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 Hyperbolic Navier-Stokes methods

e Source term discretization for third-order
accuracy
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— Viscous flow simulations
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 Widely used in CFD solvers like NASA's FUN3D,
Software Cradle’s SC/Tetra, DLR Tau code, etc.

* Achieves third-order accuracy for hyperbolic
systems on arbitrary simplex-element grids with
guadratic least-square (LSQ) methods and
linearly-extrapolated fluxes. 123

1. Katz and Sankaran, J. Comput. Phys., Vol 230, 2011, pp. 7670-7686
2. Katz and Sankaran, J. Sci. Comput. Vol. 51, 2012, pp. 375-393
3. Diskin and Thomas, AIAA Paper 2012-0609



Edge-based Discretization

Arbitrary Triangular/Tetrahedral Grids

2nd-Order (Linear LSQ gradients)
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Linear extrapolations

Economical 3rd-order scheme: edge-loop with a flux per edge



Extensions to Viscous Terms

Not straightforward due to compatibility requirement:

- Viscous terms must be discretized to guarantee?®

2
TE(O,f + 0,9 + viscous) = %(&B + 0,)?(0u f + 0,9 + viscous) + O(h?)

- Possible, but additional complications in the algorithm...

Or if we can write the viscous terms as a hyperbolic system:

divf =0

then the third-order EB scheme directly applies to the viscous terms.

4. Hiroaki Nishikawa, J. Comput. Phys., Vol 273, 2014, pp. 287-309



0.p + div(pv)

O-(pv) + div(pv®eVv) + gradp — divr 0, \
8T(pE) + le(pVH) — diV(‘TV) + leq O, Negligibly small

1, SR
o -g —grad v +Hg/u,| = 0,

- HNS Source term
— 07

QI/ Hh

Small coefficient
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5. Y. Nakashima, N. Watanabe, H. Nishikawa, AIAA Paper 2016-1101
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Same discretization for inviscid and viscous terms.
E.g., Edge-based, reconstruction, upwind viscous flux.

O, eliminated
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—L— HNS20(2nd)
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AlAA2015-2451

LSQ  Hyperbolic

well suited for anisotropic adaptation

Higher-order inviscid scheme e e

See hyperbolic method website: http://hiroakinishikawa.com/fohsm/




Source Term Discretization

Compatibility Conditions with Source:

h? |
DI fv SdV =R — 15 [0naR) + 0y Rj+ 0. R — 0, R — 0, R} + 0., Rj] + O(h°
Vi ke{k;} J

R’ =divF — S
— Z <I>jk|njk] / SdV = divF — S—I—O(h3)
Vi ke{k;}
Various source term quadrature formulation exist that satisfy this
property. In this work, the most economical formula is used.®

/ SV — Z (13Sj + 3(9ij3' — SSk) (AXjk - njk)
K ke{k;} o0 t
VS; =10,0,0,0,0, V(gu/tv), V(8u/1v), V(&w/ ), V(Q/pin), V(r/vp)];

6. H. Nishikawa, Y. Liu, , J. Comput. Phys., Vol 344, 2017, p595-622
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= 22« FUN3D, developed by NASA
- | LaRC, is chosen as the CFD
solver for the implementation
of the third-order scheme.

. « FUN3D-i3rd, the third-order-
~inviscid scheme plus the
Galerkin discretization for
VISCOUS terms.

e FUN3D-HNS20 (HNS20), the
third-order scheme with
Hyperbolic Navier-stokes
viscous discretization.
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Third-order Edge-based Schemes in FUN3D

* |Implemented 3"-order inviscid scheme into FUN3D with linear
inviscid flux (roe-flux) extrapolation, 2"d-order accurate
gradients (from QLSQ or HNS gradient variables) and 3'-order
boundary flux quadrature. ’

« Extended 3"-order inviscid scheme into unsteady simulation
with applying accuracy preserving source term quadrature for
the source terms from time derivatives. 8

« Current effort is to extend 3'9-order edge-based scheme to full
Navier-Stokes equations with applying HNS method including
linear HNS viscous flux extrapolation, QLSQ for all HNS
variables, and source term quadrature for HNS source terms.

7.Y. Liu, H. Nishikawa, AIAA Paper 2016-3969
8. Y. Liu, H. Nishikawa, AIAA Paper 2017-0738



Summary of Discretization

Discretization
Scheme Inviscid Viscous HNS Source
Flux LSQ (p,v,p) Flux LSQ (r,g,q)

FUN3D Roe(2nd) : 2 Linear Galerkin(2nd) : 1 None None
FUN3D-i3rd Roe(3rd) :3 Quadratic Galerkin(2nd) : 1 None None
HNS20-IQ(2nd) Roe(3rd) : 2 C-quadratic Upwind(2nd) 2 Linear Point
HNS20-II(2nd) Roe(3rd) :1 N/A Upwind(2nd) 2 Linear Point
HNS20-1Q(3rd) Roe(3rd) :3 C-quadratic Upwind(3rd) : 3 Quadratic Compact
HNS20-II(3rd)  Roe(3rd) :1 N/A Upwind(3rd) 3 Quadratic Compact

HNS20-11(3rd) : Use(r, g, q) - 2nd-order accurate
HNS20-1Q(3rd) : Compact Quadratic LSQ gradients®



Numerical Results

— Accuracy verification with manufactured solutions

— Viscous laminar flow simulations
* Low Reynolds number flow over a sphere

e Middle Reynolds number flow over a Joukowsky
airfoil (in paper)
* High Reynolds number flow over a flat plate
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Sphere at Re=101, Mach = 0.15




Vorticity(z) Contour (finest grid)




Convergence results for finest grid
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Number of linear relaxation

Log10(Number of linear relaxations)
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linear relaxation
IS determined
by reduction of
linear residual
by one order of
magnitude

FUN3D and
FUN3D-13rd will
not converge to
machine zero
without linear
relaxation error
control.



Flat plate at Rey = 1 million
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4 tetrahedral grids: 64x32, 128x64, 256x128, 384x192



Drag coefficient grid convergence
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Skin friction at coarsest grid
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Conclusions

o Extended third-order edge based scheme to the Navier-
Stokes equations for tetrahedral grids by using a
hyperbolic viscous formulation.

e Source terms from the hyperbolic viscous formulation
has been discretized by an efficient accuracy-preserving
guadrature formula, which does not require second
derivatives of the source terms.

* Due to the hyperbolic formulation, the resulting third-
order Navier-Stokes scheme shown to achieve 3 order
accuracy for the primitive variables and their gradients.



Future Work

« Extend HNS20 to turbulent flow
e Develop a more smart quadratic LSQ fit method

e Make the HNS20 method more efficient in
Navier-stokes computations
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