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Objectives

Develop a Robust, Accurate, and Efficient Viscous Solver
a) Residual Distribution (RD)

- Compact Second-Order
- Newton Method

(≤ 10 sub-iterations for implicit time stepping)
b) Hyperbolic System Formulation

- Compact Viscous Stencil
- No Second Derivatives
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Basic Formulation

Consider an Advection-Diffusion equation:

∂tu+ a ∂xu = ν ∂xxu+ S̃(x)

We hyperbolize the equation by setting p = ux as:

Advection

∂τu+ a ∂xu = ν ∂xp − α
∆tu+ S(x)

∂τp = (∂xu− p)/Tr

Hyperbolic Diffusion
Source Terms
Pseudo-Steady-State: i.e., Solution at the next physical
time step
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Hyperbolic Advection-Diffusion

With the hyperbolic formulation, we can rewrite our
advection-diffusion equation as a first-order system:

∂U

∂τ
+ A

∂U

∂x
= S

U =

[
u
p

]
, A =

[
a −ν

−1/Tr 0

]
, S =

[
−αu/∆t+ S(x)

−p/Tr

]

With two real wave speeds of

λ1,2 =
a

2

[
1±

√
1 +

4ν

a2Tr

]
Hyperbolic in Pseudo Time (Tr is a free parameter.)
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RD Scheme
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RD Scheme: Cell Residuals

We can now evaluate the cell residuals for a general
time-dependent hyperbolic advection-diffusion system as

ΦC =

∫ xi+1

xi

(−AUx + S)dx

=


−a(ui+1 − ui)k+1 + ν(pi+1 − pi)k+1

1

Tr
(ui+1 − ui)k+1

+

[∫ xi+1

xi

S dx

]k+1,n−1,n

Details at NASA/TM-2014-218175, 2014.
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RD Scheme: Nodal Residuals

ii-1 i+1

B+!i"1 B!"i B+!i

i+2

B!"i+1

Nodal residuals are evaluated by distributing the cell residuals
ΦC to the nodes:

�
��@
@@

dUi

dτ
=

1

hi
(B+ΦL + B−ΦR) = Resi

hi =
hL + hR

2

Therefore, we solve Resi = 0.
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Implicit Solver
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Implicit Solver

Implicit formulation for U = (u1, p1, u2, p2, . . . , uN , pN ):

Uk+1 = Uk + ∆Uk

The correction, ∆Uk = Uk+1 −Uk, is determined by:

∂Res

∂U
∆Uk = −Resk

Jacobian: Exact for 2nd-order scheme
Gauss-Seidel Relaxation

This is Newton’s Method for second-order scheme.
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Second-Order Discretization
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Second-Order Discretization

With simple trapezoidal rule for the source terms,

we get a
uniform second-order scheme for all variables:

ΦC =


−a(ui+1 − ui) + ν(pi+1 − pi)− hR

α

∆t
(ui+1 + ui)/2

1

Tr

[
ui+1 − ui −

hR
2

(pi+1 + pi)

]

k+1

+

 hR
2 (s̃i+1 + s̃i)

0

n−1,n

T.E. (∂τp) = ��
���

�:0
(∂xui − pi) +

h

2��
���

���:0
(∂xxui − ∂xpi)

+
h2

6
(∂xxxui −

6

4
∂xxpi) +O(h3)
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Extension to High-Order

ΦC =

∫ xi+1

xi

(−AUx + S)dx

Methods
1 Divergence Formulation of Source Terms (RD-D)∫ xi+1

xi

Sdx =

∫ xi+1

xi

fSx dx

2 General Trapezoidal Rule (RD-GT)∫ xi+1

xi

Sdx =
hR
2

(SL + SR)
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Third-Order RD-D Scheme

Third-Order Scheme:

See the paper!
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Fourth-Order RD-D Scheme

ΦC =

∫ xi+1

xi

(−AUx + fSx )dx

We introduce a source function, fS , based on mid-point:

fS =

m≥3∑
n=1

(−1)n−1

n!
(x− x̄)n∂xn−1S

= (x− x̄)S − 1

2
(x− x̄)2∂xS +

1

6
(x− x̄)3∂xxS + . . .

where x̄ = (xi + xi+1)/2.
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Fourth-Order RD-D Scheme

What happens to our Original equation with the use of
divergence formulation?

Let’s consider m = 3; we have:

∂xf
S = S +

(x− x̄)3

6
∂xxxS = S +O(h3)

- That is, we recover the original S up to O(hm).



Objectives Basic Formulation Extension to High-Order Some Results Summary Future Work

Fourth-Order RD-D Scheme

What happens to our Original equation with the use of
divergence formulation?
Let’s consider m = 3; we have:

∂xf
S = S +

(x− x̄)3

6
∂xxxS = S +O(h3)

- That is, we recover the original S up to O(hm).



Objectives Basic Formulation Extension to High-Order Some Results Summary Future Work

Fourth-Order RD-D Scheme

What happens to our Original equation with the use of
divergence formulation?
Let’s consider m = 3; we have:

∂xf
S = S +

(x− x̄)3

6
∂xxxS = S +O(h3)

- That is, we recover the original S up to O(hm).



Objectives Basic Formulation Extension to High-Order Some Results Summary Future Work

Fourth-Order RD-D Scheme

Examining the order of accuracy of the discretized system
with the divergence form of the source term:

T.E. (∂τp) = ���
���:

0
(∂xui − pi) +

hR
2 ��

��
���

�:0
(∂xxui − ∂xpi)

+
h2
R

6 ���
���

���:0
(∂xxxui − ∂xxpi)

+
h3
R

24���
���

���
�:0

(∂xxxxui − ∂xxxpi)

+
h4
R

120
(∂xxxxxui −

5

4
∂xxxxpi) +O(h5)

= O(h4)!

How come we got 4th-order instead of 3rd-order?

Because we used the mid-point in the divergence
formulation!
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Overview of Fourth-Order RD-D Scheme

For uniform 4th-order results, we discretize the system as

ΦC =

∫ xi+1

xi

(−AUx + S)dx

'
∫ xi+1

xi

(−AUx + fSx )dx

' −A(Ui+1 −Ui) + hR ∂xSi +
h2
R

2
∂xxSi

The cost relative to 2nd-order?

evaluation of the first derivative (2nd-order accurate )
evaluation of the second derivative (1st-order accurate)

We can use quadratic fit to evaluate the above derivatives.
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Generalized Trapezoidal Rule

ΦC =

∫ xi+1

xi

(−AUx + S) dx

Introducing a new source term integration:∫
S dx ' hR

2
(SL + SR)

where we define the left and right states of S as

SL = Si + CL1 ∂xSi + CL2 ∂xxSi

SR = Si+1 + CR1 ∂xSi+1 + CR2 ∂xxSi+1
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Third-Order RD-GT Scheme

∫
S dx ' hR

2
[Si + Si+1

+ (CL1 ∂xSi + CR1 ∂xSi+1)

+ (CL2 ∂xxSi + CR2 ∂xxSi+1)]

Note: The first two terms are what we had in 2nd-order. The
rest are the corrections to get to high-order schemes.

Third-Order RD-GT:

CL
1 +CR

1 = 0, CR
1 hR+CL

2 +CR
2 = −h

2
R

6
, CR

1 hR+2CR
2 6= −

h2R
6

Many possibilities, for example:

CR1 = −CL1 = −hR/6
CR2 = −CL2 = −h2

R/10
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Fourth-Order RD-GT Scheme

∫
S dx ' hR

2
[Si + Si+1

+ (CL1 ∂xSi + CR1 ∂xSi+1)

+ (CL2 ∂xxSi + CR2 ∂xxSi+1)]

Fourth-Order RD-GT:

CL
1 +CR

1 = 0, CR
1 hR+CL

2 +CR
2 = −h

2
R

6
,

CR
1

2
hR+CR

2 = −h
2
R

12

Again, many possibilities. In particular, we can select the
most efficient and attractive coefficients:

CR
1 = −CL

1 = −hR/6, CR
2 = CL

2 = 0, no second derivatives!
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Fourth-Order RD-GT Scheme

Expanding the cell residual around node i:

T.E.(∂τui) =
��

���
���

���
�:0

(−a∂xui + ν∂xpi + Si)

+

���
���

���
���

���:
0

hR
2

(−a∂xxui + ν∂xxpi + ∂xSi)

+

���
���

���
���

���
��:0

h2
R

6
(−a∂xxxui + ν∂xxxpi + ∂xxSi)
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���
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���
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�:0

h3
R

24
(−a∂xxxxui + ν∂xxxxpi + ∂xxxSi)

+
h4
R

120
(−a∂xxxxxui + ν∂xxxxxpi +

5

6
∂xxxxSi) +O(h5)

= 0 +O(h4)
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Sixth-Order RD-GT Schemes

∫
S dx ' hR

2
[Si + Si+1

+ (CL1 ∂xSi + CR1 ∂xSi+1)

+ (CL2 ∂xxSi + CR2 ∂xxSi+1)]

Fifth-Order RD-GT:

Fourth-Order Constraints &
CR

1

3
hR + CR

2 = −h
2
R

20
A Unique Solution:

CR1 = −CL1 = −hR/5
CR2 = CL2 = h2

R/60

Why then 6th-order not fifth-order?

Because the Sixth-Order Constraint
CR

1

4
hR + CR

2 = −h
2
R

30
is

also satisfied!
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Some Results

Steady state boundary layer problem:

∂tu+ a∂xu = ν∂xxu+ s(x)

where

s(x) =
π

Re
[a cos(πx) + πν sin(πx)], Re = a/ν.
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GS-Relaxation: 2 orders of magnitude reduction
Residual tolerance: ≤ 10−8
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O(N) + Newton Convergence

Fast and Newton + O(N) convergence on irregular grids
2nd-order Jacobian acts like exact for 3rd, 4th, and
6th-order schemes

Table: Boundary layer problem (Residuals Criteria : < 10−8.)

Nodes Scheme Order GS /Newton Newton iteration

50
3rd 163 8
4th 163 8
6th 163 8

100
3rd 324 7
4th 324 7
6th 324 7

500
3rd 1647 7
4th 1647 7
6th 1647 7



Objectives Basic Formulation Extension to High-Order Some Results Summary Future Work

Boundary Layer Problem: 3rd-Order

Solutions and Convergence on Irregular Grids
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Boundary Layer Problem: 4th- and 6th-Order

Convergence on Irregular Grids
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Unsteady Non-Linear Problem

Problem Statement:

∂tu+ ∂xf = ∂x (ν ux) + S(x, t), x ∈ (0, 1)

where f = u2/2, ν = u, and

S(x, t) = uet +
1

2
((ue)2)x − (uex)2 − ueuexx

Exact Solution:

ue(x, t) = Real

(
sinh(x

√
iω/ν)

sinh(
√
iω/ν)

Ueiωt

)
+ C, C > 1
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Unsteady Non-Linear Problem

Solution: time
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Unsteady Non-Linear Problem

O(N) Convergence and Newton!

Table: Average data over 1000 time steps are shown (Irregular Grids.)

Nodes RD-GT Scheme Order GS/Newton Newton

50
3rd 435 10
4th 430 10
6th 431 10

100
3rd 879 10
4th 868 10
6th 864 10

200
3rd 1772 10
4th 1749 10
6th 1737 10
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Unsteady Non-Linear Problem: 4th- and 6th-Order

Convergence on Irregular Grids
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Summary

Developed uniform very high-order time-accurate RD
schemes for general hyperbolic advection-diffusion on
irregular grids

Proposed two new source integration techniques:

1) a new divergence formulation
2) corrections to the trapezoidal rule

Proposed a fourth-order scheme that compared to the
second-order scheme only costs evaluation of
first-derivative of the source term
Shown O(N) convergence rate for the linear system +
Newton for all the proposed high-order schemes
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Works Underway:

Extension to multi-dimensions (snapshot in the next slide)

Inclusion of shocks and discontinuities
Effects of separating advection and diffusion eigen
structures
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Works Underway: Extensions to Multi-Dimensions

Problem: Steady 2D Advection-Diffusion

∂tu+ a ∂xu+ b ∂yu = ν (∂xxu+ ∂yyu)

Exact Solution:

u(x, y) = C cos(Aπη) exp(
−2A2π2ν

1 +
√

1 + 4A2π2ν2
ξ),

where ξ = ax+ by, η = bx− ay.

Problem Setup: u is specified on the boundaries.
Solve for u, ∂xu and ∂yu.
GS-Relaxation: 1000 or 5 orders of magnitude reduction
Residual tolerance: ≤ 10−11
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Works Underway: Extensions to Multi-Dimensions

Newton: 3; GS/Newton : ≤ 300; a = 2, b = 1, ν = 0.01
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