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Abstract

In this paper, we construct very e�cient high-order schemes for general time-dependent

advection-di↵usion problems, based on the first-order hyperbolic system method. Extending

the previous work on the second-order time-dependent hyperbolic advection-di↵usion scheme

[Mazaheri and Nishikawa, NASA/TM-2014-218175, 2014], we construct third-, fourth-, and

sixth-order accurate schemes by modifying the source term discretization. In this paper, two

techniques for the source term discretization are proposed; 1) reformulation of the source

terms with their divergence forms, and 2) correction to the trapezoidal rule for the source

term discretization. We construct spatially third- and fourth-order schemes from the former

technique. These schemes require computations of the gradients and second-derivatives of

the source terms. From the latter technique, we construct spatially third-, fourth-, and sixth-

order schemes by using the gradients and second-derivatives for the source terms, except the

fourth-order scheme, which does not require the second derivatives of the source term and

thus is even less computationally expensive than the third-order schemes. We then construct

high-order time-accurate schemes by incorporating a high-order backward di↵erence formula

as a source term. These schemes are very e�cient in that high-order accuracy is achieved for

both the solution and the gradient only by the improved source term discretization. A very

rapid Newton-type convergence is achieved by a compact second-order Jacobian formulation.

The numerical results are presented for both steady and time-dependent linear and nonlinear

advection-di↵usion problems, demonstrating these powerful features.
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1. Introduction

In this paper, we construct very e�cient high-order schemes for general time-dependent

advection-di↵usion problems, based on the first-order hyperbolic system method [1, 2]. In

this method, the di↵usion term is reformulated as a hyperbolic system, leading to the unifi-

cation of advection and di↵usion as a single hyperbolic system [2]. The drastic change in the

type of equations, parabolic to hyperbolic, brings several dramatic improvements in the con-

struction of numerical schemes: hyperbolic schemes for di↵usion, the same order of accuracy

for the solution and the gradients, orders-of-magnitude convergence acceleration, etc., which

have been demonstrated for steady di↵usion and viscous problems in Refs. [1, 2, 3, 4, 5] and

unsteady advection-di↵usion problems in Ref. [6]. It is based on the reformulation of the

governing equations, and therefore applicable to any discretization method. In this work,

we consider a Residual-Distribution (RD) method [7], which has been well developed for hy-

perbolic systems and has a superior feature of achieving second-order accuracy in a compact

stencil.

In the previous work [6], we extended the hyperbolic method, for the first time, to time-

accurate computations by an implicit time-integration method based on the second-order

backward di↵erence formula. The resulting scheme was applied to various time-dependent

problems, demonstrating second-order accuracy for the solution and the gradient achieved

at all interior and boundary nodes in uniform and nonuniform grids at every physical time

step, and rapid convergence for solving implicit-residual equations by Newton’s method (i.e.,

less than 5 iterations per physical time step), which is possible by the compactness of the RD

schemes. As a consequence of the first-order re-formulation of the equation, the number of

linear relaxations performed at every Newton iteration was shown to increase only linearly

with the grid size, not quadratically as typical for di↵usion problems. The e�ciency of

the developed second-order schemes was demonstrated for linear and nonlinear advection-

di↵usion problems on highly refined grids, up to 30000 nodes.

In this paper, we propose a very simple extension of the second-order schemes to higher-

order. We show that high-order spatial accuracy can be achieved simply by modifying the

source term discretization. There are two approaches to the source term discretization:

1) reformulation of the source terms with their divergence forms, and 2) correction to the
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trapezoidal rule for the source term discretization. The former technique is based on the

divergence formulation of source terms proposed in Ref. [8]: write the source term in the

divergence form and discretize it in the same way as the flux divergence term. The latter is

based on a high-order correction to the trapezoidal rule, and thus called here the generalized

trapezoidal rule. In either case, high-order accuracy is achieved by making low-order trunca-

tion error terms proportional to the residual, which thus vanish in the steady state and yield

high-order accuracy. We solve the resulting implicit-residual equations by an implicit solver

based on the second-order Jacobian matrix developed in the previous work [6]. As we will

show, the implicit solver is as powerful as Newton’s method; e.g., eight orders of magnitude

reduction can be achieved in 10 iterations. To enable time-accurate computations, we em-

ploy high-order versions of the backward di↵erence formulas (BDF), which are incorporated

as source terms, and solve the implicit-residual equations by the implicit solver over each

physical time step. In this manner, the steady state is made equivalent to the next physical

time with all the benefits of the hyperbolic method retained. We note that the choice of the

implicit time stepping method is independent of the developed high-order RD schemes, and

thus other methods such as implicit Runge-Kutta methods or space-time methods can also

be employed.

The high-order RD schemes developed in this work are significantly di↵erent from other

high-order RD schemes in that our schemes are based on the first-order hyperbolic system

formulation of the advection-di↵usion equation [2]. In this approach, the loss of high-order

accuracy in the intermediate Reynolds number, as discussed in Refs. [9, 10, 11], cannot occur

because the advective and di↵usive terms are fully integrated into a single hyperbolic system.

If the original advection-di↵usion equation is discretized, a high-order RD scheme needs to

be developed for the di↵usion term (i.e., second derivative) and then carefully combined

with an advection scheme, e.g. by using a blending parameter as described in Ref. [10], to

avoid the loss of accuracy. Furthermore, while high-order RD schemes based on high-order

elements require extra degrees of freedom for each variable, our schemes are based on linear

elements for any order of accuracy but require extra gradient variable to be added to the

solution vector. Note that the number of extra variables in the high-order elements increase

for higher-order accuracy, but the number of extra variables required in our approach is

fixed and independent of the order of accuracy. Our approach is somewhat similar to those

in Refs. [12, 13, 14], but again is significantly di↵erent by the use of first-order hyperbolic
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system formulation of the advection-di↵usion equation and by the source term discretization

techniques. It is emphasized that our schemes require only the first and second derivatives of

the source term, or in some cases the first derivatives only; they do not require the gradient

computation for the solution variables.

The third-order schemes developed in this paper are similar to the third-order finite-

volume scheme of Katz and Sankaran [15, 16] in that the second-order truncation error

is eliminated by making it proportional to the residual and the upgrade is achieved by

second-order accurate gradients. However, as we demonstrate in this paper, the proposed

high-order RD schemes have several superior features: 1) implicit solver can be constructed

by the Jacobian derived from a compact second-order RD scheme, 2) gradient computations

are required for the source terms only, and not for the solution, 3) sti↵ness due to the second

derivative of the di↵usion term is completely eliminated, 4) higher-order schemes can be

constructed beyond third-order (in extending it to multi-dimensions), 5) the same order

of accuracy is achieved for the gradients, as well. In particular, the fourth-order scheme

constructed in Section 5 is remarkably more e�cient because it does not require second

derivatives of the source term, which are required in the schemes described in Refs. [15, 16].

In this paper, we focus on one-dimensional linear and nonlinear advection-di↵usion prob-

lems. It certainly serves as a basis for the development of high-order multi-dimensional RD

schemes for more complex equations. Yet, more importantly, the one-dimensional high-order

schemes developed in this paper could potentially bring significant improvements to practi-

cal problems such as material thermal response calculations of thermal protection systems

of atmospheric entry vehicles [17, 18, 19], and the experimental aeroheating data reduc-

tion [20, 21], which are based on one-dimensional analyses and routinely used in industries

(e.g. NASA). The extension to higher dimensions is beyond the scope of the paper; it will

be addressed in a subsequent paper.

The paper is organized as follows. In the next section, the time-dependent hyperbolic

advection-di↵usion system is described. In Section 3, a compact second-order residual-

distribution scheme, a steady solver, and the second-order discretization are discussed. In

Section 4, the third- and fourth-order RD schemes with source term reformulation are pro-

posed. In Section 5, the third-, fourth, and sixth-order RD schemes with source term dis-

cretization are developed and proposed. Numerical results are then presented in Section 6.

Finally, Section 7 concludes the study with remarks.
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2. Time-dependent Hyperbolic Advection-Di↵usion System

We start with a linear advection-di↵usion equation to simplify the discussion. We will

extend the discussion later to a more general nonlinear advection-di↵usion equation.

Consider the one-dimensional (1-D) time-dependent advection-di↵usion equation:

@
t

u+ a @
x

u = ⌫ @
xx

u+ S̃(x), (1)

where a and ⌫ are both taken to be positive constant, and S̃ is the source term. We will

follow the procedure we described in Ref. [6] and rewrite the above equation as a first-order

hyperbolic advection-di↵usion system:

@
⌧

u = �a @
x

u+ ⌫ @
x

p� ↵

�t
u+ S(x), (2)

@
⌧

p = (@
x

u� p)/T
r

, (3)

where the relaxation time, T
r

> 0, is arbitrary and defined as described in Ref. [6], and S

includes any existing source terms from the advection-di↵usion problem, S̃, as well as any

additional terms that arise from the implicit time-stepping scheme, �t is the physical time

steps, and ⌧ is the pseudo time step. Note that the @
t

p is taken as pseudo time derivative,

@
⌧

p.

The variable ↵ depends on the order of the Backward-Di↵erencing-Formula (BDF): 1 for

the 1st-order (BDF1), 3/2 for the second-order (BDF2), 11/6 for the third-order (BDF3),

25/12 for the fourth-order, and 147/60 for the sixth-order time discretizations (see Table 1).

The remaining terms in the BDF are stored in the source term function S(x). It is well

Table 1: BDF coe�cients.

BDF Order un+1 un un+1 un+2 un+3 un+4 un+5

1 1 -1

2 3
2 -2 1

2

3 11
6 -3 3

2 �1
3

4 25
12 -4 3 �4

3
1
4

5 137
60 -5 5 �10

3
5
4 �1

5

6 147
60 -6 15

2 �20
3

15
4 �6

5
1
6

known that the BDF2 is A-stable and higher-order BDFs are not. Therefore, the second-
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order scheme is unconditionaly stable, but higher-order BDFs are conditionally stable. Con-

sequently, the stability of the higher-order schemes depends on the spatial discretization.

Estimates for the maximum-allowable CFL numbers are given in Appendix A for a set of

representative high-order schemes developed in this paper.

Towards the pseudo steady state, the variable p approaches the solution gradient and

hence the above equation becomes identical to the original advection-di↵usion equation with

the time derivative discretized by the BDF, i.e., a consistent discretization of the original

equation. The system reduces, of course, to the original steady equation also in the phys-

ical steady state when @
t

u = 0. Second-order accurate unsteady computations have been

demonstrated based on the above formulation in Ref. [6].

In the vector form, our time-dependent first-order advection-di↵usion system can be

written as
@U

@⌧
+A

@U

@x
= S, (4)

where

U =

2

4 u

p

3

5 , A =

2

4 a �⌫

�1/T
r

0

3

5 , S =

2

4 �↵u/�t+ S(x)

�p/T
r

3

5 . (5)

For any positive T
r

, the Jacobian has the following two real eigenvales:

�1 =
a

2


1�

r
1 +

4⌫

a2T
r

�
, �2 =

a

2


1 +

r
1 +

4⌫

a2T
r

�
, (6)

with linearly independent eigenvectors [6], and therefore the above system is hyperbolic in

the pseudo time. The hyperbolicity serves mainly as a guide for discretization: various

discretization techniques are available for hyperbolic systems, e.g., upwinding. In addition

to the convenience in discretization, the major benefits are: 1) the hyperbolic discretization

results in a strong coupling between the two variables that results in the equal order of

accuracy for both u and p = @
x

u on arbitrary grids, and 2) O(1/h) acceleration is achieved

in iterative convergence for the linearized residual equation in implicit solvers due to the

O(1/h) condition number of the Jacobian, which is O(h) smaller than that of the Jacobian

derived from a conventional di↵usion scheme. For explicit schemes, the O(1/h) acceleration is

achieved by the O(h) time step typical in methods for hyperbolic systems, which is O(1/h)

times larger than a typical time step of O(h2) for di↵usion. The O(1/h) acceleration in

convergence has been demonstrated over traditional methods for the di↵usion equation [1, 4],

for the advection-di↵usion equation [2, 5], for the compressible Navier-Stokes equations [3],
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and most recently for time-dependent linear and nonlinear advection-di↵usion problems using

RD technique [6].

In the next sections, we first briefly describe the second-order time-dependent discretiza-

tion process using the RD scheme. Further details are given in Ref. [6]. We then extend the

order of accuracy of the scheme to third-order and fourth-order RD hyperbolic advection-

di↵usion schemes with reformulation of the hyperbolic system, and finally to higher order

(fourth- and sixth-order) RD hyperbolic advection-di↵usion schemes with introduction of

new source term discretization technique.

3. Second-Order RD Hyperbolic Advection-Di↵usion

The RD method requires 1) evaluation of the cell (or element) residuals, and 2) the

distribution of the residuals to the nodes bounding the cell. Consider a one-dimensional

domain discretized with N nodes that are distributed arbitrary over the domain of interest

with the solution, u, and the solution gradient, p = @
x

u, data stored at the nodes denoted

by x
i

, i = 1, 2, 3, ..., N (Fig.1). We define the cell-residual �C by integrating the spatial part

ii-1 i+1

hL hR

Figure 1: Schematic of grid spacing for a 1-D grid.

of the Eq. (4) over the cell, C, defined by the nodes i and i+ 1:

�C =

Z
xi+1

xi

(�AU
x

+ S)dx, (7)

=

8
>><

>>:

�a(u
i+1 � u

i

) + ⌫(p
i+1 � p

i

)

1

T
r

[u
i+1 � u

i

)]

+

Z
xi+1

xi

S dx. (8)

The first term of the Eq. (8) is the result of the exact integration of �AU
x

over the cell

C. The integration of the second term is not exact and therefore is the source of the overall

discretization error. We will further discuss this discretization error in the following sections.

We construct the spatial discretization of Eq. (4) by distributing the cell residuals to the

nodes:
dU

i

d⌧
=

1

h
i

(B+�L +B��R), (9)
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where �L and �R denote the cell-residuals over the left and right cells of the node i, respec-

tively, and h
i

is the dual volume (see Fig. 1) defined by

h
i

=
h
L

+ h
R

2
, h

L

= x
i

� x
i�1, h

R

= x
i+1 � x

i

. (10)

Note that the pseudo time derivative on the left hand side is retained here just for the sake

of illustration. It will be ignored in the implicit formulation that follows. Our aim is to

directly solve it for the pseudo steady state, which corresponds to the next physical time. In

this sense, our method is not a dual-time stepping method. The distribution matrices B�

and B+ (Fig. 2) typically do not a↵ect the order of accuracy of the discretization scheme;

it is determined by the cell-residuals [22, 23], and therefore our focus will be on the residual

evaluation. (Refer to Ref. [6] for formulation of the distribution matrices B� and B+).

ii-1 i+1

B+!i"1 B!"i B+!i

i+2

B!"i+1

Figure 2: Residual distribution to the nodes.

3.1. Second-Order Discretization

We may use a simple trapezoidal rule for the integration of the source term S over the

cell C and arrive at the following cell residuals:

�C =

2

64
�a(u

i+1 � u
i

) + ⌫(p
i+1 � p

i

)� (x
i+1 � x

i

)
↵

�t
(u

i+1 + u
i

)/2

(u
i+1 � u

i

� (x
i+1 � x

i

)(p
i+1 + p

i

)/2)/T
r

3

75

k+1

+

2

64
(x

i+1 � x
i

)(s̃
i+1 + s̃

i

)/2

0

3

75

n�1,n

, (11)

where k and n are the Newton iteration counter (as described below) and the physical time

index, respectively. Note that the second term of the Eq. (11), which is computed at the

two previous physical time steps, is constant during the Newton iteration, and thus will not

contribute to the Jacobian.

The implicit formulation is defined by

Uk+1 = Uk +�Uk, (12)
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where U = (u1, p1, u2, p2, . . . , uN

, p
N

) and k is the iteration counter. The correction �Uk =

Uk+1 �Uk is determined as the solution to the linear system:

@Res

@U
�Uk = �Resk, (13)

where Resk is the right hand side of Equation (9), which is the unsteady residual vector

evaluated by Uk. Note that the pseudo time derivative has been ignored. The Jacobian

matrix is sparse, having three 2⇥2 blocks in each row for all interior nodes and two blocks

for boundary nodes. The i-th pair of rows of the linear system is given by

J
i�1�Uk

i�1 + J
i

�Uk

i

+ J
i+1�Uk

i+1 = �
1

h
i

(B+�L +B��R)k, (14)

where �Uk

i�1 = (�uk

i�1,�pk
i�1), �Uk

i

= (�uk

i

,�pk
i

), �Uk

i+1 = (�uk

i+1,�pk
i+1),

J
i�1 =

1

h
i

@(B+�L)

@U
i�1

, (15)

J
i

=
1

h
i

✓
@(B+�L)

@U
i

+
(@B��R)

@U
i

◆
, (16)

J
i+1 =

1

h
i

@(B��R)

@U
i+1

. (17)

We note that the derivative of the distribution matrices, B� and B+, are zero for linear

advection-di↵usion problems and for nonlinear problems with constant a/⌫ values, which,

for simplicity, are the only nonlinear system considered in this paper. However, the proposed

schemes are applicable to general nonlinear advection-di↵usion problems.

The residual Jacobians needed in the Newton solver are exactly in the same form as the

above equations, but the derivatives of the cell-residuals now include the contribution from

the physical time derivative:

@�
R

@U
i

=

2

664

a� h
R

↵

2�t
�⌫

� 1

Tr
� h

R

2T
r

3

775 , (18)

@�
L

@U
i

=

2

664

�a� h
L

↵

2�t
⌫

1

Tr
� h

L

2T
r

3

775 . (19)

At each physical time level n, we solve the pseudo steady problem by Newton’s method with

the current solution at n as the initial solution. This results in second-order discretization,

which was demonstrated with several examples (linear and nonlinear) in Ref. [6].
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We now focus on the truncation error of the source term discretization as it is needed for

our discussion in the next sections where we show two di↵erent approaches to obtain higher-

order RD schemes. We demonstrate the truncation error of the system by considering the

residual of the second equation in our hyperbolic advection-di↵usion system:

�C

p

= (u
i+1 � u

i

� h(p
i+1 + p

i

)/2)/T
r

, (20)

where h is the width of the cell C (i.e. x
i+1�x

i

). We now expand the �C

p

around the node i

to obtain the truncation error (T.E.) for the second equation, @
⌧

p, which after some algebra

and rearrangements becomes:

T.E. (@
⌧

p) =


(@

x

u
i

� p
i

) +
h

2
(@

xx

u
i

� @
x

p
i

) +
h2

6
(@

xxx

u
i

� 6

4
@
xx

p
i

) +O(h3)

�
/T

r

= O(h2), (21)

where the first two terms will simply vanish as they satisfy the original equation in the

pseudo steady state. The non-vanishing last term makes the current discretization second-

order. The same results are obtained with the first equation and therefore is not repeated

here. The above analysis shows that the error arises from the source term discretization, not

from the flux balance term, which is exact in one dimension. It implies that we can achieve

high-order accuracy only by improving the source term discretization. In fact, in Ref.[14],

a fourth-order finite-di↵erence scheme is constructed in this manner, i.e., by a high-order

source term discretization with explicit pseudo-time stepping targeted for steady problems.

Note that the above truncation error analysis is based on the cell-residual expanded at

a node. Hence, the nodal residual has the same order as the cell-residuals because it is

constructed as a weighted sum of the cell-residuals as shown in Eq. (9). Note also that the

truncation error analysis based on the cell-residual is local to the cell and thus valid for any

size of the cell, i.e., valid for uniform and nonuniform grids. In the rest of the paper, the

truncation error analysis is all based on the cell-residual.

In the next sections, we show two di↵erent techniques that will lead to higher-order

schemes. In particular, we discuss on 1) reformulation of the source term with its divergence

form, and 2) new source term discretization technique which acts as a correction to the

trapezoidal rule.
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4. High-Order RD Scheme with Source Term Reformulation (Third- & Fourth-

Order)

Consider the source term, S, as the divergence of a function fS: fS

x

= S. We now

replace the source terms with their divergence forms, and rewrite our first-order hyperbolic

advection-di↵usion equation as

@
⌧

u = �a @
x

u+ ⌫ @
x

p+ @
x

fS

u

, (22)

@
⌧

p = (@
x

u� @
x

fS

p

)/T
r

, (23)

where fS

u

and fS

p

are the divergence formulation of the source terms in the u and the p

equations, respectively. With the above reformulation of the advection-di↵usion equation,

which will be discussed in more details, the residual evaluations of the system becomes exact

with no special discretization scheme:

�̃C =

Z
xi+1

xi

(�AU
x

+ fS
x

)dx, (24)

=

8
>><

>>:

�a(u
i+1 � u

i

) + ⌫(p
i+1 � p

i

) + (fS

u

)
i+1 � (fS

u

)
i

1

T
r

⇥
u
i+1 � u

i

� (fS

p

)
i+1 + (fS

p

)
i

)
⇤ . (25)

We remark that even though the residual evaluation of our reformulated advection-di↵usion

system is exact, the overall accuracy of the scheme depends on the accuracy of the divergence

formulation of the source terms and how it is formulated.

4.1. Third-Order Scheme with Divergence Form

Following the divergence formulation introduced in [8], we write the source flux in a more

general form:

fS =
m�3X

n=1

(�1)n�1

n!
(x� x

i

)n@
x

n�1S, (26)

= (x� x
i

)S � 1

2
(x� x

i

)2@
x

S +
1

6
(x� x

i

)3@
xx

S � 1

24
(x� x

i

)4@
xxx

S + . . . , (27)

where the source term S and its derivatives S
x

, S
xx

, etc. are not constants but functions

that vary in space. We remark that the source flux, fS, is not necessarily a polynomial of

order m because it depends on the derivatives of the source term S. In this paper, we do
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ii-1 i+1

 ΦCi
 

hRhL

 ΦCi−1
 

 ΦCi
 

Figure 3: Cell residual evaluation with divergence form of the source term.

not consider high-order schemes that require evaluation of third or higher derivatives. The

divergence of the source flux, @
x

fS, for the third-order accuracy (i.e. m = 3) is

@
x

fS = S +
h3

6
@
xxx

S = S +O(h3), (28)

which is identical to the original equation up to the third-order. We remark that this error

does not necessarily limit the maximum order attained by numerical schemes. In the next

section, we will show that a fourth-order scheme can be constructed by a slightly modified

divergence form with m = 3.

Discretization of the reformulated hyperbolic system leads to the cell residual, for exam-

ple, for the second equation as

�C

p

=
⇥
u
i+1 � u

i

� (fS

p

)
i+1 + (fS

p

)
i

⇤
/T

r

, (29)

where special care must be taken when we evaluate fS

i

and fS

i+1 (because of the presence

of x
i

in the divergence formulation) as they depend on whether the cell residual is being

distributed to the left or to the right node of the cell (Fig. 3):

 �
�Ci

p

=
⇥
u
i+1 � u

i

� (fS

p

)
i+1 + (fS

p

)
i

⇤
/T

r

,

=


u
i+1 � u

i

� h
R

S
i+1 +

h2
R

2
@
x

S
i+1 �

h3
R

6
@
xx

S
i+1

�
/T

r

, (30)

�!
�Ci

p

=
⇥
u
i+1 � u

i

� (fS

p

)
i+1 + (fS

p

)
i

⇤
/T

r

,

=


u
i+1 � u

i

+ h
R

S
i

+
h2
R

2
@
x

S
i

+
h3
R

6
@
xx

S
i

�
/T

r

. (31)

The source term discretization is, therefore, not conservative, which is natural and appro-

priate because the source term does not have a conservative property and should not be

discretized in such a way. If it is conservative, the global sum of the cell-residual for the

source term will depend only on the boundary data (telescoping property), which is wrong

for the source term.

We now show that the truncation error (T.E.) of the resulting RD scheme with the above

divergence formulation of the source term (with m = 3) is in fact third-order. Again, for

12



demonstration purposes we consider the second equation (i.e. @
⌧

p); the same process can be

repeated for the first equation. We first expand the source fluxes around the node i:

Z
xi+1

xi

@
x

fSdx = fS

i+1 � fS

i

= h
R

@
x

fS +
h2
R

2
@
xx

fS +
h3
R

6
@
xxx

fS +O(h4), (32)

where the @
x

fS is given by Eq. (28), and

@
xx

fS = @
x

S +
h2
R

2
@
xxx

S +
h3
R

6
@(4)
x

S +O(h4), (33)

@
xxx

fS = @
xx

S + h
R

@
xxx

S + h2
R

@(4)
x

S +
h3
R

6
@(5)
x

S +O(h4). (34)

Using Eq. (29), we evaluate the truncation error of the equation @
⌧

p by substituting Eqs. (33)

and (34) into Eq. (32) and expanding all the terms in Eq. (29) around the node i:

T.E. (@
⌧

p) =


(@

x

u
i

� p
i

) +
h
R

2
(@

xx

u
i

� @
x

p
i

) +
h2
R

6
(@

xxx

u
i

� @
xx

p
i

)

�
/T

r

+


h3
R

24
(@(4)

x

u
i

� 14 @
xxx

p
i

) +O(h4)

�
/T

r

= 0 +O(h3), (35)

where the first three terms vanish as they satisfy our original equation. The presence of

the last term confirms that the proposed divergence formula with m = 3 makes our scheme

third-order accurate. The same result is obtained for the first equation with the divergence

formulation of the corresponding source terms, and therefore the process is not repeated

here.

We remark that the cost of this new third-order accurate RD hyperbolic advection-

di↵usion scheme using the divergence formulation of the source terms is only the evaluation

of the first and second derivatives of the source terms; i.e., @
x

S and @
xx

S. Note that the

source flux is third-order accurate (see Eq. 28). Thus, according to the Eqs. (30) and (31),

we need second-order and first-order accurate discretization for @
x

S and @
xx

S, respectively.

We derive these discretization by fitting a quadratic function through the node i and its two

neighbors i � 1 and i + 1 to arrive (after some algebra) at the following formulas that are

applicable to the internal nodes of general arbitrary grids (uniform and nonuniform):

@
x

S
i

=
�h2

R

S
i�1 + (h2

R

� h2
L

)S
i

+ h2
L

S
i+1

h
R

h
L

(h
R

+ h
L

)
+O(h2), (36)

@
xx

S
i

=
h
R

S
i�1 � (h

R

+ h
L

)S
i

+ h
L

S
i+1

h
R

h
L

(h
R

+ h
L

)/2
+O(h), (37)
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where h
R

and h
L

are defined in Eq. (10). The corresponding one-sided formulas for the

boundary nodes of general arbitrary grids are

@
x

S1 =
�h

L

⇤(h
L

⇤ + 2h
R

)S1 + (h
R

+ h
L

⇤)2S2 � h2
R

S3

h
R

h
L

⇤(h
R

+ h
L

⇤)
+O(h2), (38)

@
x

S
N

=
h
L

(h
L

+ 2h
R

⇤)S
N

� (h
R

⇤ + h
L

)2S
N�1 + h2

R

⇤S
N�2

h
R

⇤h
L

(h
R

⇤ + h
L

)
+O(h2), (39)

@
xx

S1 =
h
L

⇤S1 � (h
R

+ h
L

⇤)S2 + h
R

S3

h
R

h
L

⇤(h
R

+ h
L

⇤)/2
+O(h), (40)

@
xx

S
N

=
�h

R

⇤S
N

+ (h
R

⇤ + h
L

)S
N�1 � h

L

S
N�2

h
R

⇤h
L

(h
R

⇤ + h
L

)/2
+O(h), (41)

where h
L

⇤ and h
R

⇤ are defined as

h
L

⇤ = x3 � x2, h
R

⇤ = x
N�1 � x

N�2. (42)

It is clear from the above formulas that each derivative can be computed in a three-point

stencil. Consequently, the residual at a node is defined in a five-point stencil in the interior,

a four-point stencil at the nodes adjacent to the boundary, and a three-point stencil at the

boundary nodes. In the next section, we demonstrate that a fourth-order scheme can be

constructed without extending the stencil.

4.2. Fourth-Order Scheme with Divergence Form

Here, we show how a simple modification to the presented divergence form upgrades the

scheme order by one order; that is our third-order scheme becomes fourth-order with no

additional cost. To gain an order, we propose the divergence form of the source terms with

fS =
m�3X

n=1

(�1)n�1

n!
(x� x̄)n@

x

n�1S, (43)

= (x� x̄)S � 1

2
(x� x̄)2@

x

S +
1

6
(x� x̄)3@

xx

S � 1

24
(x� x̄)4@

xxx

S + . . . , (44)

where x̄ = (x
i

+ x
i+1)/2. Note that the previous divergence form was formed around the x

i

while this new formulation defines the divergence function around the mid-point x̄. Similar

to the divergence form presented in the previous section, the source term and its derivatives

are not constants but functions that vary in space. And therefore, when the source flux is

di↵erentiated it recovers the original source term up to O(hm) around the node i. For m = 3,

we have:

@
x

fS = S +
(x� x̄)3

6
@
xxx

S = S +O(h3). (45)
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Again, it does not limit the maximum order of accuracy for numerical schemes, and it is

possible to construct even higher-order schemes.

We now show that this third-order source divergence formulation will result in a fourth-

order accurate RD scheme. We do this similarly to the process explained in the previous

section except that the second and third derivatives of the fS are now defined as:

@
xx

fS = @
x

S +
(x� x̄)2

2
@
xxx

S +
(x� x̄)3

6
@(4)
x

S +O(h4), (46)

@
xxx

fS = @
xx

S + (x� x̄)@
xxx

S + (x� x̄)2@(4)
x

S +
(x� x̄)3

6
@(5)
x

S +O(h4). (47)

Again, for discussion purposes, we consider the second equation of the hyperbolic advection-

di↵usion system, @
⌧

p. The truncation error of the p equation after substituting Eqs. (46)

and (47) into Eq. (32) becomes:

T.E. (@
⌧

p) =


(@

x

u
i

� p
i

) +
h
R

2
(@

xx

u
i

� @
x

p
i

) +
h2
R

6
(@

xxx

u
i

� @
xx

p
i

)

�
/T

r

+


h3
R

24
(@(4)

x

u
i

� @
xxx

p
i

) +
h4
R

120
(@(5)

x

u
i

� 5

4
@(4)
x

p
i

) +O(h5)

�
/T

r

= 0 +O(h4), (48)

which is fourth-order accurate because of the cancellation of the first four terms of the

truncation error equation. Another great property of this new divergence formulation is the

equal evaluation of the fS

i+1 � fS

i

regardless of whether the source flux is being transferred

to the node i or i+ 1. This greatly simplifies the implementation of this form of divergence

formulation.

Note that the identical residual is distributed to the left and right nodes in this scheme.

It then appears that the source term discretization is conservative. However, it is actually

not conservative for the source term because the cell-residual for the source term depends

on the coordinate of the mid-point of the cell and thus it is not telescoping. Again, this is

natural and appropriate for the source term, which has no conservation property and should

be local.

5. Higher-Order RD Scheme with Generalized Trapezoidal Rule (Third-, Fourth-

& Sixth-order)

In the previous section, we reformulated the original hyperbolic advection-di↵usion sys-

tem with a generalized divergence form of the source terms and arrived at third- and fourth-

order RD schemes. We specifically showed that both the third- and the fourth-order RD

15



schemes developed with the divergence formulation of the source terms require the evaluation

of the first and second derivatives of the source terms. Fifth- and higher-order schemes can

be systematically constructed with the divergence formulation, but may require the evalua-

tion of third- and higher-order derivatives that would extend the stencil to the neighbors of

the neighbors and beyond. From a practical point of view, such high-order schemes are not

very attractive, and thus not considered here.

In this section, we introduce a di↵erent technique to develop even higher-order schemes

without the need to evaluate gradients beyond the second-derivatives. We also show that with

this new technique the fourth-order RD scheme is even less computationally intensive than

the third- and fourth-order RD schemes that are developed with the divergence formulation

of the source terms.

Consider the vector form of our first-order hyperbolic advection-di↵usion system:

@U

@⌧
+A

@U

@x
= S. (49)

We showed in Section 3 that the source term discretization with the trapezoidal rule provides

a second-order accurate scheme. This trapezoidal rule can be written as
Z

i+1

i

Sdx =
h
R

2
(S

L

+ S
R

), (50)

where for the second-order scheme S
L

= S
i

and S
R

= S
i+1; i.e., the arithmetic averaging

of the source terms between the left and the right nodes (Fig. 4). Generalizing the trape-

ii-1 i+1

SL SR

i-1

ΦC

hR

Figure 4: Source term discretization.

zoidal rule, we propose the following formula for the left and right source terms, S
L

and S
R

respectively:

S
L

= S
i

+ CL

1 @xSi

+ CL

2 @xxSi

, (51)

S
R

= S
i+1 + CR

1 @xSi+1 + CR

2 @xxSi+1, (52)

where CL

1 and CR

1 are constants of O(h), and CL

2 and CR

2 are of O(h2). A somewhat similar

approach is taken in Ref. [15], introduced for upgrading the order of accuracy of a finite-

volume scheme, where not only the source term but also the interface flux need to be modified
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for high-order accuracy. We find these constants by making sure that the nodal residuals of

the two equations in our hyperbolic system are accurate up to the desired order of accuracy of

the scheme we are seeking to develop. With the above equation, the maximum possible order

of accuracy is six. We also note that the fifth-order RD scheme with the above proposed

source term discretization becomes mathematically sixth-order.

5.1. Third-Order RD Scheme with Generalized Trapezoidal Rule

A third-order RD scheme can be obtained if the coe�cients of the proposed discretization

formulation satisfy the following equations:

CL

1 + CR

1 = 0, CR

1 hR

+ CL

2 + CR

2 = �h2
R

6
, CR

1 hR

+ 2CR

2 6= �
h2
R

6
, (53)

which can be derived from the truncation error analysis. Here, there are four unknowns for

three equations; thus there are infinite combinations with the CR

1 as a free parameter. We

also note that there is no relation between this third-order RD scheme and the third-order

scheme developed with the divergence formulation; the nodal residual of the source terms

obtained with the previous third-order scheme depends only on the information from its

immediate node neighbor and not the node itself. On the other hand, the new third-order

RD scheme that is developed with a correction to the trapezoidal rule depends both on its

immediate node neighbor and the node itself. Consequently, it is not possible to reproduce

the previous third-order scheme by any choice of the coe�cients. Note, however, that this

scheme has the same stencil with the previous third-order scheme: a five-point stencil in the

interior, a four-point stencil at the nodes adjacent to the boundary, and a three-point stencil

at the boundary nodes. The same is true for the fourth-order scheme derived in the next

section.

Assuming CR

1 = �h
R

/6, the left and right source functions of the source discretization

may be chosen as:

S
L

= S
i

+
h
R

6
@
x

S
i

,+
h2
R

1000
@
xx

S
i

(54)

S
R

= S
i+1 �

h
R

6
@
x

S
i+1 �

h2
R

1000
@
xx

S
i+1. (55)

We can now evaluate the truncation error of the hyperbolic advection-di↵usion system.

Here we show the truncation error of the second equation; the same will be true for the first

equation as well. The cell residual of the second equation with the third-order RD scheme
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with the generalized trapezoidal rule is:

�C

u

= �a(u
i+1 � u

i

) + ⌫(p
i+1 � p

i

) +
h
R

2
(S

L

+ S
R

),

= �a(u
i+1 � u

i

) + ⌫(p
i+1 � p

i

) +
h
R

2
(S

i+1 + S
i

)

� h2
R

12
(@

x

S
i+1 � @

x

S
i

)� h3
R

2000
(@

xx

S
i+1 � @

xx

S
i

). (56)

We then expand the cell residual around the node i to arrive at the following truncation

error:

T.E.(@
⌧

u
i

) = (�a@
x

u
i

+ ⌫@
x

p
i

+ S
i

) +
h
R

2
(�a@

xx

u
i

+ ⌫@
xx

p
i

+ @
x

S
i

)

+
h2
R

6
(�a@

xxx

u
i

+ ⌫@
xxx

p
i

+ @
xx

S
i

)

+
h3
R

24
(�a@(4)

x

u
i

+ ⌫@(4)
x

p
i

+ 0.988 @
xxx

S
i

) +O(h4)

= 0 +O(h3), (57)

where the first three terms vanish but the last term makes the scheme third-order accurate.

As we will show next, smaller values for the coe�cients CR

2 or CL

2 move the schemes to

fourth-order accurate. This is further shown in the following section.

5.2. Fourth-Order RD Scheme with Generalized Trapezoidal Rule

Fourth-order accuracy is achievable by a simple adjustment to the condition given in

Eq. (53):

CL

1 + CR

1 = 0, CR

1 hR

+ CL

2 + CR

2 = �h2
R

6
,

CR

1

2
h
R

+ CR

2 = �h2
R

12
. (58)

Again, the coe�cients cannot be determined uniquely, and there are many solutions. A

particularly interesting solution is the following:

CL

1 = +
h
R

6
, CL

2 = 0, CR

1 = �h
R

6
, CR

2 = 0. (59)

As will be shown shortly, it leads to a fourth-order RD scheme with the source term dis-

cretization by Eqs. (51) and (52):

S
L

= S
i

+
h
R

6
@
x

S
i

, (60)

S
R

= S
i+1 �

h
R

6
@
x

S
i+1, (61)

It is remarkable that the fourth-order scheme does not require the evaluation of the second

derivatives and is thus less expensive than the third-order schemes developed in the previous
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sections. It is, of course, possible to develop a fourth-order RD scheme with addition of the

second derivatives in the source term discretization. For example the following constants

will also result in a fourth-order RD scheme:

CL

1 = +
h
R

4
, CL

2 = +
h
R

24
CR

1 = �h
R

4
, CR

2 = +
h
R

24
, (62)

which makes this fourth-order RD scheme identical to the fourth-order RD scheme con-

structed by the divergence formulation in Section 4.2. Although it is possible to construct,

these fourth-order schemes are not very attractive as they require second derivatives of the

source term, and therefore not considered in this paper.

We now prove the fourth-order accuracy of the scheme by evaluating the cell residual of,

for example, the first equation; i.e. �C

u

:

�C

u

= �a(u
i+1 � u

i

) + ⌫(p
i+1 � p

i

) +
h
R

2
(S

L

+ S
R

),

= �a(u
i+1 � u

i

) + ⌫(p
i+1 � p

i

) +
h
R

2
(S

i+1 + S
i

)� h2
R

12
(@

x

S
i+1 � @

x

S
i

). (63)

Expanding the cell residual around the node i, we obtain the truncation error of the first

equation (after some algebra) as

T.E.(@
⌧

u
i

) = (�a@
x

u
i

+ ⌫@
x

p
i

+ S
i

) +
h
R

2
(�a@

xx

u
i

+ ⌫@
xx

p
i

+ @
x

S
i

)

+
h2
R

6
(�a@

xxx

u
i

+ ⌫@
xxx

p
i

+ @
xx

S
i

)

+
h3
R

24
(�a@(4)

x

u
i

+ ⌫@(4)
x

p
i

+ @
xxx

S
i

)

+
h4
R

120
(�a@(5)

x

u
i

+ ⌫@(5)
x

p
i

+
5

6
@(4)
x

S
i

) +O(h5)

= 0 +O(h4), (64)

where the first four terms of the above equation vanish (because of consistency relations).

Similar conclusion is obtained for the second equation and therefore it is not repeated here.

Also, note that the accuracy is achieved for general arbitrary grids. The additional cost

of upgrading the second-order scheme to the fourth-order RD scheme is only due to the

evaluation of the second-order accurate first derivative of the source terms. The general

second-order accurate first derivative formulation for arbitrary grids is provided in Sec. 3.1.

5.3. ((((((Fifth-order & Sixth-Order RD Scheme with Generalized Trapezoidal Rule

In this section, we present a new sixth-order RD scheme with relatively similar cost

to our newly introduced third-order RD schemes. Specifically, we show that there exists a
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unique fifth-order RD scheme with the generalized trapezoidal rule, and that mathematically

becomes sixth-order RD scheme. Seeking fifth-order accuracy from the fourth-order RD

scheme given in Eq. (58), we find an additional constraint:

CR

1

3
h
R

+ CR

2 = �h2
R

20
. (65)

Then, the number of constraints (four) matches the number of unknown coe�cients (four).

In this case, therefore, there exists a unique solution:

CL

1 = +
h
R

5
, CL

2 = +
h2
R

60
, CR

1 = �h
R

5
, CR

2 = +
h2
R

60
. (66)

Interestingly, the above unique coe�cients satisfy the following constraint as well, which is

the requirement for sixth-order accuracy:

CR

1

4
h
R

+ CR

2 = �h2
R

30
. (67)

Thus, we have developed a sixth-order RD scheme with the generalized trapezoidal rule. We

remark that these coe�cients, unlike the ones proposed for the third-order and fourth-order

schemes, are unique. With the proposed constants for the sixth-order RD scheme, the source

term evaluations at the nodes i and i+ 1 become:

S
L

= S
i

+
h
R

5
@
x

S
i

+
h2
R

60
@
xx

S
i

, (68)

S
R

= S
i+1 �

h
R

5
@
x

S
i+1 +

h2
R

60
@
xx

S
i+1. (69)

Note that it requires only the first and second derivatives of the source term, and no higher-

order derivatives are required.

Similar to the process explained for the fourth-order scheme, we prove the order of ac-

curacy of the scheme using the above proposed source discretization by first evaluating the

cell residual of the hyperbolic system. Consider the cell residual of, for example, the first

equation (�C

u

):

�C

u

= �a(u
i+1 � u

i

) + ⌫(p
i+1 � p

i

) +
h
R

2
(S

L

+ S
R

),

= �a(u
i+1 � u

i

) + ⌫(p
i+1 � p

i

)

+
h
R

2
(S

i+1 + S
i

)� h2
R

10
(@

x

S
i+1 � @

x

S
i

) +
h3
R

120
(@

xx

S
i+1 + @

xx

S
i

). (70)

Expanding the cell residual around the node i, we obtain the truncation error of the first

equation (after some algebra) as

T.E.(@
⌧

u
i

) = (�a@
x

u
i

+ ⌫@
x

p
i

+ S
i

) +
h
R

2
(�a@

xx

u
i

+ ⌫@
xx

p
i

+ @
x

S
i

)
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+
h2
R

6
(�a@

xxx

u
i

+ ⌫@
xxx

p
i

+ @
xx

S
i

)

+
h3
R

24
(�a@(4)

x

u
i

+ ⌫@(4)
x

p
i

+ @
xxx

S
i

)

+
h4
R

120
(�a@(5)

x

u
i

+ ⌫@(5)
x

p
i

+ @(4)
x

S
i

)

+
h5
R

720
(�a@(6)

x

u
i

+ ⌫@(6)
x

p
i

+ @(5)
x

S
i

)

+
h6
R

5040
(�a@(7)

x

u
i

+ ⌫@(7)
x

p
i

+
21

20
@(6)
x

S
i

) +O(h7)

= 0 +O(h6). (71)

A similar result is obtained for the second equation, and is thus omitted here, for brevity. The

above truncation error analysis reveals that this powerful sixth-order RD scheme could, in

practice, produce almost seventh-order accurate results, if the sixth derivative of the source

term becomes small; the sixth-order term is only due to the presence of (h6
R

/100800)@(6)
x

S
i

in the last term of Eq. (71). We will show such interesting results in the following section.

We emphasize that the sixth-order RD scheme, similar to the third-order RD scheme,

requires the evaluation of the first and second derivatives of the source terms. However,

these derivatives are now required to be evaluated with higher-order accuracy. For this

sixth-order RD scheme, we need third-order and second-order accurate evaluations of the

first and the second derivatives of the source terms, respectively, which can be obtained by

a cubic fit. This makes the developed sixth-order scheme slightly more expensive than the

third-order scheme. Nevertheless, the proposed sixth-order scheme is exceptionally simple

and a↵ordable.

6. Results

In this section we present the results in three categories: 1) steady advection-di↵usion

equation for high Reynolds (or Peclet) number applications, 2) unsteady linear advection-

di↵usion, and 3) unsteady nonlinear advection-di↵usion problems. We obtain the results

with all the proposed RD schemes and compare them with the second-order RD scheme.

The order of accuracy results are also compared and presented for each example.

For all cases, we employ the Newton-GS solver as described in Section 3. It is essentially

Newton’s method for the second-order scheme, but an approximate Newton method for

higher-order schemes because the Jacobian matrix derived from the second-order scheme is

used for all higher-order schemes. For unsteady problems, the same solver is used to solve the

21



implicit-residual equations or equivalently to compute the pseudo steady solution at every

physical time step.

6.1. Steady Linear Advection-Di↵usion

Consider the advection-di↵usion equation in x 2 (0, 1) with u(0) = 0 and u(1) = 0:

@
t

u+ a@
x

u = ⌫@
xx

u+ s(x), (72)

where

s(x) = ⌫⇡2 sin(⇡x) + a⇡ cos(⇡x). (73)

The above problem has a fixed analytical solution of sin(⇡x) for any advection and di↵u-

sion coe�cients. We solved this problem using the hyperbolic advection-di↵usion method

discussed in Section 2 with the proposed high-order RD schemes (see Fig. 5. Note that we

intentionally used a very coarse grid to show that the high-order schemes could produce a

much more accurate solution on such a “bad” grid.) We used ranges of nonuniform grids
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Figure 5: Comparisons between the exact and the numerical results using the proposed high-order RD

schemes for the steady linear advection-di↵usion problem (Re = 1) on a nonuniform grid with N = 10.

and solved the problem with the Newton-GS method. For each Newton iteration, the GS

relaxation were conducted until three orders of magnitudes reduction is achieved for the

linear system. The computations were continued until the residuals of both the solution u

and the solution gradient p were reduced by eight orders of magnitude. The convergence

results are shown in Table 2, where the convergence of the GS relaxation is clearly O(N) and

is independent of the order of accuracy of the RD scheme. Also, the solution was converged

with the same number of GS relaxations and Newton iterations regardless of the RD scheme
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Table 2: Steady linear advection-di↵usion problem, Re = 1 (Convergence criteria: Residuals < 10

�8
.)

Number of nodes RD Scheme Order GS relaxations/Newton iteration Newton iteration

High-Order Technique High-Order Technique

50

3rd

RD-D RD-GT RD-D RD-GT

168 169 10 10

4th 168 168 10 10

6th – 168 – 10

100

3rd 325 325 8 8

4th 325 325 8 8

6th – 325 – 8

200

3rd 670 670 7 7

4th 670 670 7 7

6th – 670 – 7

300

3rd 1015 1015 7 7

4th 1015 1015 7 7

6th – 1015 – 7

500

3rd 1703 1703 7 7

4th 1703 1703 7 7

6th – 1703 – 7

1000

6rd 3416 3416 7 7

4th 3416 3416 7 7

6th – 3416 – 7
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order. Note that the solutions were converged with a very small number of Newton itera-

tions, typically less than ten; this is exceptionally remarkable for the approximate Jacobian

(second-order) formulation for higher-order schemes.

The accuracy of the proposed RD schemes were verified by computing the L1 =
P

N

i=1(U
exact

i

�

U
i

)/N . These results are shown in Fig. 6 for the third-, fourth-, and sixth-order hyperbolic

RD schemes (see also Tables 3, 4, and 5). Note that when the di↵erences between the numeri-
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Figure 6: L1 error of the proposed high-order RD hyperbolic schemes for the steady linear advection-di↵usion

problem.

cal results and exact values approach the machine zero, the L1 slope approaches zeroth-order;

these results are thus omitted from the Table 5. The RD schemes developed with the diver-

gence formulation are denoted by RD-D, while the schemes developed with the generalized

trapezoidal rule are denoted with RD-GT. The results show that all the RD schemes achieve

the design order of accuracy for both the solution u and the solution gradient p. It can be

seen also that the di↵erence between the two versions of third-order RD schemes is minor,

and the same is true for the fourth-order RD schemes.

6.2. Steady Boundary Layer Problem

Consider the advection-di↵usion equation in x 2 (0, 1) with u(0) = 0 and u(1) = 1:

@
t

u+ a@
x

u = ⌫@
xx

u+ s(x), (74)

where

s(x) =
⇡

Re
[a cos(⇡x) + ⇡⌫ sin(⇡x)], Re = a/⌫. (75)

This is a boundary layer problem with a non-trivial steady state solution in the di↵usion limit

as a result of the source term addition [2]. This equation develops a very narrow boundary
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Table 3: Spatial accuracy with the third-order RD-GT scheme for the steady linear advection-di↵usion

problem (Re = 1).

Number of nodes L1 error of u Order L1 error of p Order

10 9.54E-03 8.59E-02

25 4.63E-04 3.30 4.41E-03 3.24

50 4.85E-05 3.25 4.63E-04 3.25

100 5.46E-06 3.15 5.16E-05 3.17

200 6.46E-07 3.08 6.04E-06 3.09

300 1.88E-07 3.04 1.75E-06 3.05

500 3.99E-08 3.03 3.71E-07 3.04

1000 4.93E-09 3.02 4.57E-08 3.02

Table 4: Spatial accuracy with the fourth-order RD-D scheme for the steady linear advection-di↵usion

problem, Re = 1. (Note: fourth-order RD-D and RD-GT schemes produce almost identical result.)

Number of nodes L1 error of u Order L1 error of p Order

10 8.38E-03 6.36E-02

25 2.84E-04 3.69 1.82E-03 3.88

50 1.74E-05 4.03 1.02E-04 4.16

100 1.04E-06 4.07 5.77E-06 4.15

200 6.23E-08 4.06 3.35E-07 4.11

300 1.21E-08 4.04 6.44E-08 4.07

500 1.55E-09 4.02 8.15E-09 4.05

1000 9.30E-11 4.06 4.94E-10 4.04
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Table 5: Spatial accuracy with the sixth-order RD-GT scheme for the steady linear advection-di↵usion

problem (Re = 1).

Number of nodes L1 error of u Order L1 error of p Order

10 2.60E-03 1.75E-02

25 3.34E-05 4.75 1.98E-04 4.89

50 4.87E-07 6.10 2.87E-06 6.11

100 4.32E-09 6.82 2.65E-08 6.76

200 3.09E-11 7.13 1.78E-10 7.22

300 5.80E-12 – 3.39E-11 –

500 3.60E-12 – 1.97E-11 –

layer near the right boundary (x = 1) when the advection term becomes dominant. The

exact steady state solution to this problem is given by (see also Fig. 7).

uexact(x) =
e�Re � e(x�1)Re

e�Re � 1
+

1

Re
sin(⇡x). (76)
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Figure 7: Comparisons between the exact and the numerical results using the proposed high-order RD

schemes for the steady boundary layer problem (Re = 10) on a nonuniform grid with N = 10.

We chose various Re values ranging from 1 to 106 and solved the equation on nonuniform

grid sizes up to 100000 nodes. Like the previous problem, the solutions were obtained with

the Newton-GS method. Within each Newton iteration, the GS relaxation were conducted

until three orders of magnitude reduction is achieved for the linear system, and the residuals
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of both the solution and the solution gradient were reduced by eight orders of magnitude.

The convergence data are given in Table 6 for the proposed high-order RD schemes. The data

are shown for the high-order schemes developed with the generalized trapezoidal rule. Sim-

ilar results were obtained with the RD schemes developed with the divergence formulation,

and therefore not shown. But in general, the high-order RD schemes with the generalized

trapezoidal rule perform better than the ones developed with the divergence formulation.

The latter third-order RD-D scheme not only produce slightly larger errors as shown in

Fig. 6, but also encounter some convergence di�culties (particularly with time-dependent

problems); the convergence problem seems originated from the lack of diagonal dominance

caused by the particular structure of the source term discretization as shown in Section 4.1.

We will therefore mainly focus on the RD-GT schemes for unsteady cases. The O(N) linear

dependency of the GS relaxations on the grid size is also demonstrated, which is a conse-

quence of solving the advection-di↵usion equation as a hyperbolic system. We emphasize

that this is remarkable because the linear convergence is retained for any irregular grid in

any dimensions (N is approximately the number of nodes in each coordinate direction in

two and three dimensions) as demonstrated in Refs. [1, 2, 3, 6, 4, 5]. It leads to orders of

magnitude faster convergence in comparison with conventional methods whose convergence

is typically O(N2) as discussed also in the previous paper [6]. Furthermore, the proposed

high-order RD schemes are extremely e�cient as the solutions were obtained with only a

small number of Newton iterations: less than 10 iterations to reduce the residual by eight

orders of magnitude. Moreover, the number of GS relaxations and Newton iterations are

essentially independent of the scheme order. Considering the fact that the cost of one GS

relaxation is significantly cheaper than one Newton iteration, we find that the developed

high-order RD schemes are extremely powerful and e�cient. Finally, as in the previous work

[6], we remark that the high-Re cases required extremely fine grids to meet the well-known

requirement on the mesh Reynolds-number [2]. If desired, the computations can be per-

formed on substantially coarser grids with more aggressive and customized grid stretching.

However, we simply refined the grid to meet the mesh Reynolds-number requirement be-

cause our method is powerful enough to solve the problem very e�ciently (i.e., less than 10

Newton iterations) even on such dense grids for all third-, fourth-, and sixth-order schemes.

The ability to e�ciently solve the problem on highly refined grids is a great advantage of

these schemes.
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Table 6: Steady boundary layer problem (Convergence criteria: Residuals < 10

�8
.)

log10 Re Number of nodes RD-GT Scheme Order GS relaxations/Newton iteration Newton iteration

0 50

3rd 163 8

4th 163 8

6th

0 100

3rd 324 7

4th 324 7

6th

0 500

3rd 1647 7

4th 1647 7

6th

1 100

3rd 178 7

4th 178 7

6th

2 100

3rd 44 7

4th 44 7

6th

3 500

3rd 42 8

4th 43 7

6th

4 1000

3rd 18 9

4th 19 7

6th

5 10000

3rd 24 9

4th 21 7

6th

6 100000

3rd 18 9

4th 19 7

6th
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The order of accuracy of the proposed RD schemes were also verified for this problem.

Figures 8 shows the L1 error convergence results, where h is the representative mesh spacing

defined by h = /(N � 1). For discussion purposes, we present the accuracy plots for Re = 1

and Re = 10; similar results were obtained for other Reynolds numbers. These results verify

the order of accuracy of the proposed high-order RD schemes (i.e., third-, fourth-, and sixth-

order) for all the variables and the gradients at all the grid nodes including the boundary

nodes (see also Tables 7, 8, and 9). Note that when the di↵erences between the numerical

results and exact values approach the machine zero, the L1 slope approaches zeroth-order;

these data are omitted from the Tables 8 and 9.
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Figure 8: L1 error of the proposed high-order RD hyperbolic schemes for the boundary layer problem on

nonuniform grids.

6.3. Unsteady Linear Advection-Di↵usion

Consider the time-dependent advection-di↵usion equation in x 2 (0, 1)

@
t

u+ a@
x

u = ⌫@
xx

u. (77)

The above equation with the following initial condition:

u(x, t = 0) = sin(x), (78)

where  is an arbitrary constant, has the following exact solution with a periodic boundary

condition:

uexact(x, t) = e�

2
⌫t sin((x� at)). (79)

A non-periodic solution also exists for the following oscillatory boundary conditions

u(0, t) = 0, (80)

u(1, t) = U cos(!t), (81)
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Table 7: Spatial accuracy with the third-order RD-GT scheme for the boundary layer problem with Re = 1.0.

Number of nodes L1 error of u Order L1 error of p Order

10 9.65E-03 8.68E-02

25 4.70E-04 3.30 4.47E-03 3.24

50 4.94E-05 3.25 4.70E-04 3.25

100 5.56E-06 3.15 5.26E-05 3.16

200 6.58E-07 3.08 6.16E-06 3.09

300 1.91E-07 3.06 1.79E-06 3.05

500 4.07E-08 3.03 3.79E-07 3.04

1000 5.04E-09 3.01 4.66E-08 3.02

2000 6.34E-10 2.99 5.79E-09 3.01

5000 4.89E-11 2.80 3.68E-10 3.00

Table 8: Spatial accuracy with the fourth-order RD-GT schemes for the boundary layer problem with

Re = 1.0. Note that when the di↵erences between the numerical results and exact values approach the

machine zero, the L1 slope approaches zeroth-order.

Number of nodes L1 error of u Order L1 error of p Order

10 8.48E-03 6.43E-02

25 2.88E-04 3.69 1.84E-03 3.88

50 1.78E-05 4.02 1.04E-04 4.14

100 1.06E-06 4.07 5.87E-06 4.15

200 6.41E-08 4.05 3.42E-07 4.10

300 1.25E-08 4.04 6.57E-08 4.07

500 1.61E-09 4.01 4.35E-09 4.05

1000 1.06E-10 3.92 4.98E-10 4.06

2000 1.42E-11 – 1.42E-11 –

5000 9.69E-12 – 4.75E-11 –
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Table 9: Spatial accuracy with the sixth-order RD-GT scheme for the boundary layer problem with Re = 10.

Number of nodes L1 error of u Order L1 error of p Order

10 4.81E-02 5.54E-01

25 6.89E-05 4.75 6.19E-04 4.89

50 4.54E-07 6.11 3.76E-06 6.11

100 3.97E-09 6.78 3.21E-08 6.73

200 3.56E-11 7.59 4.28E-10 7.37

300 1.14E-11 – 1.40E-10 –

500 9.23E-12 – 1.19E-10 –

where U is the amplitude of the oscillation and ! is the frequency of the oscillation on the

right boundary. The exact solution is given by

uexact(x, t) = Real

✓
e�1x � e�2x

e�1 � e�2
Uei!t

◆
, �1,2 =

a±
p
a2 + 4i!⌫

2⌫
, (82)

where i =
p
�1.

We solved the above two problems with the first-order hyperbolic advection-di↵usions

equation given as in Eq. (2) and (3). For each physical time, we reduced the residuals by

two orders of magnitude before advancing in time. During each time step, we also relaxed

the linear system using GS relaxations until two orders of magnitude reduction in the linear

system residuals was achieved (see Figs. 9 and 10.) We also note that more residual reduction

in pseudo time may be necessary on more complex problems but two orders of magnitude

reduction in the residuals were su�cient for the problems presented here.

We examined the convergence rate of these problems on several uniform and nonuniform

grid systems. Given in Tables 10 and 11 are the average numbers of GS relaxations per

Newton iteration obtained over 100 time steps for the periodic and the oscillatory boundary

condition problems, respectively. Clearly the convergence rate of the GS relaxation is of

O(N), not O(N2) as typical for numerical methods for the advection-di↵usion equation.

Observe that for most grid systems only two Newton iterations were su�cient to obtain

accurate solutions regardless of the scheme order. We also note that we used �t = 0.01

for all the grid systems. The maximum grid spacing used is about 0.04. The corresponding

CFL value is then about 6.5 (based on �t = 0.01), which is significantly smaller that

the maximum-allowable CFL values obtained with the Fourier analysis for all the BDF
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Figure 9: Time-dependent linear advection-di↵usion problem (Re = 33.33) with periodic boundary condition

on N = 10 uniform nodes (�t = 0.01.)
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Figure 10: Time-dependent linear advection-di↵usion problem with oscillatory boundary condition (! =

7⇡/2,  = 2⇡, U = 1, ⌫ = 1) on N = 10 uniform nodes (�t = 0.01.)
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methods (see Appendix A). Note that the maximum-allowable CFL value increases with

grid refinement. The time step is orders-of-magnitude larger than that required for

Table 10: Unsteady linear advection-di↵usion problem with periodic BC (a = 1, ⌫ = 0.03) on uniform grids.

Average data over 100 time steps are given. (Convergence criteria: Residuals < 10

�2
)

Number of nodes RD-GT Scheme Order GS relaxations/Newton iteration Newton iteration

25

3rd 5 4

4th 5 4

6th 6 5

100

3rd 24 2

4th 24 2

6th 24 2

300

3rd 33 2

4th 35 2

6th 35 2

500

3rd 55 2

4th 55 2

6th 55 2

1000

3rd 116 2

4th 116 2

6th 116 2

conventional explicit schemes, which is limited by O(h2). Of course, conventional implicit

schemes also allow unconditionally large time steps, but it requires O(N2) convergence in an

iterative linear solver and potentially a much larger number of outer iterations as well if the

exact linearization is not possible and Newton’s method cannot be constructed. Hence, the

method developed here has two major advantages over conventional methods: the second

order Jacobian formulation and O(N) iterative convergence in the linear solver. The latter

advantage can be potentially huge with increase of the grid system as the speed-up factor is

O(N) and thus grows for finer grids. Note also that the second-order Jacobian formulation

is the advantage of the RD scheme over finite volume schemes where the compact Jacobian

formulation is only first-order. The results also show that the convergence rate is the same
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Table 11: Unsteady linear advection-di↵usion problem with oscillatory BC (! = 7⇡/2, a = 1.) on nonuniform

grids. Average data over 100 time steps are given. (Convergence criteria: Residuals < 10

�2
)

Number of nodes RD-GT Scheme Order GS relaxations/Newton iteration Newton iteration

25

3rd 35 4

4th 37 4

6th 45 4

50

3rd 69 4

4th 72 4

6th 72 4

100

3rd 136 4

4th 142 4

6th 142 4

500

3rd 650 4

4th 680 4

6th 680 4

1000

3rd 1283 4

4th 1332 4

6th 1332 4
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for all the developed high-order RD schemes. It means that the only cost to these higher

order schemes is the evaluation of the first and the second derivatives of the source terms

and in the case of the fourth-order scheme with the generalized trapezoidal rule, the second

derivatives are not required.

We verified the order of accuracy of the proposed schemes on time-dependent linear

problems with consistent space-time discretization; i.e., third-order with BDF3, fourth-order

with BDF4, and sixth-order with BDF6. The same spatial order of accuracy can be observed

with the A-Stable BDF2 with small enough time steps such that the temporal error is

comparable to the spatial error (i.e., �t2 ⇠ hm, where m is the scheme order). But the

consistent pair of BDF and spatial discretization allows about two orders of magnitude

reduction in the number of time steps for the finest grid cases. Note that time-accurate

computations are started by BDF1 in the first time step with extremely small time step (e.g.

�t = 10�8), and then by higher order BDFs thereafter with much larger time steps (e.g.

�t = 0.01). This will ensure the order of accuracy of the developed higher order schemes

through all times. We remark that explicit time stepping is not available for time-accurate

computations with the hyperbolic system method (see Ref. [6] for more details.)

Figure 11 shows the L1 error convergence for the above time-dependent linear problem

with the oscillatory boundary condition (see also Tables 12, 13, and 14), where clearly the

order of accuracy of the proposed schemes are verified for the linear time-dependent problems.

The results were obtained at t = 1.0. We used the same �t among the third-, fourth- and

sixth-order schemes and were able to obtain the desired order of accuracy. (Note that we

showed the RD schemes that were developed with the generalized trapezoidal rule as these

are more e�cient and less expensive than the ones developed with divergence formulation of

the source terms.)

6.4. Unsteady Nonlinear Advection-Di↵usion

Consider the unsteady nonlinear viscous Burgers equation with an unsteady time-dependent

source term:

@
t

u+ @
x

f = @
x

(⌫ u
x

) + S(x, t), x 2 (0, 1), (83)

where f = u2/2, ⌫ = u, and

S(x, t) = @
t

ue +
1

2
@
x

(ue)2 � @
x

(uepe), (84)
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Figure 11: Spatial accuracy of the proposed high-order RD-GT hyperbolic schemes for the time-dependent

linear problem with oscillatory BC on uniform grids.

Table 12: Spatial accuracy for the linear time dependent problem with oscillatory BC (! = 7⇡/2, a = 1.)

using the third-order RD-GT scheme with the BDF3 time discretization.

Number of nodes �t (BDF3) L1 error of u Order L1 error of p Order

10 2.50E-03 1.40E-04 2.86E-04

20 2.50E-03 9.06E-06 3.95 1.90E-05 3.91

50 1.25E-03 3.54E-07 3.54 7.38E-07 3.54

100 5.00E-04 2.57E-08 3.78 4.71E-08 3.97

200 2.50E-04 2.59E-09 3.31 4.40E-09 3.42

Table 13: Spatial accuracy for the linear time dependent problem with oscillatory BC (! = 7⇡/2, a = 1.)

using the fourth-order RD-GT scheme with the BDF4 time discretization.

Number of nodes �t (BDF4) L1 error of u Order L1 error of p Order

10 2.50E-03 1.32E-04 2.83E-04

20 2.50E-03 7.22E-06 4.19 1.63E-05 4.12

50 1.25E-03 1.70E-07 4.09 4.01E-07 4.04

100 5.00E-04 1.04E-08 4.03 2.51E-08 4.00

200 2.50E-04 6.78E-10 3.94 1.64E-09 3.94
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Table 14: Spatial accuracy for the linear time dependent problem with oscillatory BC (! = 7⇡/2, a = 1.)

using the sixth-order RD-GT scheme with the BDF6 time discretization.

Number of nodes �t (BDF6) L1 error of u Order L1 error of p Order

10 2.50E-03 3.77E-06 2.29E-05

20 2.50E-03 7.19E-08 5.71 3.27E-07 6.13

50 1.25E-03 5.81E-09 6.20 3.70E-08 5.37

100 5.00E-04 3.62E-10 5.43 1.34E-09 6.50

where pe = @
x

ue. The source term has been generated by the following function:

ue(x, t) = Real

 
sinh(x

p
i!/⌫)

sinh(
p
i!/⌫)

Uei!t

!
+ C, C > 1, (85)

so that it is the exact solution to Eq. (83) with the boundary conditions defined as

u(0, t) = C, (86)

u(1, t) = C + U cos(!t), (87)

where ! is the frequency of the oscillation on the right boundary, and U is the amplitude

of the oscillation. We note that the constant C must be greater than 1 in order for the

di↵usion coe�cient to be positive. We solved this time-dependent nonlinear advection-

di↵usion equation with the following equivalent first-order hyperbolic system (see Ref. [6]

for more details):

@
⌧

u+ @
x

�
u2
�

= @
x

p� @
t

u+ S(x, t), (88)

T
r

⌫
@
⌧

p = (@
x

u� p/⌫). (89)

For this nonlinear unsteady problem, the manufactured source term contains terms that are

already in the divergence form; i.e. the residual evaluation of these terms are exact. The @
t

ue

term is the only term in the manufactured source term with a non-exact residual evaluation.

The BDF discretization of the @
t

u term in Eq. (88) will not be in the divergence form

and therefore will not have an exact residual evaluation. In addition, the second equation

has a nonlinear source term, p/⌫ (note that here ⌫ = u). We obtained the high-order

results by evaluating all of these non-exact residuals using the proposed techniques. Newton

iterations are taken to be converged when the overall residuals are dropped by eight orders
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of magnitude. For each Newton iteration, we relaxed the linear system until the residuals

are reduced by two orders of magnitude.

The O(N) convergence rate of the GS relaxations was once again achieved for the time-

dependent nonlinear hyperbolic advection-di↵usion system. This is given in Table 15, where

the average number of iterations were obtained over 1000 time steps (over 17 periods). Note

also that the high-order RD schemes converged with only ten Newton iterations with the

compact second-order Jacobian formulation. It is remarkable that such a rapid convergence

is achieved for all high-order schemes with the second-order Jacobian.

Table 15: Unsteady nonlinear advection-di↵usion problem (⌫ = a = u) with oscillatory BC (U = 1, C = 2,

! = 7⇡/2) on nonuniform grids. Average data over 1000 time steps are given. (Convergence criteria: GS

Relaxation < 10

�2
; Newton residuals < 10

�8
).

Number of nodes RD-GT Scheme Order GS relaxations/Newton iteration Newton iteration

50

3rd 435 10

4th 430 10

6th 431 10

100

3rd 879 10

4th 868 10

6th 864 10

200

3rd 1772 10

4th 1749 10

6th 1737 10

Shown in Fig. 12 are the order of accuracy plots obtained for this unsteady advection-

di↵usion problem on series of nonuniform grids (see also Tables 16, 17, and 18). The results

confirm the high-order accuracy of developed RD schemes for unsteady nonlinear problems

on nonuniform grids. We also observe that our proposed sixth-order RD scheme, as discussed

in the previous section, have in fact produced seventh-order accurate results demonstrating

its power characteristics in e�ciently providing very high accurate solutions and gradients

(see Table 18 for more details). We note, however, that the seventh-order accuracy is not a

general feature of the sixth-order scheme. Although it is not clear from the exact solution,

it could be due to the sixth-order derivative of the source term in the leading truncation

error being vanishingly small. We also note that the CFL, corresponding to the largest grid
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spacing of about 0.04 used in this study, is about 30 for the �t = 0.00125. This value is still

within the range of the stability of all the BDF methods (see Appendix A for more details.)

Note again that the maximum-allowable CFL increases with grid refinement.
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Figure 12: Spatial accuracy of the proposed high-order RD-GT hyperbolic schemes for the time-dependent

nonlinear problem (⌫ = a = u) with oscillatory BC (U = 1, C = 2, ! = 7⇡/2) on nonuniform grids.

Table 16: Spatial accuracy for the time-dependent nonlinear problem (⌫ = a = u) with oscillatory BC (U = 1,

C = 2, ! = 7⇡/2) using the third-order RD-GT scheme and BDF3 time discretization on nonuniform grids.

Number of nodes �t (BDF3) L1 error of u Order L1 error of p Order

25 1.25E-03 6.83E-05 3.59E-04

50 1.25E-03 3.68E-06 4.21 1.79E-05 4.33

100 1.00E-03 2.33E-07 3.98 1.12E-06 4.00

200 5.00E-04 1.70E-08 3.78 8.23E-08 3.77

500 2.50E-04 9.58E-10 3.14 5.03E-09 3.05

7. Conclusions

In this paper, we have developed a series of e�cient high-order Residual-Distribution

(RD) schemes for general advection-di↵usion problems. Third- and fourth-order RD schemes

were developed with the divergence formulation of the source term. These schemes are very

economical as they require only the evaluation of the first and second derivatives of the

source term, and not of the solution. The first and second derivatives need to be second

and first order accurate, respectively, on arbitrary grids, and they are obtained by a com-

pact quadratic fit. Third-, fourth-, and sixth-order RD schemes are also developed with a
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Table 17: Spatial accuracy for the time-dependent nonlinear problem (⌫ = a = u) with oscillatory BC

(U = 1, C = 2, ! = 7⇡/2) using the fourth-order RD schemes and BDF4 time discretization on nonuniform

grids.

Number of nodes �t (BDF4) L1 error of u Order L1 error of p Order

25 1.25E-03 6.75E-05 3.49E-04

50 1.25E-03 6.21E-07 4.27 2.71E-06 4.23

100 1.00E-03 1.85E-07 4.24 7.68E-07 4.40

200 1.00E-03 1.07E-08 4.11 3.69E-08 4.38

500 5.00E-04 3.14E-10 3.85 6.33E-10 4.44

Table 18: Spatial accuracy for the time-dependent nonlinear problem (⌫ = a = u) with oscillatory BC (U = 1,

C = 2, ! = 7⇡/2) using the sixth-order RD-GT scheme and BDF6 time discretization on nonuniform grids.

Number of nodes �t (BDF6) L1 error of u Order L1 error of p Order

50 1.25E-03 7.99E-08 5.61E-08

75 5.00E-04 5.42E-09 6.60 3.69E-09 6.71

100 5.00E-04 7.54E-10 6.85 5.09E-09 6.91

200 5.00E-04 4.30E-11 7.06 2.83E-09 7.11
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generalized trapezoidal rule. The third-order schemes require the evaluation of the first and

second derivatives of the source term, which must be second and first order accurate, respec-

tively. On the other hand, the fourth-order scheme requires only the second-order accurate

gradients, and therefore is the least expensive scheme among all the developed high-order

schemes in this paper. All third- and fourth-order schemes are constructed within a five-

point stencil in the interior, a four-point stencil at the nodes adjacent to the boundary, and

a three-point stencil at the boundary nodes. For the sixth-order scheme, the evaluation of

the first and second derivatives of the source term is required, and they must be third- and

second-order accurate, which is achieved by a cubic fit. It results in the stencil extension by

one or two nodes in the nodal residual. In addition, the analysis of the proposed sixth-order

RD scheme as well as the results presented here show that this high-order RD scheme can,

in some cases, produce seventh-order results on nonuniform grids. An implicit steady solver

is constructed based on the Jacobian derived from the compact second-order RD scheme. It

is demonstrated that the solver achieves a rapid convergence like Newton’s method for all

high-order schemes despite the fact that the Jacobian is not exact. Specifically, it requires

only a small number of Newton iterations, typically less than 10, for both steady and un-

steady problems, even for highly refined grids, up to 100000 nodes. We have demonstrated

also that all of these high-order schemes are capable of producing both high-order accurate

solution and gradient on nonuniform grids very e�ciently by less than ten Newton iterations.

The study presented in this paper should be of interest to researchers working on finite-

volume schemes because the RD scheme is known to be equivalent to the finite-volume

scheme in one dimension (see for example Ref. [24]). Specifically, a second-order upwind RD

scheme is equivalent to the first-order finite-volume scheme with a special form of source

term discretization [2]. It implies that the developed high-order RD schemes may also

be implemented in the form of first-order finite-volume schemes with special source term

discretization formulas. The resulting finite-volume schemes will be di↵erent from many

other finite-volume schemes in that they do not require computations of solution gradients.

The developed high-order schemes could well bring significant improvements to the nu-

merical methods for practical problems such as material thermal response calculations of

thermal protection systems of atmospheric entry vehicles [17, 18, 19], and the experimen-

tal aeroheating data reduction [20, 21], which are based on one-dimensional analyses and

routinely used in industries (e.g. NASA). A particularly useful scheme would be the fourth-
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order scheme based on the generalized trapezoidal rule (RD-GT) because it requires only the

second-order accurate gradients of the source term. Application to these practical problems

should be undertaken and is left as future work.

Extensions to higher dimensions are highly desired. To extend the developed high-order

schemes to higher dimensions, it is necessary to employ a high-order quadrature formula for

integrating the flux divergence term, which has been integrated exactly in one dimension

but cannot be integrated exactly in higher dimensions. For the source term discretization,

the divergence formulation can be extended relatively straightforwardly while a discretiza-

tion formula such as the generalized trapezoidal rule remains to be found. In particular, a

third-order version is expected to be practical in multi-dimensions: a high-order quadrature

formula with added edge-midpoints along with a quadratic fit for first-derivatives. The so-

lution at the midpoint can be obtained by the Hermite interpolation along each edge, and

thus does not need to be stored [12]. As a result, the number of degrees of freedom remains

the same as the second-order scheme. It is expected to be a very e�cient scheme compared

with other high-order methods such as Discontinuous Galerkin or Spectral Volume methods.

Finally, extensions to more complex nonlinear equations such as the Navier-Stokes equa-

tions remain as a challenge. For the compressible Navier-Stokes equations, the complete

eigen-structure of the whole system has yet to be found. The construction of the upwind

RD scheme based on a single hyperbolic system, as presented in this paper, is a challenge.

To overcome the di�culty, a simplified approach has been proposed and demonstrated for a

finite-volume scheme in Ref. [3], which is based on the independent treatment of the inviscid

and viscous terms. A similar approach may become necessary for the RD schemes.
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Appendix A. BDF Stability Analysis on the Proposed High Order RD Schemes

Consider a Fourier mode of non dimensional wave number � 2 [0, ⇡] on a uniform mesh

of spacing h:

U� = U0(t)e
i�(x�xj)/h, (A.1)
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whereU� = (u�, p�) andU0(t) = (u0(t), p0(t)). Applying this Fourier mode to the discretized

first order hyperbolic system, we arrive at:

N�

dU0

dt
= M�U0, (A.2)

where M� and N� are, respectively, the spatial operators for the spatial and temporal terms

of the system. Note that the spatial operator arises from the temporal term because the

physical time derivative is discretized in space and distributed to the nodes in our schemes.

The matrix N� may be called the mass matrix.

The spatial operator M� is defined as:

M� =
1

h
(B+J�L +B�J�R), (A.3)

where

J�L =

2

4 �a(e
i� � 1) ⌫(ei� � 1)

(ei� � 1)/T
r

S�

�L

3

5 , J�R =

2

4 �a(1� e�i�) ⌫(1� e�i�)

(1� e�i�)/T
r

S�

�R

3

5 . (A.4)

The S� is associated with the source term and therefore depends on the proposed source term

discretization. For discussion purposes, here we only consider high order RD-GT schemes

and the corresponding source terms become:

S�

�R =
h

2T
r

8
>>>>>><

>>>>>>:

ei� + 1 + AR +BR : 3rd-order

ei� + 1 + AR : 4th-order

ei� + 1 + CR +DR : 6th-order

(A.5)

S�

�L =
h

2T
r

8
>>>>>><

>>>>>>:

e�i� + 1 + AL +BL : 3rd-order

e�i� + 1 + AL : 4th-order

e�i� + 1 + CL +DL : 6th-order

(A.6)

where,

AR = (ei� � e�i� � e2i� + 1)/12 (A.7)

BR = (�ei� + e�i� � e2i� � 3)/1000 (A.8)

CR = (�e�2i� + 3e�i� � 2ei� + 3e2i� � e3i� � 2)/12 (A.9)
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DR = (�ei� + e�i� + e2i� � 1)/60 (A.10)

AL = (�ei� + e�i� � e�2i� � 1)/10 (A.11)

BL = (�ei� � 3e�i� + e�2i� � 3)/1000 (A.12)

CL = (4e�2i� � 2e�i� + 3ei� � e2i� � e�3i� � 2)/12 (A.13)

DL = (ei� � e�i� + e�2i� + 1)/60 (A.14)

The mass matrix N� is defined as:

N� =
1

h
(B+Jt

�L +B�Jt

�R), (A.15)

where

Jt

�L = T
r

2

4 S�

�L 0

0 0

3

5 , Jt

�R = T
r

2

4 S�

�R 0

0 0

3

5 . (A.16)

Note that only the variable u evolves with the BDF. Thus, we can eliminate the p0 by solving

the second equation in the system (A.2) and substituting it back to the first equation and

arrive at:

BDF(u0) = ��u0, (A.17)

where BDF(u0) denotes the time discretization of du0/dt by the BDF, and

�� =
M�

(1,1) �M�

(1,2)M
�

(2,1)/M
�

(2,2)

N�

(1,1) �M�

(1,2)N
�

(2,1)/M
�

(2,2)

. (A.18)

With the physical time step defined as �t = CFLh/(a + ⌫/h), the quantity relevant to

the stability ���t can be shown to depend only on two parameters: ReL
r

= aL
r

/⌫ and

the mesh-Reynolds-number Reh = ah/⌫. The former is essentially equivalent to the global

Reynolds number, Re = a/⌫ since Lr = O(1) (see [6] for details); it plays a role of properly

weighting the upwind advection and the upwind di↵usion schemes [2].

We now numerically perform stability analysis for BDF3, BDF4, and BDF6 and estimate

the maximum-allowable CFL (= �t (a+⌫/h)/h) values for di↵erent mesh sizes and Re = a/⌫

numbers. Shown in Fig. A.13 are the stability regions and maximum CFL values graphically

illustrated corresponding to the proposed time-dependent high-order RD-GT schemes. Table

A.19 provides maximum CFL for ranges of Re and grid spacing for the high order schemes.

Observe that the maximum-allowable CFL number varies significantly with Re on a given

mesh, but it is essentially the same for the same Reh. Note that Reh < 2 is required to

avoid numerical oscillations [2], and the maximum-allowable CFL number in this range is

large enough to perform practical computations.
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Figure A.13: Maximum-allowable CFL for the proposed high-order time-dependent RD schemes (h = 0.1,

Re = 100). The stable region is bounded by a curve represented by the red circles. The eigenvalues of the

discretizaiton are plotted in blue and all contained in the stable region for the maximum CFL number.

Table A.19: Maximum-allowable CFL values for the proposed high-order unsteady RD hyperbolic advection-

di↵usion schemes.

Grid spacing

Re = 1 Re = 100 Re = 106

BDF3 BDF4 BDF6 BDF3 BDF4 BDF6 BDF3 BDF4 BDF6

0.1 1000 500 20 1.5 0.5 0.02

0.01 90000 50000 1800 25 10 0.35

0.001 1500 500 20 0.04 0.005 0.0002

0.0001 150000 50000 2000 0.15 0.05 0.002

0.00001 1.5 0.5 0.02

0.000001 25 10 0.3
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