the third-order DG-H scheme. The solid lines are the reference values and the symbols are the solution gradients at the cell center.

6. Concluding remarks

We proposed arbitrary high-order Discontinuous Galerkin (DG) schemes with the first-order hyperbolic advection–
diffusion formulation approach, called DG-H. A construction strategy is introduced that results in the same degrees-of-
freedom as the comparable conventional high-order DG schemes. We showed that the constructed DG-H schemes give 
equal order of accuracy for both the primal and its gradients on irregular triangular grids. A few numerical examples are 
provided to demonstrate the capability of the DG-H schemes in comparison with the conventional Taylor bases DG schemes 
(LLxF flux). We also verified the order of accuracy of the DG-H schemes on irregular triangular elements. For diffusion prob-
lems, the DG-H schemes of polynomial order of k give (k + 1)-order accurate solution and solution gradients on irregular 
triangular elements. For advection dominated problems, the proposed DG-H schemes give (k + 2)-order of accuracy for the 
primal variable, and (k + 1)-order accurate gradients on irregular triangular elements. We also showed that the DG-H, DG 
and IP schemes produce excellent quality solution and solution gradients on irregular triangular elements. A relative qual-
itative cost analysis between the proposed DG-H, DG and IP schemes revealed that for a given CPU time, the higher the 
polynomial order the lower the predicted relative errors and therefore, the high-order schemes are more economical than 
lower order schemes. We also showed that the proposed DG-H schemes are nearly as efficient as the DG and Interior-Penalty 
(IP) schemes as these schemes produce results that are relatively at the same error level for approximately a similar CPU 
time. A more comprehensive cost analysis is needed to qualitatively characterize the performance of the proposed DG-H 
schemes against DG and IP schemes for more complex simulations with the Navier–Stokes equations.
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Fig. 11. Burgers test case: Predicting good solution gradients does not necessarily require high-order schemes. Shown are the first-order solution gradients 
predicted with the second-order DG-H and DG schemes using 60 ×60 irregular triangular elements. The solid lines are the reference values and the symbols 
are the solution gradients at the cell center.

Fig. 12. Buckley–Leverett test case: three-dimensional contour plot of the composite wave structure obtained with the fifth-order DG-H scheme with and 
without the WENO limiter using 160 × 120 irregular triangular elements in (x, y) ∈ [−1, 1] × [0, 1].
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Fig. 13. Buckley–Leverett test case: contour plots of the high-order solution computed with the high-order DG-H and DG schemes with and without the 
WENO limiter using 160 × 120 irregular triangular elements in (x, y) ∈ [−1, 1] × [0, 1].

Appendix A. Second-derivative diffusion operator

Here, we describe Interior Penalty (IP) schemes for solving nonlinear elliptic equations. Consider the following two-
dimensional nonlinear advection–diffusion equation

∂t u + ∂x f + ∂y g = ∂x(ν∂xu) + ∂y(ν∂yu), (A.1)

where the diffusion coefficient is ν = ν(u), and the advection speeds in the x- and y-direction are defined as a(u) = ∂ f /∂u
and b(u) = ∂ g/∂u, respectively. We write the equation as

∂t u + ∂x f + ∂y g = ∂x(νp) + ∂y(νq), (A.2)

p − ∂xu = 0, (A.3)

q − ∂yu = 0, (A.4)

or in a vector form as

∂t u + ∂x f + ∂y g = ∇ · (νD), (A.5)

D = ∇u. (A.6)

We obtain the weak formulation by multiplying the equation with the test functions υ , and defining H = ( f , g) to arrive 
at
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Fig. 14. Buckley–Leverett test case: solution u(x, y) at y = 0.4 obtained with the high-order DG-H and DG schemes on 120 ×80 irregular triangular elements 
in (x, y) ∈ [−1, 1] × [0, 1]. Solid lines are the reference solutions, while the symbols are the numerical values.∫

E

υ∂t uh d� = −
∫
E

υ
(
∂x f + ∂y g

)
d� +

∫
E

υ∇ · (νD)d�,

= −
∮
∂�

υH · n̂ d
 +
∫
E

∇υ · H d� +
∮
∂�

υ(νD) · n̂ d
 −
∫
E

∇υ · (νD)d�,

= −
∑

e∈∂�

∫
e

υH · n̂ d
 +
∫
E

∇υ · H d� +
∑

e∈∂�

∫
e

υ(νD) · n̂ d
 −
∫
E

∇υ · (νD)d�,

≈ −
∑

e∈∂�

∑
χl

wl υl (Ĥl − ˆ(νD)l) · n̂�se +
∑
χm

wm
[∇υm · (Hm − (ν∇huh)m

]
AE , (A.7)

= −
∑

e∈∂�

∑
χl

wl

[
υl (Ĥl − ˆ(νD)l) + ˆ(νu)l∇υl

]
· n̂�se

+
∑
χm

wm
[∇υm · Hm + um∇υm · ∇νm + um�υm

]
AE , (A.8)

where the second integration by part is performed based on the relation ∇υ · (ν∇u) = ∇ · (νu∇υ) − u∇υ · ∇ν − u�υ , 
where � denotes Laplacian operator. For clarity, we added an underline to the terms associated with diffusion. Note that, it 
is often easier, for implementation, to work with Eq. (A.7) than Eq. (A.8).

We evaluate the numerical flux Ĥ with the LLxF formulation given in Eq. (15), and employ the IP approach to evaluate 
û and the diffusion term D̂ as

û = 1

2
(u+

h + u−
h ), D̂ = 1

2

(∇hu+
h + ∇hu−

h

) − η(u+ − u−)n̂,

where uh is represented with a polynomial approximation of order k. The IP coefficient, η, is a grid dependent term, which 
we use the explicit expression derived and introduced by Shahbazi [75] as
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η =
{

(k+1)(k+d)
2d max( l+

A+ , l−
A− ), interior edges

(k+1)(k+d)
d

l−
A− , boundary edges

,

where d = 2 for two-dimensional elements, l is the perimeter (or area in 3D), and A is the area (or volume in 3D) of the 
element. The IP scheme reduces to the original scheme of Bassi and Rebay [12] with η = 0.
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