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Abstract

In this paper, we construct second- and third-order hyperbolic residual-distribution schemes for
general advection-di↵usion problems on arbitrary triangular grids. We demonstrate that the ac-
curacy of the second-order hyperbolic schemes in [J. Comput. Phys., 227 (2007) 315–352] and [J.
Comput. Phys., 229 (2010) 3989–4016] can be greatly improved by requiring the scheme to preserve
exact quadratic solutions. The improved second-order scheme can be easily extended to a third-
order scheme by further requiring the exactness for cubic solutions. These schemes are constructed
based on the SUPG methodology formulated in the framework of the residual-distribution method,
and thus can be considered as economical and powerful alternatives to high-order finite-element
methods. For both second- and third-order schemes, we construct a fully implicit solver by the
exact residual Jacobian of the proposed second-order scheme, and demonstrate rapid convergence,
typically with no more than 10–15 Newton iterations (and about 200–800 linear relaxations per
Newton iteration), to reduce the residuals by ten orders of magnitude. We also demonstrate that
these schemes can be constructed based on a separate treatment of the advective and di↵usive
terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the
compressible Navier-Stokes equations. Numerical results show that these schemes produce excep-
tionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids
even for a curved boundary problem, without introducing curved elements. A quadratic reconstruc-
tion of the curved boundary normals and a high-order integration technique on curved boundaries
are also provided in details.

Keywords: Higher-order, SUPG, Fluctuation splitting, Finite volume, Navier-Stokes, Quadratic
reconstruction, Hermite polynomial, High-order integration

1. Introduction

In many flow simulations, accurate predictions of solution gradients, such as velocity and tem-
perature gradients, are essential for design and analysis purposes as they are directly related to
the physical quantities of interest: e.g., the viscous stresses, the vorticity, and the heat fluxes.
However, it is widely accepted that accurate and smooth solution gradients cannot be achieved
with conventional schemes on fully irregular unstructured grids [1, 2]. In conventional schemes,
the gradients are obtained typically with a lower order of accuracy (e.g., through reconstruction
of primary variables), and they are usually subject to numerical oscillations on such grids. The
resolution of this issue is very important in justifying the use of high-fidelity models in engineering
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design, analysis, and optimization, especially for applications involving complex geometries. The
ability to predict the gradients on irregular grids is even more critical for grid adaptation, a vital
technique for e�cient CFD calculations in high-order methods [3], because the grid adaptation
almost necessarily introduces irregularity in the grid. In fact, current practices in grid adaptation
often avoid adaptation in certain regions such as within boundary layers where grid irregularity has
a severe impact on the solution quality [4]. Therefore, numerical schemes that can accurately pre-
dict solution gradients on irregular grids need to be developed, so that the power of grid adaptation
can be fully exploited.

There have been some e↵orts in the residual-distribution community in developing schemes that
provide high-order solutions [5, 6, 7, 8, 9, 10], but little attention is paid, in general, in developing
schemes that produce accurate and smooth high-order solution gradients. A good review of residual-
distribution schemes is given in Ref. [11], in which a third-order residual-distribution scheme was
presented for quadratic (P2) elements. A di↵erent third-order residual-distribution scheme was also
proposed and applied to RANS equations in Ref. [12], and for real-gas computations in Ref. [13].
These schemes produce no better than second-order accurate solution gradients, whether linear or
quadratic elements are employed. A more improved third-order residual-distribution scheme was
later proposed in Refs. [14, 15], and third-order accurate solution gradients were reported on some
unstructured grids, including hybrid elements, using a proposed special gradient reconstruction
strategy. However, the authors have noted that the third-order accurate solution gradients could
not be reproduced for randomly distorted triangular elements. Quality of the predicted solution
gradients using these schemes were not reported and therefore, are unknown.

The first-order hyperbolic system method (or the hyperbolic method for short), with which the
solution and the solution gradients are simultaneously computed by solving a hyperbolic system for
di↵usion, provides a platform for construction of high-order schemes that could potentially produce
high-order solution gradients that are both accurate and free of numerical noise.

The hyperbolic method was first studied for di↵usion in Ref. [16] and then for advection-di↵usion
in Ref. [17] with Residual-Distribution (RD) schemes. Later, the method was demonstrated for
the compressible Navier-Stokes equations by a second-order Finite-volume (FV) scheme [18]. Since
then, there have been e↵orts in developing high-order hyperbolic schemes in the finite–volume
method [19, 20, 21], in the active flux method [22], and in the RD method [23, 24] for unsteady
computations.

In this paper, we focus on the development of hyperbolic RD schemes for two-dimensional
problems, extending the previous work [16, 17], with several important advances.

• Improved Accuracy: We propose to construct a second-order scheme that preserves exact
quadratic solutions, which can be accomplished by the curvature correction technique [8]. The
resulting scheme remains compact for viscous problems, and produces significantly improved
solution gradients over the previous schemes, which do not preserve exact quadratic solutions.

• Third-Order Accuracy: Extending the improved second-order scheme, we construct a third-
order scheme that preserves exact cubic solutions. The construction requires quadratic least-
squares (LSQ) gradients and a high-order source term discretization developed here.

• Nonlinear Equation: The improved schemes are extended to a nonlinear advection-di↵usion
equation by the preconditioned conservative formulation introduced in Ref. [18].

• High-Order on Linear Elements: We demonstrate that the third-order scheme does not require
curved elements for curved boundary problems; it gives more accurate solution and gradients
than the second-order scheme on the same linear grids (straight-sided elements). Our scheme
is designed to be third-order accurate on straight-sided triangles, even for geometries con-
taining curved boundaries. This is a significant advantage, because most high-order methods
require curved geometries to be represented by high-order curved elements; see Ref. [3]. Our
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proposed high-order scheme is not the only scheme that produces high-order solution on un-
structured, straight-sided meshes. For example, the technique of Ref. [25], which was applied
to Discontinuous Galerkin (DG) method, produces high-order accurate solution for geometries
containing curved boundaries by locally approximating the curvature of the physical geom-
etry (i.e., high-order normals) using information from the neighboring boundary elements
(i.e., a local operation) with all triangles kept as straight-sided elements (not curved). The
finite-volume (FV) scheme of Ref. [26] is another example, where a third-order solution was
obtained on the linear elements with a quadratic reconstruction of the boundary normals for
curved boundaries. The third-order residual-distribution schemes of Refs. [27, 8, 7], which are
developed based on reconstruction techniques, are additional examples. Our proposed third-
order scheme is among these schemes, and is more aligned with the FV scheme of Ref. [26]
because the proposed third-order scheme here produces third-order solution gradients for
geometries containing curved boundaries that are represented by straight-sided meshes.

• Non-Unified Approach: Instead of the fully integrated approach of discretizing the hyperbolic
advection-di↵usion system as in Ref. [17], we discretize the advective and di↵usive terms sep-
arately. This approach will enable the extension to the compressible Navier-Stokes equations
for which the eigenstructure of the whole system has not been discovered yet.

• Fully Implicit Solver: We construct a fully implicit solver for both second- and third-order
schemes. For practical applications, explicit iterations considered in Refs. [16, 17] are not
e�cient enough, and a fully implicit solver is needed. The implicit solver is constructed by
the exact residual Jacobian of the proposed second-order scheme. It converges typically in
10–15 Newton iterations and 200–800 Gauss-Seidel relaxations per Newton iteration to reduce
the residual by 10 orders of magnitude for both second- and third-order schemes.

We demonstrate these features for a series of test problems involving fully irregular isotropic and
anisotropic triangular grids and curved boundaries. This work serves as a basis for the development
of high-order multidimensional hyperbolic RD schemes for more complex equations such as the
Navier-Stokes equations. The extension of the proposed RD schemes to the Navier-Stokes equations
will be addressed in a subsequent paper. Shocks and discontinuities will also be addressed in future
work.

The paper is organized as follows. In the next section, we describe the basics of the hyperbolic
RD scheme: residual evaluations, boundary conditions, and an implicit solver. In Section 3, we
describe the construction of the SUPG distribution matrix based on a non-unified approach, in
which the advective and di↵usive terms are treated independently. In Section 4, we discuss the
accuracy issue of the previous schemes, and propose a guiding principle for constructing improved
schemes. A new second-order scheme is presented in Section 5, followed by the extension to third-
order in Section 6. The extension to nonlinear advection-di↵usion equations is explained in Section
7. Numerical results are then presented in Section 8 for both linear and nonlinear problems, followed
by concluding remarks in Section 9.

2. Baseline RD scheme for advection-di↵usion

In this section, we describe the baseline hyperbolic RD scheme [16] for the advection-di↵usion
equation on arbitrary triangular grids. This baseline scheme is the basis for the development of
improved second-order and third-order schemes discussed later. For the purpose of our discussion
and simplicity, we first describe the details for the linear advection-di↵usion equation. Extension
to the nonlinear equation is discussed in Sec. 7.

2.1. Hyperbolic advection-di↵usion system

Consider a two-dimensional advection-di↵usion equation:

@
t

u+ a @
x

u+ b @
y

u = ⌫ (@
xx

u+ @
yy

u) + s̃(x, y, u), (1)
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where a and b are constant advection speeds, respectively, in x and y directions, ⌫ (> 0) is the
di↵usion coe�cient, and s̃(x, y, u) is a source term. Following Refs. [17, 23], we rewrite the above
equation as a first-order hyperbolic advection-di↵usion system:

@
⌧

u+ a @
x

u+ b @
y

u = ⌫ (@
x

p+ @
y

q) + s(x, y, u), (2)

@
⌧

p = (@
x

u� p)/T
r

, (3)

@
⌧

q = (@
y

u� q)/T
r

, (4)

where ⌧ is a pseudo time, T
r

> 0 is the relaxation time, and s(x, y, u) is a sum of s̃(x, y, u) and a
physical time-derivative term discretized by an implicit time-stepping scheme (see Refs. [23, 24] for
more details). In the vector form, the system is written as
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= Q, (5)
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r

0 0

3
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2

4
s
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r
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r

3

5 . (6)

The system is hyperbolic in the pseudo time as shown in Ref. [17]. Towards the pseudo steady
state, the variables p and q approach the solution gradients u

x

and u
y

and hence the above equation
becomes identical to the original advection-di↵usion equation with the physical time-derivative
discretized by an implicit time-stepping scheme(see Ref. [23]). This is true for any T

r

, and thus T
r

is determined not by physical constraints but by optimal steady convergence criteria [17], leading
to a non-sti↵ hyperbolic formulation for di↵usion. Note that simply dropping the pseudo time
derivative will also recover the original equation. In this paper, we focus on steady problems, but
the resulting steady schemes can be made time accurate by including a physical time derivative
term in s(x, y, u) as described in Refs. [23, 24]. In either case, an e�cient steady solver is required,
and its development is one of the objectives of the present paper.

2.2. RD scheme: cell-residual, distribution matrix, nodal residual
We discretize the hyperbolic advection-di↵usion system on unstructured triangular grids. The

domain is divided into a set {E} of arbitrary triangular cells (or elements), and an associated set
{J} of nodes (or vertices). The total number of nodes is denoted by N . We store the solutions (u

j

,
p
j

, q
j

) at each node j 2 {J}. In the RD method, we first evaluate the residuals over the elements
and then distribute the residuals to the nodes with a distribution matrix. The cell-residual over an
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Figure 1: Schematic of the residual distribution to local nodes and definition of the inward unit
normals (not-to-scale).

element E 2 {E} is defined as
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+Q)dxdy. (7)
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We assume a piecewise linear variation of U over the element, which interpolates the three nodal
solutions, and perform the integration to obtain

�E = �
3X

i=1

K
i

U
i

+Q
E

d⌦E , (8)

where i is the local vertex counter (i.e., i = 1, 2, 3) for the element E, d⌦E is the element area,
and

K
i

=
1

2
(A n̂

i

x

+B n̂
i

y

)|n
i

| = 1

2
A

n

i

|n
i

|, Q
T

= 1
3

3X

i=1

Q
i

. (9)

Note that n
i

= (n
i

x

, n
i

y

) is the scaled inward normal to the face (edge) opposed to the vertex i,
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(see Fig. 1), and n̂
i

= (n̂
i

x

, n̂
i

y

) is the unit inward normal. We note that for

every element
P3

i=1 ni

= 0 and therefore we have
P3

i=1Ki

= 0.
The next step is to distribute them to the three vertices by the distribution matrices, BE

1 , B
E

2 ,
BE

3 , as illustrated in Fig. 1. The discussion of the distribution matrix is one of the key contributions
of the present paper, but we leave the choice open at this point. We only mention here that BE

i

is a 3⇥3 matrix, which sums up to the identity matrix over the element for conservation. The
distribution process results in the nodal residual at node j:

Res
j

=
1

d⌦
j

X

E2{E
j

}

BE

j

�E

j

, (10)

where d⌦
j

is the median dual volume around the node j (see Fig. 2), and {E
j

} is a set of triangular
elements sharing the node j. The nodal residual is an approximation of the spatial part of the
target equations, and thus it leads to a semi-discrete form:

dU
j

d⌧
= Res

j

. (11)

It can be integrated to the steady state by explicit pseudo–time stepping schemes as in Refs. [16, 17],
which are significantly faster than conventional explicit schemes because the hyperbolic formulation
eliminates a typical di↵usion constraint, O(h2), where h is a representative mesh spacing, on the
explicit time step [16, 17]. However, it still requires a large number of iterations, especially for
anisotropic grids. To improve the convergence, we developed an implicit solver in this work.

j

d⌦
j

Figure 2: Schematic of a median dual volume around the node j.

2.3. Implicit solver

To solve Eq. (11) for the pseudo steady state, we drop the pseudo-time derivative, and define
the global system of steady residual equations,

0 = Res, (12)
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which consists of the right hand side of Eq. (11) for all nodes. Note that the resulting residual
equation has become consistent with the advection-di↵usion equation (1) because the pseudo-time
derivative has been dropped. We solve the system by Newton’s method:

Ul+1 = Ul +�Ul, (13)

where U = (u1, p1, q1, u2, p2, q2, . . . , uN , p
N

, q
N

), and l is the iteration counter. The correction
�Ul = Ul+1 �Ul is determined as the solution to the linear system:

�@Res

@U
�Ul = Resl(Ul), (14)

where Resl is the steady residual vector evaluated by Ul. The Jacobian matrix @Res/@U is exact
and sparse because the spatial discretization is compact. For each node j 2 {J}, it involves (k+1)
3⇥3 blocks, where k is the number of immediate neighboring nodes to the node j. For example,
k = 6 for the node j shown in Fig. 2 and therefore, for this particular node, there are seven 3⇥3
blocks. For a node j, we have

�J
j

�Ul

j

�
kX

m=1

J
j,m

�Ul

m

= Res
j

(Ul), (15)

where

J
j

=
@Res

j

@U
j

, J
j,m

=
@Res

j

@U
m

. (16)

We may analytically evaluate the diagonal and o↵-diagonal entries of the Jacobian matrix, i.e., J
j

and J
j,m

, but this process is rather tedious for general time–dependent advection-di↵usion problems,
and even more di�cult for complex systems such as the Navier-Stokes equations. To overcome the
di�culty, we implemented an Automatic Di↵erentiation (AD) tool based on an operator-overloading
technique to evaluate the exact Jacobians numerically through chain rule. Thus, the Jacobian
matrix is exact up to the round-o↵ error for the baseline and second-order schemes. The linear
system is relaxed by the sequential Gauss-Seidel relaxation with an under-relaxation parameter
introduced for stabilization (see Ref. [28]). Typically, the relaxation is performed until the linear
residual is reduced by five orders of magnitude with a maximum relaxation steps of 1000.

2.4. Implicit boundary condition

Here, we discuss two Boundary Condition (BC) types: Dirichlet (i.e., u is known), and Neu-
mann (i.e., @

n

u is known). We note that because gradients are also the primary variables in the
hyperbolic method (i.e., not reconstructed from the solution variable), the Neumann type BC is
treated similarly as the Dirichlet type BC.

j
b

ñ
b

t̃
b

s

Figure 3: Schematic of boundary nodes for formulation of implicit boundary condition.

For a Dirichlet type BC, the following set of equations is imposed at the boundary nodes:

u� u
b

= 0, (17)

(p, q) · t̃
b

= @
s

u
b

, (18)

(@
x

u� p, @
y

u� q) · ñ
b

= 0, (19)
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where u
b

is the given boundary value and @
s

u
b

is the derivative of the u
b

along the boundary, which
can be computed with the given u

b

. The ñ
b

and t̃
b

are, respectively, the unit normal and tangent
vectors at the boundary nodes (see Fig. 3). For a strong Dirichlet type BC, we specify the BC
value at the boundary nodes and solve the hyperbolic system accordingly. Here, we discretize and
solve Eq. (19) according to the hyperbolic RD scheme described in the previous section. That is,
the residual vector at the node j

b

is redefined as

2

6664

u
j

b

� u
b

(p
j

b

, q
j

b

) · t̃
b

� @
s

u
b

Res
j

b

(2)ñ
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x

+Res
j

b

(3)ñ
b

y

3

7775
, (20)

where Res
j

b

(2) and Res
j

b

(3) are the nodal residuals of the second and third equations of the first-
order hyperbolic system (i.e., Eq. 3 and Eq. 4, respectively), computed as described in the previous
sections. Alternatively, we can only specify the solution value on the boundaries and compute the
solution gradients using the proposed schemes

2

6664

u
j

b

� u
b

Res
j

b

(2)

Res
j

b

(3)

3

7775
, (21)

which is more convenient than the previous approach, Eq. (20), because it neither needs the bound-
ary tangent vector nor the boundary tangent derivatives. We have implemented both approaches
(i.e., Eqs. 20 and 21) and similar results are obtained with the examples presented in the Sec. 8.
The Dirichlet type BC is relevant to the no-slip boundary condition for the Navier-Stokes equations.

For a Neumann type BC, we impose the following equations to the boundary nodes:

@
⌧

u+ a@
x

u+ b@
y

u = ⌫(@
x

p+ @
y

q) + s, (22)

(p, q) · ñ
b
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n

u
b

, (23)
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u� p, @
y

u� q) · t̃
b

= 0, (24)

where @
n

u
b

is the given gradient of the u on the boundary in the normal direction, and therefore is
known. For the strong formulation of a Neumann type BC, we discretize and solve Eqs. (22) and
(24) according to the RD scheme; that is
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3

7775
, (25)

where Res
j

b

(1) is the nodal residual of the first equation of the first-order hyperbolic system
computed as described in the previous sections. An example of the Neumann type BC is the
adiabatic condition used in the Navier-Stokes equations.

In either of the Dirichlet or the Neumann type BC, the modified residual is incorporated into
the implicit solver with the exact Jacobians. In doing so, special care must be taken to avoid
encountering zero diagonal entries in the Jacobian of the boundary nodes. To examine this, let us
consider a Neumann type BC, Eq. (25), and a boundary node whose normals defined as ñ

b

= (0, 1).
For this specific boundary node, the diagonal entry of the Jacobian, corresponding to the second
equation, becomes zero; i.e.,

@

@ p
j

b

((p
j

b

, q
j

b

) · ñ
b

� @
n

u
b

) = 0,
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and therefore, the linear relaxation fails. To remedy this, we simply swap the second and third
equations for the corresponding boundary nodes, according to their magnitudes of ñ

b

x

and ñ
b

y

;
that is,
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77775
, if |ñ

b

x

|  |ñ
b

y

|, (26)

otherwise, we use Eq. (25). With this technique, the Jacobian of the boundary nodes is always
invertible. This technique is further illustrated in Sec. 8.2.2 through an example.

2.5. Remark on variable advection coe�cients

If the advection coe�cients a and b are functions of (x, y), advective fluxes are not necessarily
conservative. In this case, we estimate the advection vector by the arithmetic average over an
element to write

@U

@⌧
+A

@U

@x
+B

@U

@y
= Q, (27)

where A and B are defined with the averaged advection vector (a, b):

A =

2

4
a �⌫ 0

�1/T
r

0 0
0 0 0

3

5 , B =

2

4
b 0 �⌫
0 0 0

�1/T
r

0 0

3

5 . (28)

The baseline RD scheme is then applicable. If conservative fluxes exist, then the nonlinear formu-
lation described in Sec. 7 can be employed to construct an RD scheme.

3. Distribution matrices: non-unified approach

The RD scheme is defined by the combination of the cell-residuals and the distribution matrix.
The distribution matrix is mainly responsible for the dissipative behavior and the stability while
the cell-residuals determine the order of accuracy. Unbounded distribution matrices can also a↵ect
the order of accuracy, but we consider only bounded ones in this paper. The construction of the
distribution matrix often requires the knowledge of the eigenstructure of the target system. The
eigenstructure of the hyperbolic advection-di↵usion system is known [17] and various distribution
matrices can be constructed. However, the extension to the compressible Navier-Stokes equations
is not possible at the moment because the eigenstructure has not been successfully worked out yet.
In order to develop hyperbolic RD schemes that can be extended to the compressible Navier-Stokes
equations, we consider a non-unified approach introduced for FV schemes in Refs. [18] and [20],
respectively, for the compressible Navier-Stokes and advection-di↵usion equations. In this approach,
we construct distribution matrices for advection and di↵usion separately and then combine them
to derive a distribution scheme for the advection-di↵usion equation. This approach easily extends
to the compressible Navier-Stokes equations because the eigenstructures of the inviscid terms and
the hyperbolized viscous terms can be fully analyzed independently [18].

3.1. Unified approach

To illustrate the point of the non-unified approach, we first recall the unified approach of
Ref. [17]. Consider an arbitrary unit vector n̂ = (n̂

x

, n̂
y

). The unified advection-di↵usion flux
Jacobian is defined as:

A
n
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y
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where a
n

= a n̂
x

+ b n̂
y

is the advection velocity projected onto the unit vector n̂. The Jacobian
A

n

has the following real eigenvalues:
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�
, �3 = 0, (30)

where �1 < 0 and �2 > 0. The arbitrary but positive relaxation time, T
r

, is defined as

T
r

=
L
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a2 + b2 + ⌫/L
r

, (31)

where the length scale L
r

is a quantity of O(1), which may be taken as L
r

= 1/2⇡, as used here, or
from an optimal formula as derived in Ref. [17]. The right and left eigenvectors for the Jacobian
A

n

are given by
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The unified Jacobian A
n

can be rewritten based on its right and left eigenvectors as

A
n

= R
n

⇤
n

L
n

, (33)

where ⇤ is the diagonal matrix with the entries of the eigenvalues defined in Eq. (30). The Jacobian
matrix can be decomposed as (see Ref. [17])
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where

⇧1 =
1

�1 � �2

2

4
�1 �1�2Tr

n̂
x

�1�2Tr

n̂
y

�n̂
x

/T
r

��2n̂2
x

��2n̂x

n̂
y

�n̂
y

/T
r

��2n̂x

n̂
y

��2n̂2
y

3

5 , (35)

⇧2 =
1

�1 � �2

2

4
��2 ��1�2Tr

n̂
x

��1�2Tr

n̂
y

n̂
x

/T
r

�1n̂2
x

�1n̂x

n̂
y

n̂
y

/T
r

�1n̂x

n̂
y

�1n̂2
y

3

5 . (36)

Thus, the K
i

defined in Eq. (9) can be written as

K
i

= K�
i

+K+
i

, (37)

where

K�
i

=
1

2
�1,i⇧1,i |ni

| = 1

2
A�

n

i

|n
i

|, (38)

K+
i

=
1

2
�2,i⇧2,i |ni

| = 1

2
A+

n

i

|n
i

|. (39)

These matrices are often required for the construction of the distribution matrix, and as can be
seen from the above, they require the eigenvalues and the eigenvectors, which are not known at
present for a hyperbolic formulation of the compressible Navier-Stokes equations.
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3.2. Non-unified approach

In the non-unified approach [18, 20], we treat the advective and di↵usive terms separately.
Therefore we rewrite Eq. (5) as

@U

@⌧
+
@F

@x
+
@G

@y
= Q, (40)

where

F = Fa + Fd =

2

4
au
0
0

3

5+

2

4
�⌫p

�u/T
r

0

3

5 , (41)

G = Ga +Gd =

2

4
bu
0
0

3

5+

2

4
�⌫q
0

�u/T
r

3

5 . (42)

Similarly, the flux Jacobian A
n

is decomposed into two advective and di↵usive fluxes, Aa

n

and Ad

n

,
respectively:

A
n

= Aa

n

+Ad

n

, (43)

where

Aa

n

=

2

4
a
n

0 0
0 0 0
0 0 0

3

5 , Ad

n

=

2

4
0 �⌫n̂

x

�⌫n̂
y

�n̂
x

/T
r

0 0
�n̂

y

/T
r

0 0

3

5 . (44)

The distribution matrix is constructed separately for the advective and di↵usive terms based on
the corresponding flux Jacobian, and then the two matrices are combined to form a matrix for the
advection-di↵usion equation. This approach can be extended to the compressible Navier-Stokes
equations because the eigenstructure of the hyperbolized viscous terms is available [18].

The advective Jacobian has only one non-zero eigenvalue (�a = a
n

) and thus we can simply
decompose it according to the sign of �a:

Aa

n

= Aa

+

n

+Aa

�
n

=

2

4
max(0, a

n

) 0 0
0 0 0
0 0 0

3

5+

2

4
min(a

n

, 0) 0 0
0 0 0
0 0 0

3

5 . (45)

The di↵usive Jacobian has two non-zero eigenvalues, �d1 = �
p
⌫/T

r

, �d2 = +
p
⌫/T

r

, with the right
and left eigenvectors formally in the form of Eq. (32). Note, however, that they are numerically
di↵erent because the eigenvalues are di↵erent. The di↵usive Jacobian can be split as

Ad

n

= Rd

n

⇤d

n

Ld

n

= �d1⇧1 + �d2⇧2 = Ad

+

n

+Ad

�
n

, (46)

where ⇧1 and ⇧2 are given by Eq. (35) and Eq. (36), respectively, with �1 = �d1 and �2 = �d2.
We define Kd

i

by

Kd

i

=
1

2
Ad

n

i

|n
i

| = Kd

�
i

+Kd

+

i

, (47)

where the negative and positive matrices, Kd

�
i

and Kd

+

i

are given by

Kd

�
i

=
1

2
�d1,i⇧1,i |ni

| = 1

2
Ad

�
n

i

|n
i

|, (48)

Kd

+

i

=
1

2
�d2,i⇧2,i |ni

| = 1

2
Ad

+

n

i

|n
i

|. (49)

In the following section, we describe the the Streamline-Upwind-Petrov-Galerkin (SUPG) dis-
tribution matrix and its formulation in the context of hyperbolic RD schemes. For completeness
and comparison purposes, the SUPG distribution matrix presented for both unified and non-unified
approaches.
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3.3. Distribution matrix: Streamline-Upwind-Petrov-Galerkin (SUPG)

Various distribution matrices can be employed for the hyperbolic RD schemes: Lax-Wendro↵ [16],
LDA [17], and SUPG distribution matrices. However, in our experience, hyperbolic RD schemes
with the LDA distribution matrix, although it can be constructed by the non-unified approach,
have an instability problem in the linear relaxation on some anisotropic triangular grids. On the
other hand, hyperbolic RD schemes can be successfully stabilized with a suitable under-relaxation
parameter in the case of the SUPG distribution matrix. Therefore, in this paper, we focus on the
SUPG distribution matrix. The finite-element SUPG scheme [29] is known to be applicable to the
RD framework [30].

In the unified approach, the SUPG distribution matrix for triangular grids is given by

B̃SUPG
i

=
1

3
I+

1

2
K

i

 
3X

l=1

K+
l

!�1

, (50)

which consists of the Galerkin and the stabilization terms. In the non-unified approach, we construct
the SUPG distribution matrix as follows:

BSUPG
i

=
1

3
I+Da

i

+Dd

i

, (51)

where Da

i

and Dd

i

are the stabilization terms defined independently for the advective and di↵usive
terms,

Da

i

=

2

4
dSUPG
i

0 0
0 0 0
0 0 0

3

5 , dSUPG
i

=
1

2

a
n

i

|n
i

|
P3

l=1max(0, a
n

l

)|n
l

|
, (52)

Dd

i

=
1

2
Kd

i

 
3X

l=1

Kd+
l

!�1

. (53)

Note that the denominator of Eq. (52) cannot vanish unless the advection vector is exactly zero.
A small numerical value of the order of machine zero may be added to the denominator in order to
avoid zero division in the case of zero advection vector. Another possibility is to completely remove
Da

i

term for zero advection vector; both approaches yield identical results.
It is also important to note that we have

P3
i=1D

a

i

=
P3

i=1D
d

i

= 0, and therefore the conserva-
tion property is guaranteed:

3X

i=1

BSUPG
i

= I. (54)

A weighting function can be introduced in the stabilization terms of Eq. (51),

BSUPG
i

=
1

3
I+ (1� !)Da

i

+ !Dd

i

, (55)

where ! is defined such that ! ! 0 as Re ! 1, and ! ! 1 as Re ! 0, so that the scheme will
properly reduce to pure advection and di↵usion schemes as Re ! 1 and Re ! 0, respectively.
The weighting function ! can be evaluated, based on a detailed analysis for a one-dimensional
hyperbolic advection-di↵usion system [17], as

! =
2

Re+ 2
, (56)

where we define the Re for the two-dimensional system as

Re =
p
a2 + b2/⌫. (57)
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In our study, however, we observed no noticeable change in the results between Eq. (51) and Eq. (55)
with the above weighting function. Therefore, the results shown in this paper are all based on the
SUPG distribution matrix without the weighting function. Details of the e↵ects of the weighting
function are a subject for future study.

As can be seen from above, the SUPG distribution matrix is constructed based on a decomposi-
tion of the stabilization term into advective and di↵usive stabilization terms. Therefore, the SUPG
distribution matrix can be extended to a hyperbolic formulation of the compressible Navier-Stokes
equations, for which the inviscid and viscous terms can be analyzed independently [18].

4. New design principle for advection-di↵usion equation

An important feature of the RD schemes critical to the accuracy condition is the ability to pre-
serve exact polynomial solutions on arbitrary grids. Historically, RD schemes have been designed
to preserve linear exact solutions for hyperbolic systems of conservation laws. This is called the
linearity preservation. Such schemes are known to yield second-order discretization errors. The
baseline hyperbolic RD scheme [16] is constructed based on the linearity preserving property. Al-
though it gives second-order accuracy for all variables on regular triangular grids [16], it was found
later that the order of accuracy of the gradient variables (i.e., p and q) deteriorates to first-order
on irregular grids. In a subsequent work presented in Ref. [17], a better scheme was proposed that
attempted to improve the accuracy of the gradients by upgrading the evaluation of the second
and third components of the residual. In this paper, the scheme of Ref. [17] is referred to as the
RD-JCP2010 scheme. Results given in Ref. [17] showed that the RD-JCP2010 scheme, relative to
the baseline scheme, improves the order of accuracy of the gradient variables, but no results were
presented for the quality of the predicted gradients. As will be shown later in this paper, we found
that for a di↵erent test problem and a more general exact solution, the same RD-JCP2010 scheme
does not yield second-order accuracy for the gradient variables (i.e., p and q), and also generates
severe oscillations in these variables within the domain. It appears that the discretization of the
source terms (including those arising from the hyperbolic formulation) was not fully compatible
with the flux terms, and it is not clear to us, at the moment, how to improve the source term dis-
cretization to develop a fully second-order scheme. To overcome this di�cult problem, we instead
propose to improve the flux terms such that the residual vanishes for quadratic solutions for the
advection-di↵usion equation. The exactness, as will be demonstrated later, has a significant impact
on the accuracy and the quality of the gradient variables on irregular grids. The construction of
such schemes is very di�cult in general because second-order gradients need to be recovered from
second-order accurate solutions on irregular grids for the di↵usive term. However, the construction
is quite straightforward in the hyperbolic method since the gradients are computed simultaneously
with the solution variable u. The scheme also extends easily to third-order by imposing the exact-
ness for cubic solutions. Note that the exactness is not a necessary condition for accuracy, but a
su�cient condition to guarantee the design order of accuracy.

In the next two sections, we describe how to construct second- and third-order accurate schemes
that, respectively, preserve quadratic and cubic solutions on arbitrary triangular grids.
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5. Second-order scheme: RD-CC2

Consider the cell-residuals for the baseline hyperbolic RD scheme:

�E

u

=

Z

E

(�au
x

� bu
y

+ ⌫p
x

+ ⌫q
y

+ s)dxdy =
1

2

3X

i=1

�
�a

n

i

u
i

|n
i

|+ ⌫p
i

n
i

x

+ ⌫q
i

n
i

y

�
+ sEd⌦E ,(58)

�E

p

=
1

T
r

Z

E

(u
x

� p)dxdy =
1

T
r

 
1

2

3X

i=1

u
i

n
i

x

� pEd⌦E

!
, (59)

�E

q

=
1

T
r

Z

E

(u
y

� q)dxdy =
1

T
r

 
1

2

3X

i=1

u
i

n
i

y

� qEd⌦E

!
. (60)

These residuals are constructed based on the assumption that all variables (i.e., u, p, q) are linear
over the element, and therefore they do not preserve quadratic solutions. Note that quadratic
solutions imply linear gradients (i.e., u

x

, u
y

, p, q), and the above cell residuals are already exact for
linear gradients. Therefore, to preserve quadratic solutions, the integrals of u

x

and u
y

terms need
to be exact for quadratic solutions. A simple way to accomplish this is to reconstruct a quadratic
element by interpolating the solution at the midpoint of each side in the element (see Fig. 4).

1
m3

2

m1

3

m2

Figure 4: Reconstructed P2 element with virtual midpoints.

The midpoint value u
m

i

is estimated by the Hermite interpolation along the side:

u
m

i

= u
i

� 1

8
(�p

i

�x
i

+�q
i

�y
i

) , (61)

where u
i

is the arithmetic average of the solution values at the two end nodes, and �( )
i

denotes
the di↵erence of the nodal values taken counterclockwise along the edge opposite to the node i,
e.g., �x3 = x1 � x2. Note that the midpoint value u

m

i

is exact for quadratic solutions (and linear
gradients). Once the quadratic element is reconstructed, the cell-residuals are evaluated as line
integrals with Simpson’s rule applied along each side. This reconstruction approach was first intro-
duced in Refs. [7, 31] and later employed in the form of the Green-Gauss gradient with a high-order
curvature correction term [17, 8, 27]. In this work, we employ the latter implementation to upgrade
the baseline residuals. Note that the formula (61) usually requires LSQ gradient reconstruction to
obtain the nodal gradients [8, 7, 31, 27], but it is not necessary in the hyperbolic method because
p(= u

x

) and q(= u
y

) are already available at nodes as a part of the primary variables. Note also
that the edge midpiont values are introduced only artificially to derive the curvature correction
terms and thus, do not appear in the final form of the cell residual.
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Applying the curvature correction, we modify the cell-residuals of the baseline RD scheme as

�̃E

u

= �1

2

3X

i=1

a
n

i

(u
i

+ �u
i

)|n
i

|+ ⌫

2

3X

i=1

�
p
i

n
i

x

+ q
i

n
i

y

�
+ sEd⌦E , (62)
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r
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3X
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i
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� pEd⌦E

!
, (63)

�̃E

q
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1

T
r
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3X

i=1

(u
i

+ �u
i

)n
i

y

� qEd⌦E

!
, (64)

where the curvature correction term, �u
i

, is defined as

�u
i

=
1

6
(�p

i

�x
i

+�q
i

�y
i

). (65)

Note that in Ref. [17], �u
i

was mistakenly shown with a negative sign. Observe also that these
cell-residuals do not require the solution value at the edge midpoint. One may find it convenient
that the scheme can be implemented as an add-on to the baseline hyperbolic RD scheme:

�̃E

u

= �E

u

� 1

2

3X

i=1
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i
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|, (66)
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. (68)

The modified cell-residuals are distributed by the SUPG distribution matrix. The RD scheme
based on these cell-residuals is referred to as the RD-CC2 scheme. This scheme is compact because
no LSQ gradient reconstruction is necessary. Note that, we observed numerically that the linear
solver diverges for high-Re cases unless LSQ gradient reconstruction is used in the evaluation of the
curvature correction terms. The exactness for quadratic solutions has been confirmed numerically,
and are compared with the baseline RD and RD-JCP2010 schemes. These results are summarized
in Table 1,

Table 1: Exactness of the hyperbolic RD equations for exact quadratic and cubic polynomial
solutions on irregular grids. The exact quadratic and cubic solutions are taken from Ref. [32]. The
last column indicates whether the exactness (X) is based on cell and/or nodal residuals.

Hyperbolic RD Scheme
Quadratic solution Cubic solution

Cell/Nodal
u eq. p eq. q eq. u eq. p eq. q eq.

Baseline 7 7 7 7 7 7 none
RD-JCP2010 7 X X 7 7 7 cell
RD-CC2 X X X 7 7 7 both

The truncation error orders for the RD-CC2 scheme, the baseline RD scheme, and the RD-
JCP2010 scheme are provided in Table 2. The truncation error orders have been determined by
substituting a smooth exact solution (113) into the residuals for a series of irregular triangular
grids. Clearly, all schemes have the same truncation error order for the nodal residual. A known
theory for hyperbolic conservation laws [33, 34] states that the discretization error of O(h2) leads
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to the truncation error of O(h). However, our numerical results indicate that the converse is not
necessarily true. As we will show later, only the RD-CC2 scheme, which has O(h) truncation order,
gives a discretization error of O(h2).

Table 2: Comparison between numerical truncation error of the nodal residuals (i.e., T.E. =
1

d⌦
j

P
j

BE�E) obtained with RD-CC2 and non-genuine second-order RD schemes on irregular

grids.

Hyperbolic RD Scheme
Nodal Residuals

u equation p equation q equation
Baseline O(h) O(h) O(h)
RD-JCP2010 O(h) O(h) O(h)
RD-CC2 O(h) O(h) O(h)

We remark that the RD-CC2 scheme is di↵erent from the RD-JCP2010 scheme [17], which has
the curvature correction only in �̃E

p

and �̃E

q

residuals. Thus, the whole residual vector of RD-
JCP2010 is not exact for quadratic solutions as confirmed in Table 1. The RD-CC2 scheme, on
the other hand, has the curvature correction applied to all the residuals, and therefore is exact for
quadratic solutions (and linear gradients).

To solve the discrete equations, we employ the implicit solver described in Sec. 2.3. The RD-
CC2 scheme is compact and therefore we linearize the residual vector exactly by using the AD
tool. The implicit solver is thus Newton’s method and converges to machine zero (i.e., ten orders
of magnitude reduction in all the residuals) typically within 3–5 Newton iterations and 200–800 GS
relaxations per Newtion iteration. Note that, the number of GS relaxations is the most relevant
metric for the e�ciency of the implicit solver, when the Jacobian is exact.

6. Third-order scheme: RD-CC3

To extend the compact RD-CC2 scheme to a third-order scheme, we modify the cell-residuals
so that they preserve exact cubic solutions and quadratic gradients. Following the procedure
explained in Sec. 5 for the RD-CC2, and thanks to the fact that both the Hermite interpolation and
Simpson’s rule are exact for cubic functions, we employ, again, the curvature correction technique.
We emphasis again that similar to the construction of RD-CC2 scheme, we employ the curvature
correction technique to achieve third-order accuracy and therefore the edge midpoint values are
neither stored nor computed. Extension to the third-order, therefore, requires two additional steps:
1) high-order source term discretization, and 2) quadratic LSQ gradients for p, q, and the source
term s. The high-order discretization of the source term is a critical piece for achieving third-order
accuracy. We derive a formula by estimating the midpoint value by the Hermite interpolation and
then exactly integrate the source terms assuming a quadratic variation over the element:
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s dxdy =
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d⌦E , (69)
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p dxdy =
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Z

E

q dxdy =
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Using these high-order source discretizations, we construct the cell-residuals that preserve cubic
solutions (and quadratic gradients) as follows:
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which can also be written in the form of an extension to the compact RD-CC2 scheme:
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The curvature correction terms require quadratic LSQ gradients for p, q, and s, but not for u
because p(= u

x

) and q(= u
y

) are already available at nodes. We note that for high-Re cases, which
will be discussed in more details in Sec. 8.1.2, LSQ reconstruction of the gradients is needed for
the curvature correction terms that are applied to the first equation, otherwise the linear system
diverges. This instability is observed for both linear and non-linear formulations of the hyperbolic
advection-di↵usion system. LSQ reconstruction does not a↵ect the design order of accuracy of
these schemes, as the quadratic and the cubic exactnesses are still preserved. Again, the cell-
residuals are distributed by the SUPG distribution matrix. The hyperbolic RD scheme based on
these cell-residuals is referred to as the RD-CC3 scheme. The exactness for cubic solutions has been
confirmed numerically as shown in Table 3. The results of a numerical truncation error analysis
for the RD-CC3 are provided in Table 4 and compared with the truncation error of RD-CC2.

Table 3: Exactness of the hyperbolic RD equations for exact quadratic and cubic polynomial
solutions on irregular grids. The exact quadratic and cubic solutions are taken from Ref. [32]. The
last column indicates whether the exactness (X) is based on cell and/or nodal residuals.

Hyperbolic RD Scheme
Quadratic solution Cubic solution

Elemental/Nodal
u eq. p eq. q eq. u eq. p eq. q eq.

RD-CC2 X X X 7 7 7 both
RD-CC3 X X X X X X both
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Table 4: Comparison between numerical truncation error of the nodal residuals (i.e., T.E. =
1

d⌦
j

P
j

BE�E) obtained with the RD-CC2 and RD-CC3 schemes on irregular grids.

Hyperbolic RD Scheme
Nodal Residuals

u equation p equation q equation
RD-CC2 O(h) O(h) O(h)
RD-CC3 O(h2) O(h2) O(h2)

The discrete equations are solved by the implicit solver described in Sec. 2.3. We do not attempt
to linearize the RD-CC3 scheme exactly, but simply use the exact Jacobian of the compact RD-CC2
scheme. The implicit solver is therefore not precisely Newton’s method, but it converges so rapidly
that fully converged numerical solutions (i.e., ten orders of magnitude reductions for all residuals)
are obtained typically within 10–15 Newton iterations and 200–800 Gauss-Seidel relaxations per
Newton iteration as will be demonstrated later in Sec. 8.

Remark: The cell residuals evaluated with the RD-CC2 and the RD-CC3 schemes are conserva-
tive and have a telescoping property, because the curvature correction terms have been derived from
Simpson’s rule applied along each side of the reconstructed quadratic element (see Refs. [7, 35]).
The line integral for the cells sharing the edge is exactly the same with an opposite sign and thus,
we have conservation along each edge.

Also, the RD-CC2 and RD-CC3 schemes with the SUPG distribution matrix can be consid-
ered as economical and powerful alternatives to high-order finite-element methods [36]. They are
economical mainly for three reasons: 1) the number of linear relaxations in the implicit solver
increasers linearly, not quadratically as typical for di↵usion problems, with grid refinement. 2) the
second-order advection-di↵usion scheme is compact, and thus allows an e�cient construction of
Newton’s method. Furthermore, the same compact Jacobian still yields rapid convergence (compa-
rable to Newton’s method) for the third-order scheme. 3) second- and third-order accuracy can be
achieved (as will be demonstrated later in Sec. 8) on linear triangular elements without introducing
curved elements. Thus, high-order curved grids are not needed, and these schemes are directly ap-
plicable to existing grids composed of linear triangular elements. These schemes are also powerful
in that they are capable of producing highly accurate and smooth gradients, to the same order of
accuracy as that of the main solution variable u, on isotropic and anisotropic irregular grids. These
advantages will be demonstrated in Sec. 8.

7. Nonlinear advection-di↵usion equation

In this section, we describe the discretization of a nonlinear hyperbolic advection-di↵usion
equation. As an example, we discuss the construction of the RD-CC3 scheme with the SUPG
distribution matrix. Note that the compact RD-CC2 is a subset of RD-CC3 scheme and therefore
the discussion here also applies to the RD-CC2 scheme. A similar procedure can be applied to
other distribution schemes. Throughout the discussion, we only consider the non-unified approach,
which is applicable to more complex systems such as the compressible Navier-Stokes equations.

7.1. Nonlinear hyperbolic advection-di↵usion equation

Consider the following two-dimensional nonlinear advection-di↵usion equation:

@
t

u+ @
x

f + @
y

g = @
x

(⌫@
x

u) + @
y

(⌫@
y

u) + s̃(x, y, u), (81)

where f and g are nonlinear functions of u, and ⌫ = ⌫(u). The advection speeds in x and y
directions are therefore a(u) = @f/@u and b(u) = @g/@u, respectively. Using the preconditioned
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formulation proposed for nonlinear systems in Ref. [18], we construct a hyperbolic system as

@
⌧

u+ @
x

f + @
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g = @
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q + s, (82)

T
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⌫
@
⌧

p = @
x

u� p/⌫, (83)

T
r

⌫
@
⌧

q = @
y

u� q/⌫, (84)

where the variables p and q are, in the pseudo steady state, equivalent to the di↵usive fluxes in
x and y directions, respectively. As before, the physical time derivative can be incorporated into
the source term s as is done in Ref. [24], but we focus on the steady equation here. Note that
the system reduces to the target equation, i.e., Eq. (81), in the pseudo steady state. The system
is written in the vector form as a preconditioned conservative equation, with the preconditioning
matrix P:

P�1@U

@⌧
+
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+
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= Q, (85)

where
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Note that the presence of the preconditioning matrix P is mainly to simplify the construction
of the numerical scheme, and not to improve the condition number of the di↵erential system (see
Ref. [18]).

The flux Jacobians can be obtained by multiplying both sides of Eq. (85) by the preconditioned
matrix P, and arrive at
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, (88)

where
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Note that these preconditioned Jacobian matrices (i.e., A and B) are slightly di↵erent from the
ones obtained for the linear hyperbolic advection-di↵usion system. Hence, their eigen-structures
are also di↵erent from those given for the linear system in Sec. 2. The di↵erences in the eigen-
structures influence the formulation of the distribution matrices as described next. Below, we first
describe the baseline RD scheme for the preconditioned nonlinear system, and then upgrade it to
a higher order by the correction approach.

7.2. Baseline RD scheme
The cell-residual for the preconditioned system is evaluated in two steps. First, we evaluate

the cell-residuals of the nonlinear equation by integrating the right hand side of Eq. (85) over an
element E 2 {E} to get the unpreconditioned cell-residuals  :
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The preconditioned cell-residual, which is distributed to the element vertices, is then defined as

�E =
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64
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q

3

75 = P E (91)

where P is evaluated by the arithmetic average of the solution U within the element. The matrix
K

i

corresponding to the preconditioned system is defined by
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where Ka

i

and Kd

i

are, respectively, the contributions from the advection and di↵usion components,
defined as
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and ⌫ is the arithmetic average of the di↵usion coe�cient over the element, and

a
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It is clear that the eigenvalues of the advective and di↵usive components of the nonlinear hyperbolic
advection-di↵usion system are equivalent to the linear system:
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Similarly to the linear advection-di↵usion system, we construct the SUPG distribution matrix
of the nonlinear system over the element E as:
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where Kd+
i

is constructed based on the projection of the Ad

n

onto the �d2 running wave. We note
here that the di↵usive flux Jacobian matrix Ad

n

has the following eigenvectors:
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which is di↵erent from the linear case. Thus, the projection matrix ⇧2 for the nonlinear case
becomes
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and the Kd+
i

can be expressed as

Kd+
i

=
1

2
�d2,i⇧2,i|ni

|. (103)

The residual at a node j is then defined in the form of Eq. (10). This completes the construction
of the baseline RD scheme for the nonlinear advection-di↵usion equation.

7.3. RD-CC2 and RD-CC3 schemes
The improved schemes, RD-CC2 and RD-CC3, can be constructed by improving the cell-

residuals with the high-order curvature correction approach discussed in Secs. 5 and 6. Special
attention should be paid, however, when constructing the high-order hyperbolic RD schemes for
nonlinear equations: the �p and �q terms in Eq. (65) require the solution gradients, while p and q
variables in the nonlinear formulation are the di↵usive fluxes. With this in mind, the construction
is straightforward.

The cell-residuals of the RD-CC3 scheme for the nonlinear advection-di↵usion equation are
given by
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where �s
i
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are given by Eqs. (72), (73), and (74), respectively, and
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For the flux gradients in the curvature correction terms for f and g, we employ the chain rule to
avoid the LSQ gradient reconstruction:
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and similarly for the flux g. The gradients of s, p, q, p/⌫, q/⌫, and the source term, s, are computed
by the quadratic LSQ fit. The RD-CC3 scheme is obtained by distributing the above residuals by
the SUPG distribution matrix. The RD-CC2 scheme is obtained simply by removing �p

i

, �q
i

, �s
i

,

�p/⌫
i

, and �q/⌫
i

terms from the cell-residuals. Consequently, the RD-CC2 scheme does not require
any LSQ gradient reconstruction and therefore, is compact as in the linear case. We confirmed by
numerical experiments that the RD-CC2 and RD-CC3 schemes preserve exact quadratic and cubic
solutions, respectively, by the method of manufactured solutions.
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8. Results

In this section, we verify and examine the accuracy of the hyperbolic RD schemes. In all the test
problems, we specify the exact solution u on the boundaries, and initialize all the variables in the
interior of the domain with a zero value, and solve the hyperbolic system for u, p, and q. The linear
relaxation is performed with a Gauss-Seidel (GS) algorithm to reduce the linear residual by five
orders of magnitude with the maximum of 1000 relaxations. Typically, it takes 300–600 relaxations
with the under-relaxation parameter in the range of 0.5 to 0.8. The implicit solver is taken to be
converged at ten orders of magnitude residual reduction for all equations; this is obtained typically
with 3–5 Newton iterations for the RD-CC2 scheme, and 10–15 Newton iterations for the RD-CC3
scheme.

Simulations were performed using both the unified and the non-unified approaches discussed in
Sec. 3. The convergence speed and the order of accuracy results were found to be nearly identical
with either of the two approaches. Therefore, we only present the results obtained with the non-
unified approach.

8.1. Linear advection-di↵usion problem

For the linear advection-di↵usion equation (1), we verify the order of accuracy and the quality
of the predicted solution and solution gradients for isotropic and anisotropic irregular triangular
grids, and for a problem with curved boundaries.

8.1.1. Isotropic Grids

Consider a steady two-dimensional linear advection-di↵usion equation, Eq. (1), with s̃ = 0.
This equation has an exact exponential solution [9] of the form:

u(x, y) = C cos(A⇡⌘) exp

 
1�

p
1 + 4A2⇡2⌫2

2⌫
⇠

!
, (113)

where A and C are arbitrary constants, and ⇠ = ax+ by and ⌘ = bx� ay. This solution is smooth
and has no singularly on the boundaries (see Fig. 5) and therefore, is appropriate for the order of
accuracy verification.

A series of isotropic irregular grids was generated and the accuracy of the proposed high-order
schemes is verified against the baseline RD and RD-JCP2010 schemes. The first three coarse
grids are shown in Fig. 6. Error convergence results are shown in Fig. 7 along with more detailed
information in Tables 5–7. The error convergence was obtained by computing the L1 norms defined
as L1(:) =

P
N

j=1 |Uj

�Ue

j

|/N , where U is the solution vector, the superscript e denotes the exact
value, and N is the total number of nodes (Note: the same order of accuracy results are obtained
with L2 error, and thus not shown). For the variable u, all second-order schemes give truly second-
order accuracy, and the RD-CC3 scheme gives fourth-order accuracy. For the gradient variables, p
and q, on the other hand, the RD-CC2 and RD-CC3 schemes yield, respectively, second- and third-
order accuracy, but the baseline RD and RD-JCP2010 do not give truly second-order accuracy.

Table 5: L1 error convergence of u for hyperbolic RD schemes with the SUPG distribution on
irregular grids (A = 2, C = �1, a = 2, b = 1, ⌫ = 0.01).

Grids RD Order RD-JCP2010 Order RD-CC2 Order RD-CC3 Order
32⇥32 5.66E-05 – 6.98E-05 – 1.91E-05 – 2.31E-06 –
64⇥64 1.08E-05 2.39 1.31E-05 2.41 4.11E-06 2.22 1.43E-07 4.01

128⇥128 2.47E-06 2.13 2.82E-06 2.22 9.87E-07 2.06 1.02E-08 3.81
256⇥256 5.73E-07 2.11 6.18E-07 2.19 2.38E-07 2.02 6.94E-10 3.88
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(a) A = 2, C = �1, a = 0.50, b = 0.85 (b) A = 2, C = �0.009, a = 2.0, b = 1.0

Figure 5: Graphical representation of two exact solutions (⌫ = 0.01).
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Figure 6: Samples of the irregular grids used in this study.
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Figure 7: Order of accuracy comparisons of the baseline RD, RD-JCP2010, RD-CC2, and RD-CC3
schemes.
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Table 6: L1 error convergence of p (= u
x

) for hyperbolic RD schemes with the SUPG distribution
on irregular grids (A = 2, C = �1, a = 2, b = 1, ⌫ = 0.01).

Grids RD Order RD-JCP2010 Order RD-CC2 Order RD-CC3 Order
32⇥32 5.19E-03 – 7.87E-03 – 5.25E-04 – 7.43E-05 –
64⇥64 1.70E-03 1.61 2.04E-03 1.94 1.20E-04 2.13 5.88E-06 3.66

128⇥128 5.88E-04 1.53 5.54E-04 1.88 3.18E-05 1.92 5.85E-07 3.33
256⇥256 1.99E-04 1.56 1.69E-04 1.71 9.14E-06 1.80 7.06E-08 3.05

Table 7: L1 error convergence of q (= u
y

) for hyperbolic RD schemes with the SUPG distribution
on irregular grids (A = 2, C = �1, a = 2, b = 1, ⌫ = 0.01).

Grids RD Order RD-JCP2010 Order RD-CC2 Order RD-CC3 Order
32⇥32 7.04E-03 – 6.93E-03 – 6.16E-04 – 8.58E-05 –
64⇥64 2.32E-03 1.60 2.20E-03 1.65 1.46E-04 2.08 6.61E-06 3.70

128⇥128 7.67E-04 1.60 6.91E-04 1.67 3.82E-05 1.93 6.50E-07 3.35
256⇥256 2.54E-04 1.59 2.14E-04 1.69 1.03E-05 1.89 7.62E-08 3.09

Table 8: Iterative convergence of the various hyperbolic RD schemes on irregular grids (A = 2,
C = �1, a = 2, b = 1, ⌫ = 0.01). Solutions are considered converged when the minimum of ten
orders of magnitude reduction is achieved for all the nodal-residuals. The Gauss-Seidel relaxation
is performed for each Newton iteration until at least five orders of magnitude reduction is obtained
in the linear residuals.

Grids
RD RD-JCP2010 RD-CC2 RD-CC3

Newton (Nt) GS/Nt Newton GS/Nt Newton GS/Nt Newton GS/Nt
32⇥32 3 68 3 48 3 72 10 76
64⇥64 3 103 3 69 3 76 10 83
128⇥128 3 165 3 111 3 118 10 170
256⇥256 3 273 3 190 3 249 10 361
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Iterative convergence results are provided in Table 8 with the total number of Newton iterations
and the number of GS linear relaxations per Newton iteration. As expected, the implicit solver,
which is Newton’s method for the baseline, the RD-JCP2010, and the RD-CC2 schemes, converges
with 3–5 Newton iterations with an average of about 500 GS relaxations per Newton iteration. For
the RD-CC3 scheme, the implicit solver, which is not truly Newton’s method, converges also very
rapidly in 10 Newton iterations. Note also that asymptotically the number of linear relaxations
increases linearly (not quadratically as is typical in conventional methods) with the grid sizes. This
is a feature of the hyperbolic method, arising from the elimination of the second derivatives in the
target equation [16].

To demonstrate the high quality of the predicted solution gradients within the domain by the
improved RD-CC2 and RD-CC3 schemes, we show results for the 32⇥32 irregular grid shown
in Fig. 6b. Accurate prediction of the solution gradients within the domain is of great interest
in many applications (e.g., turbulent flows, reacting flows, etc.). Figure 8 shows the solution
gradients predicted by the baseline RD and RD-JCP2010 schemes, and compares them with the
exact solutions. As can be seen clearly, the predicted results are very oscillatory and inaccurate.
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Figure 8: Comparisons between solution gradients (u
x

and u
y

) predicted by the baseline and RD-
JCP2010 schemes on irregular 32⇥32 grid (see Fig. 6b) with the exact values (A = 2, C = �0.009,
a = 2, b = 1, ⌫ = 0.01).

On the other hand, as shown in Fig. 9, the gradients predicted by the proposed RD-CC2 and RD-
CC3 schemes are very accurate and smooth. Note that, our numerical experiments suggest that in
some cases the noise produced by the baseline RD and RD-JCP2010 schemes will not completely
disappear in the entire domain with further grid refinement.

The reconstructed gradients computed by the quadratic LSQ fits from the solution of the RD-
CC3 scheme, compared with the gradients predicted directly with the RD-CC3 scheme are shown
in Figs. 10 and 11. Clearly the reconstructed gradients are less accurate and deteriorate even
more within the domain. This comparison emphasizes the di�culty in obtaining accurate solution
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Figure 9: Comparisons between solution gradients (u
x

and u
y

) predicted by the RD-CC2 and RD-
CC3 schemes on irregular 32⇥32 grid (see Fig. 6b) with the exact values (A = 2, C = �0.009,
a = 2, b = 1, ⌫ = 0.01).

gradients by reconstruction techniques, a common practice with conventional schemes.

8.1.2. Uniform accuracy over Re = a/⌫

In this section we demonstrate uniform accuracy predicted by the RD-CC2 and RD-CC3 schemes
for both the solution and the solution gradients over a range of Re with di↵erent irregular grids.
These results are shown in Fig. 12, which verifies that the RD-CC2 and RD-CC3 schemes produce,
respectively, at a minimum, second- and third-order solution for all the variables. Note that in
the advection-limit (⌫ ! 0) the hyperbolic advection-di↵usion system reduces to a simple scalar
advection equation, for which the RD-CC2 scheme is third-order accurate for all the variables. In
the di↵usion-limit (⌫ ! 1), the hyperbolic advection-di↵usion system becomes hyperbolic di↵usion
system, for which the RD-CC3 schemes is fourth-order for u but remains third-order for the solution
gradients.

Figure 13 shows the Newton iteration versus Re for both RD-CC2 and RD-CC3 schemes. It
is clear that the number of Newton iteration is independent of the Re and grid sizes. We remark
that some instabilities were observed with the linear relaxation (i.e., the relaxation diverges) for
high-Re cases (Re � 103), but found that both RD-CC2 and RD-CC3 schemes become stable
if the curvature correction term applied to the advection fluxes (i.e., �u

i

), is evaluated with LSQ
reconstructions; that is, u

x

and u
y

variables present in the �u
i

term (see Eq. 65) are reconstructed
from the solution variable u, instead of being substituted by the gradient variables p and q. The
jump in the number of Newton iterations shown in Fig. 13 for RD-CC2 is due to this switch, which
is implemented to avoid instability for high-Re cases. As it is shown, the design order of accuracy
of these schemes is obtained for all, including the high-Re, cases. We also remark that if the switch
is activated for all the Re, the jump will disappear and a similar result shown for RD-CC3 scheme
will be recovered. Note that the technique proposed for the high-Re cases can be directly applied
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Figure 10: Comparison of u
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reconstructed with the quadratic LSQ fit from the solution of the
RD-CC3 scheme and the one predicted directly with the RD-CC3 scheme on irregular 32⇥32 grid
in Fig. 6b. (A = 2, C = �0.009, a = 2, b = 1, ⌫ = 0.01).
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Figure 12: Uniform accuracy over a range of Re with the proposed RD-CC2 and RD-CC3 schemes
on irregular grids (A = 2, C = �0.009, a = 2, b = 1, Re =

p
5/⌫).

to practical applications in solving the Navier-Stokes equation, as the curvature correction terms
are computed separately for each equation, and added to the baseline residuals.
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Figure 13: Newton iterations used by the proposed RD-CC2 and RD-CC3 schemes on irregular
grids over a range of Re and grids (A = 2, C = �0.009, a = 2, b = 1, Re =

p
5/⌫).

A linear convergence, O(N), was also obtained for the range of Re. This is shown in Fig. 14.
For high-Re cases, a better than linear convergence is obtained because of high mesh-Re (i.e.,
ah/⌫) values used with coarser grids. For example, for the ⌫ = 10�3 case (Re = 1000

p
5), linear

convergence is obtained from the second coarsest grid (mesh-Re < 35). Note that the RD-CC2 and
RD-CC3 schemes are e�cient enough in converging high-Re cases on grids with high mesh-Re, and
therefore we did not attempt to fix a mesh-Re on these cases.
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RD-CC2 and RD-CC3 schemes on irregular grids over a range of Re and grids (A = 2, C = �0.009,
a = 2, b = 1, Re =

p
5/⌫).

8.1.3. High aspect-ratio grids

In practical applications, we are often interested in the gradients at the boundary and with
highly anisotropic grids, e.g., viscous drag or heat flux predictions in high-Reynolds-number viscous
flows. To demonstrate the benefit of the hyperbolic schemes for such applications, we consider two
highly stretched anisotropic irregular grids (see Fig. 15). The y-derivative of u at y = 0 is plotted
and compared with the exact solution in Fig. 15. The predicted normal gradient is very accurate
and smooth on such relatively coarse irregular grids. Similar results have been obtained by other
schemes, and therefore are not shown.

This exceptional feature of the hyperbolic RD schemes is further illustrated by comparing the
normal gradients predicted by the baseline RD scheme and a conventional FV scheme on a high
aspect-ratio (AR) grid. The grid and the results are shown in Fig. 16 where the normal gradients
at the y = 0 and the x = 0 boundaries predicted with the hyperbolic RD scheme are compared with
those obtained by the linear LSQ reconstruction from the solution of a conventional FV scheme
taken from Ref. [19], where the scalar advection-di↵usion equation is solved by the second-order
edge–based advection scheme and the second-order Galerkin discretization for di↵usion (referred
to as Galerkin in the figure). The predicted normal derivative using the baseline RD scheme is
remarkably smooth and accurate, while the gradients obtained by the conventional scheme shows
oscillatory behavior and inaccurate predictions. For this problem also, similar results have been
obtained by other schemes, and therefore are not shown.

These results indicate that even the baseline RD and RD-JCP2010 schemes can produce accurate
gradients on boundaries although they yield oscillations in the interior as shown in the previous
section. Also, the results demonstrate that the RD-CC2 and RD-CC3 schemes perform successfully
even on irregular high-aspect-ratio grids, which are representatives of adapted viscous grids.

8.2. Domain with curved geometrical boundaries

In this section, we verify the accuracy of the RD-CC2 and RD-CC3 schemes for a problem with
a curved boundary. We explained and verified in Secs. 5 and 6 that the proposed schemes preserve
exact quadratic (RD-CC2) and cubic (RD-CC3) solutions, as designed, for linear (straight-sided)
elements. The developed schemes do not require computations and storage of the solution at the
edge midpoints; this is the key in obtaining high-order solutions on curved boundaries that are
represented with the linear elements. We note that, any modification to the proposed schemes will
destroy these special properties (quadratic and cubic exactnesses), and the design order of accuracy
of these schemes may not be obtained. Here, we verify the order of accuracy of the solution and
solution gradients on a curved geometry for both Dirichlet and Neumann type boundary conditions.
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For the Neumann type boundary condition, we show that reconstructed high-order normals on the
solid boundaries are needed to achieve high-order solution and solution gradients. We point out
that the RD-CC3 scheme is not the only such scheme. The third-order edge-based finite-volume
scheme has similar properties: it is third-order accurate with the linear elements and requires high-
order normals for the Neumann boundary condition as demonstrated in Ref. [26]. We also explain
in details the quadratic reconstruction of the boundary normals on the solid surfaces that are
represented with the linear elements; the details are given in Appendix A. We then present a high-
order integration technique using Simpson’s rule, and compare the results with the the low-order
trapezoidal rule. A high-order reconstruction technique for estimating the edge midpoint normals
and solutions on curved boundaries, which are used in Simpson’s rule, is presented in details in
Appendix B. The order of accuracy of an integrated quantity on a solid curved boundary is also
shown with the solution gradients obtained with the RD-CC2 and the RD-CC3 schemes.

We consider a potential flow problem over a unit circle taken from Ref. [26]. The governing
equation is the Laplace equation for the stream function,  :

@
xx

 + @
yy

 = 0. (114)

As in Ref. [26], we solve the above equation by solving the following hyperbolic system of equations:

@
⌧

 = @
x

p+ @
y

q, @
⌧

p =
1

T
r

(@
x

 � p) , @
⌧

q =
1

T
r

(@
y

 � q) , (115)

where the x- and y-velocity components are related to the gradient of the main variable  ; i.e.,
 
x

= �v and  
y

= u. The exact solution to this problem is known. See Ref. [32], for example.
We discretize the hyperbolic potential flow system of equations by the RD-CC2 and RD-CC3

schemes, described in Secs. 5 and 6, and verify their predicted orders of accuracy over a set of eight
irregular anisotropic triangular grids of 441, 1681, 3721, 6561, 10201, 14641, 25921, and 40401
nodes. The grids are composed of linear elements only, and no curved elements are used. The
domain and a sample grid (1681 nodes) is shown in Fig. 17a.

8.2.1. Dirichlet BC

We impose the exact solution on the outer domain, and specify  = 0 at the solid boundary
nodes and predict the gradients at the boundary nodes, and solution and solution gradients in
the interior nodes by the numerical schemes. Figure 17 shows the contours of  

x

obtained with
the RD-CC3 scheme on the 1681-node grid. The excellent quality of the predicted derivatives is
observed in comparison with the exact solution. The predicted streamline is also shown in the same
figure.

The order of accuracy of theses schemes on predicting solution gradients on curved boundaries
is also verified. We obtained the error convergence results by computing the L2 norms defined as

L2(:) =
qP

N

j=1 |Uj

�Ue

j

|2/N , for the solution and the solution gradients. Here, the superscript e

denotes the exact value, and N is the total number of nodes. The same convergence rates (slopes
2 and 3) are obtained based on the L1 error and therefore, not shown. The error convergence
results for the boundary nodes and the entire domain are shown in Fig. 18. As it is shown, the
design order of accuracy is clearly observed through the boundary nodes. It is also evident that
the RD-CC3 scheme is more accurate than the RD-CC2 scheme, even on the coarsest grid level,
indicating that the third-order scheme, which is constructed for linear elements, is, in fact, solving
the correct problem on the curved boundary that is defined only with linear elements. We note
again that the cell residual evaluated with the RD-CC2 and the RD-CC3 schemes vanishes for
quadratic and cubic solutions, respectively, on the linear triangular elements, and that is how we
can obtain high-order solutions on curved boundaries that are discretized with the linear elements.
In fact, curved elements on the boundary will destroy this special property of the proposed schemes,
as constructed in the current forms.
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Figure 17: Potential flow ( 
xx

+  
yy

= 0) over a unit circle on irregular and stretched grids with
RD-CC3. The contours show the x-gradient of the solution variable  .
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8.2.2. Neumann BC

In this example, we also impose a zero normal velocity on the solid boundary. This is equivalent
to the adiabatic wall BC for the Navier-Stokes equations. Therefore, we need to solve the following
on the solid boundary (see also Sec. 2.4):
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where we have used u = q and v = �p relations. Similarly to the previous test case, we predict
the gradients on the boundary nodes, as well as the solution and the solution gradients for the
interior nodes by the proposed numerical schemes. We note that the RD-CC3 scheme was designed
to preserve exact cubic function (quadratic gradients). Therefore, the curved surface boundary
normals must be quadratic to ensure (q

j

b

,�p
j

b

) · ñ
b

remains exact for quadratic gradients. We
achieve this by locally performing a high-order polynomial fit operation over the curved geometry,
represented with straight-sided triangles. We note that the high-order polynomial fit operation
over the curved geometry is only local, and only applied to the curved boundary to compute only
the surface normals. Thus, curved elements are not needed and therefore, not constructed.

For the third-order edge-based finite-volume scheme that is also designed to be exact for
quadratic gradients, it has been demonstrated that high-order normals computed from a quadratic
reconstruction of the boundary is su�cient for preserving third-order accuracy at boundary nodes
[26]. The details of the quadratic boundary normals reconstruction are provided in Appendix A.
Here we only present the final formulations. The reconstructed quadratic boundary normals for
node i, n

i

= (n
i

x

, n
i

y

), are given as:
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where �s
R

and �s
L

are the distances between the boundary node i and its immediate right and
left boundary node neighbors, respectively. The high-order unit normal vector, n̂

i

, is then obtained
as:

n̂
i

=
n
i

|n
i

| . (120)

We now solve the discussed potential flow problem over a unit circle with the Neumann BC
(zero normal velocity), imposed on the boundary. We implement the Neumann BC with the solid
boundary normals that are computed with

1) a linear approximation; i.e., n
i

= 1
2 (yi+1 � y

i�1, xi�1 � x
i+1), and

2) a quadratic approximation of the surface boundary normals, as given by Eqs. (118)–(120).

We evaluate the order of accuracy of the proposed RD-CC2 and RD-CC3 schemes and compare the
e↵ects of the solid boundary normals on the deign order of accuracy of these schemes. We note that
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the quadratic approximation of the unit normals on the cylinder is third-order accurate (cylinder
is an exceptional geometry). Therefore, we add O(h2) to the reconstructed quadratic normals to
ensure that the boundary normals are no better than second-order accurate. We obtain the error
convergence of the results by computing the L2 norms as discussed in Sec. 8.2.1. Figure 19 shows
the error convergence results with the Neumann BC imposed using the linear approximation of
the curved boundary normals for both the RD-CC2 and the RD-CC3 schemes. The same slopes
are obtained based on the L1 errors and therefore, not shown. Order of accuracy of these schemes
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Figure 19: Order of accuracy of the RD-CC2 and the RD-CC3 shames for the potential flow
( 

xx

+  
yy

= 0) over a unit circle with Neumann BC, imposed on the solid boundary with linear
approximation of the boundary normals, on several irregular and stretched grids.

are shown for both the solid curved boundary and the entire computational domain. The results
indicate that, imposing the Neumann BC with the linear approximation of the curved boundary
normals reduces the accuracy of the third-order RD-CC3 scheme to second-order. In this case, the
results predicted by the RD-CC3 scheme becomes almost identical to the results obtained by the
RD-CC2 scheme. As expected, the second-order accuracy of the RD-CC2 schemes is una↵ected by
the linear approximation of the curved surface boundary normals.

As explained earlier, if the quadratic approximation (instead of the linear approximation) of
the curved surface boundary normals are employed, the formal design order of accuracy of the
third-order RD-CC3 scheme is recovered. These results are shown in Fig. 20. On the other hand,
the quadratic approximation of the curved surface boundary normals does not improve the order of
accuracy of the RD-CC2 scheme (as expected), but the predicted results are always more accurate
than with the linear approximation of the curved surface boundary normals.

8.2.3. Integrated quantity on curved boundaries

In some applications, integrated quantities (such as lift and/or drag) on solid boundaries are of
great interest. Accurate and high-order discrete solutions and/or solution gradients are essential
in obtaining high-order accurate integrated quantities. In the previous example, we showed that
accurate and smooth solution and solution gradients are predicted on curved boundaries with
the proposed RD-CC2 and RD-CC3 schemes, without introducing curved elements. Here, we
examine the order of accuracy of an integrated value of high-order quantities on a curved boundary,
represented with the linear elements. The high-order quantities, in this case, are the high-order
solution gradients (i.e., q = �v and p = u) obtained with the RD-CC2 and the RD-CC3 schemes
for the cylinder case. But, in general, the results of this example are also applicable to high-order
quantities that can be produced with any high-order scheme on any curved surface.
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Figure 20: Order of accuracy of the RD-CC2 and the RD-CC3 schemes for the potential flow
( 

xx

+  
yy

= 0) over a unit circle with Neumann BC, imposed on the solid boundary with the
high-order approximation of the boundary normals, on several irregular and stretched grids.

Consider the following integral on the solid cylinder:
Z

@⌦

�
u2 + v2

�
dl =

Z

@⌦

�
q2 + p2

�
dl, (121)

where, @⌦ denotes that the integration is performed on the solid boundary, and l is the arc-length.
We investigate the impact of the accuracy of the quadrature formula used to evaluate the integral,
i.e., whether a high-order quadrature formula is required to achieve third-order accuracy in the
integrated quantity. A lower-order quadrature is taken to be the trapezoidal rule as typically
employed for second-order schemes. For a high-order quadrature formula, we consider the three-
point Simpson rule applied along each edge as described below in details. Note again that this part
of the work is not specific to the schemes developed in this paper, but generally applicable to any
scheme that can produce third-order accurate gradients on curved boundaries.

The three-point Simpson rule requires estimation of the midpoint location and solutions. For
convenience, we apply the Simpson rule in the parameter space of the arc-length. Therefore, we need
to estimate the curved surface normal vector and solution values at the midpoint in the parameter
coordinate. The details of the midpoint unit normals and solutions reconstruction using the Hermite
polynomial functions are given in Appendix B. Here, we only present the final formulations. The
reconstructed midpoint normals, n

m

, and the unit normals, n̂
m

, are

n
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nm

|nm| . (122)

The midpoint solutions (in this case p
m

and q
m

) are evaluated similarly (refer to Appendix B for
more details), which become:
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8
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q
m

=
1

2
(q

i

+ q
i+1)�

1

8

�
q
i

x

⌧̂
i

x

+ q
i

y

⌧̂
i

y

� q
i+1

x

⌧̂
i+1

y

� q
i+1

y

⌧̂
i+1

y

�
�s12, (124)

where the gradients of p and q are reconstructed using the quadratic LSQ technique. Note that in
our cylinder example, p and q are the gradients of the stream function  , and are already available
as part of the hyperbolic system formulation.
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Finally, we evaluate the high-order integral as
Z

@⌦

�
u2 + v2

�
dl =

Z

@⌦

�
q2 + p2

�
dl =

1

6

X

i2{e
b

}

⇥�
q2
i

+ p2
i

�
+ 4

�
q2
m

+ p2
m

�
+
�
q2
i+1 + p2

i+1

�⇤
�l12, (125)

where {e
b

} denotes the set of boundary edges over the cylinder. We remark that the accuracy
of the arc-length, �l12, plays a critical role in defining the order of accuracy of an integrated
high-order quantity. To examine this, we employ both a low-order and a high-order arc-length
estimations. The low-order arc-length is taken as the length of the linear boundary edge �s12,
while the high-order arc-length is estimated with the three-point Simpson rule applied to

Z 1

0

s✓
@Hx

@⇠

◆2

+

✓
@Hy

@⇠

◆2

d⇠, (126)

over each linear edge, where Hx and Hy are the reconstructed Hermite polynomial functions used
to estimate the edge midpoint solutions (see Appendix B and in particular, Eqs. B.1 and B.2).

We now compute the integral given in Eq. (121) on the solid cylinder using the trapezoidal
and the three-point Simpson rules on a series of irregular and perturbed grids with the solutions
predicted by both the second-order RD-CC2 and the third-order RD-CC3 schemes. The exact
value of this integral for the unit-circle is 2⇡. For both the low- and the high-order quadratures, we
employ the reconstructed quadratic surface normals, Eq. (120). To also examine the e↵ects of the
arc-length estimation, we show the results obtained with both the low-order arc-length estimation
(i.e., the length of the linear edge) and the high-order reconstructed arc-length (i.e., Eq. 126).
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Figure 21: Computed order of accuracy of
R
@⌦(q

2 + p2) dl on the solid curved boundary using
the second- and third-order solutions obtained with the RD-CC2 and RD-CC3 schemes. The
integrations are performed with the quadratic approximation of the curved boundary normals
Eq. (122). a) a low-order arc-length estimation is used for the integration, b) Hermite polynomial
is fitted along each boundary edge and the high-order arc-length is estimated using Simpson’s rule.

The results obtained with the low-order arc-length estimation are shown in Fig. 21(a). The
order of accuracy of the integration, Eq. (121), with the low-order arc-length estimation is second-
order for either of the second-order or the third-order solution gradients. The trapezoidal and the
Simpson rules give almost identical results. The integral obtained with the third-order quantities
are generally one-order of magnitude more accurate than the ones obtained with the second-order
quantities.

Fig. 21(b) illustrates the oder of accuracy of the integral (Eq. 121) using the high-order estima-
tion of the arc-length (i.e., Eq. 126). The third-order accurate integration on the curved boundary
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is achieved for the RD-CC3 scheme using Simpson’s rule and the high-order arc-length estimation.
Comparing this result with the one presented in Fig. 21(s), we clearly see that the accuracy of the
curved boundary arc-length is the dominant parameter for high-order integrations. The order of
accuracy of the integration is reduced to second-order when, instead, the trapezoidal rule is em-
ployed. For the second-order quantities (in this case the solution gradients p and q produced by the
RD-CC2 scheme), the high-order arc-length estimation neither improve the order of accuracy of the
integration nor provide a more accurate estimate for the integral. Note that the solution gradients,
which are predicted with the RD-CC2 and the RD-CC3 schemes, and used in the integration, are
smooth. It is of interest, also, to study the e↵ects of the high-order solutions and the solution
gradients predicted with conventional schemes (with noisy and inaccurate solution gradients) using
similar irregular grids on the integrated quantities. This is beyond the scope of the present study
and therefore, is left for future studies. Finally, these results demonstrate clearly that high-order
grids with curved elements are not required for achieving third-order accuracy in the solution (and
the gradients) as well as in integral quantities. A high-order reconstruction of a curved geometry
is su�cient to achieve third-order accuracy.

8.3. Nonlinear advection-di↵usion problem

Consider the following nonlinear advection-di↵usion equation:

@
t

u+ @
x

f + @
y

g = @
x

(⌫@
x

u) + @
y

(⌫@
y

u) + s̃(x, y), (127)

where f = g = u2/2, ⌫ = u. The source term s̃(x, y) is defined by

s̃(x, y) = ue(ue
x

+ ue
y

)� (ue
x

)2 � (ue
y

)2 � ue(ue
xx

+ ue
yy

), (128)

ue = C cos(A⇡⌘) exp

 
1�

p
1 + 4A2⇡2⌫20
2⌫0

⇠

!
+ C0, (129)

where C = �0.009, A = 2.0, and C0 = 1, so that ue is the exact solution to the nonlinear advection-
di↵usion equation (127). Note that C0 must be greater than C in order for the di↵usion coe�cient
to be positive.

We solve the nonlinear advection-di↵usion equation in a square domain of [0,1]⇥[0,1], and verify
the order of accuracy of the solution and solution gradients predicted by the baseline RD, the RD-
CC2, and the RD-CC3 schemes. The order of accuracy comparison is shown in Fig. 22 along with
a more detailed information in Tables 9–11, illustrating that the RD-CC2 and RD-CC3 schemes
achieve an improved order of accuracy for both the solution and the solution gradients on irregular
grids. On the other hand, the baseline RD scheme su↵ers from the reduced order of accuracy in
the gradients, as well as noisy predicted solution gradients as discussed in Sec. 8.1.

Table 9: L1 error convergence of u for the hyperbolic RD schemes with the SUPG distribution on
irregular grids, for the nonlinear advection-di↵usion problem (f = g = u2/2, ⌫ = u, ⌫0 = 0.01).

Grids RD Order RD-CC2 Order RD-CC3 Order
32⇥32 7.93E-05 – 8.79E-05 – 3.98E-06 –
64⇥64 1.93E-05 2.04 2.15E-05 2.03 2.43E-07 4.04
128⇥128 4.90E-06 1.98 5.46E-06 1.98 1.59E-08 3.93
256⇥256 1.22E-06 2.01 1.36E-06 2.01 1.12E-09 3.83

Order of accuracy of the proposed schemes, computed for this nonlinear problem across a wide
range of Re = a/⌫0, (⌫0 = 10+2. . . 10�8), are also obtained and shown in Fig. 23. This figure,
which compares the results for the baseline RD, and the proposed RD-CC2 and RD-CC3 schemes,
indicate that the design order of accuracy is obtained for all the Re cases. These cases are converged
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Figure 22: Order of accuracy comparisons between the baseline and the proposed hyperbolic RD
schemes on irregular grids for the nonlinear advection-di↵usion problem (f = g = u2/2, ⌫ = u,
⌫0 = 0.01).

Table 10: L1 error convergence of u
x

for the hyperbolic RD schemes with the SUPG distribution
on irregular grids, for the nonlinear advection-di↵usion problem (f = g = u2/2, ⌫ = u, ⌫0 = 0.01).

Grids RD Order RD-CC2 Order RD-CC3 Order
32⇥32 1.00E-03 – 5.66E-04 – 5.84E-05 –
64⇥64 3.63E-04 1.46 1.59E-04 1.83 5.94E-06 3.30
128⇥128 1.44E-04 1.33 4.84E-05 1.72 7.75E-07 2.94
256⇥256 5.31E-05 1.44 1.47E-05 1.72 1.12E-07 2.79

Table 11: L1 error convergence of u
y

for the hyperbolic RD schemes with the SUPG distribution
on irregular grids, for the nonlinear advection-di↵usion problem (f = g = u2/2, ⌫ = u, ⌫0 = 0.01).

Grids RD Order RD-CC2 Order RD-CC3 Order
32⇥32 1.46E-03 – 6.59E-04 – 6.17E-05 –
64⇥64 5.62E-04 1.38 1.71E-04 1.95 6.28E-06 3.30
128⇥128 2.23E-04 1.33 4.91E-05 1.80 7.94E-07 2.98
256⇥256 8.23E-05 1.44 1.44E-05 1.77 1.14E-07 2.80
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to  10�10 with less than 15 Newton iterations and about 100–300 Gauss-Seidel relaxations per
Newton iteration. Figure 24 illustrates that the average number of Gauss-Seidel relaxations per
Newton iteration increases linearly with grid refinements for all the Re cases.
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Figure 23: Uniform accuracy for the nonlinear problem over a range of Re (⌫0 = 10+2. . . 10�8) with
the RD and the proposed RD-CC2 and RD-CC3 schemes on irregular grids (f = g = u2/2, ⌫ = u,
A = 2, C = �0.009, a = 2, b = 1, Re =

p
5/⌫0).

9. Conclusions

We have presented detailed formulation and implementation procedures for hyperbolic RD
schemes for general advection-di↵usion problems on arbitrary triangular grids. Improving upon
the previous work [16, 17], we developed new second- and third-order hyperbolic RD schemes that
preserve, respectively, quadratic and cubic solutions on arbitrary triangular grids. We also devel-
oped a high-order source term discretization, which was found to be essential in constructing the
third-order scheme with linear elements. We showed that the second- and third-order schemes can
be constructed by a separate treatment of the advective and di↵usive terms, enabling development
of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. The supe-
riority of the proposed schemes was further demonstrated with accurate and smooth predictions of
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Figure 24: Average Gauss-Seidel relaxations per Newton iteration (typically less than 15 Newton
iterations) performed by the proposed RD-CC2 and RD-CC3 schemes for the nonlinear problem
over a range of Re (⌫0 = 10+2. . . 10�8) on a series of irregular grids (f = g = u2/2, ⌫ = u, A = 2,
C = �0.009, a = 2, b = 1, Re =

p
5/⌫0).

the gradients within domains, on both flat and curved boundaries. The new second-order scheme,
which is still defined within a compact stencil, allows an e�cient construction of Newton’s method
with the exact residual Jacobian computed by the automatic di↵erentiation. We demonstrated
that the resulting implicit solver is capable of reducing the residuals of all equations by at least ten
orders of magnitude with typically less than 10–15 Newton iterations and an average of 200–800
linear relaxations per Newton iteration. Because of the hyperbolic reformulation of the advection-
di↵usion equation, the number of linear relaxations per Newton iteration was also shown to increase
linearly, not quadratically as for typical di↵usion problems, with grid refinement. We also showed
that the proposed schemes do not require curved elements for geometries containing curved bound-
aries, because the cell residual of the RD-CC2 and RD-CC3 schemes, as designed, vanishes for
exact quadratic and cubic solutions and fluxes on the linear elements. For completeness, we also
presented a high-order integration technique for curved geometries that are represented with the
linear elements.
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Appendix A. High-order reconstruction of curved boundary normals

Here, we explain in details a quadratic reconstruction of the straight boundary edges for curved
geometries as employed in this work and in Ref. [26]. This reconstruction strategy is used to
compute high-order boundary normals for curved geometries that are discretized with the linear
edges. We need the quadratic curved boundary normals for a Neumann type BC implementation
discussed in Sec. 2.4. Note that the presented quadratic approximation of the curved boundary
normals is constructed from the existing boundary nodes with straight-sided edges and therefore,
does not provide an exact normal vector for the curved boundaries.

Consider the boundary nodes on the curved geometry represented with the linear (straight-
sided) elements (Fig. A.25). We reconstruct a quadratic function in the parameter space of the
arc-length for the three consecutive boundary nodes i � 1, i, and i + 1, to obtain the high-order
normal at the boundary node i. We start the procedure by assuming that x and y coordinates of
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i� 1

i

i+ 1

Figure A.25: Schematic of boundary nodes connected with straight-sided edges (black), and with
a reconstructed quadratic edges (red).

the boundary, which must pass through the three consecutive boundary nodes i � 1, i, and i + 1,
can be expressed as:

Fx(r) = x
i�1Qi�1(r) + x

i

Q
i

(r) + x
i+1Qi+1(r), (A.1)

Fy(r) = y
i�1Qi�1(r) + y

i

Q
i

(r) + y
i+1Qi+1(r), (A.2)

where Q
k

(r) are the quadratic basis functions in the parameter space r:

Q
k

(r) = a
k

+ b
k

r + c
k

r2, k = i� 1, i, i+ 1, (A.3)

and a
k

, b
k

, and c
k

are constants that need to be defined. Note that, we take the arc-length of the
boundary edges as the parameter r measured from the boundary node i� 1 to the boundary node
i+ 1, along the straight-sided edges; i.e.,

r =

8
<

:

0 at node i� 1
�s

L

at node i
�s

L

+�s
R

at node i+ 1
, (A.4)

where �s
R

and �s
L

are the distances between the boundary node i and its immediate right and
left boundary node neighbors, respectively.

The constants of the quadratic basis functions are found by noting that the reconstructed
quadratic function passes through the three consecutive boundary nodes; i.e.,

Fx(0) = x
i�1, Fx(�s

L

) = x
i

, Fx(�s
L

+�s
R

) = x
i+1, (A.5)

Fy(0) = y
i�1, Fy(�s

L

) = y
i

, Fy(�s
L

+�s
R

) = y
i+1, (A.6)

which translates to the following constraints for the three quadratic basis functions:

Q
i�1(0) = 1, Q

i�1(�s
L

) = 0, Q
i�1(�s

L

+�s
R

) = 0, (A.7)

Q
i

(0) = 0, Q
i

(�s
L

) = 1, Q
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(�s
L

+�s
R

) = 0, (A.8)

Q
i+1(0) = 0, Q

i+1(�s
L

) = 0, Q
i+1(�s

L

+�s
R

) = 1. (A.9)

Solving these constraints for the coe�cients, we obtain

a
i�1 = 1, b

i�1 = � 2�s
L

+�s
R

�s
L

(�s
L

+�s
R

)
, c

i�1 =
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)
, (A.10)
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, (A.11)

a
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�s
R

(�s
L

+�s
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)
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i+1 =
1

�s
R

(�s
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+�s
R

)
. (A.12)
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With the full description of the quadratic basis functions defined in the parameter space r, we
can compute the high-order tangent vector at the boundary node i, ⌧

i

, by di↵erentiating the
reconstructed quadratic functions, Eqs. (A.1) and (A.2), at r = �s

L

:

⌧
i

=

✓
dFx(r)

dr
,
d Fy(r)

dr

◆
|
r=�s

L

. (A.13)

where, after some algebra, we arrive at:

⌧
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⌧
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The high-order normal vector, n
i

, and also the unit vector, n̂
i

, are then obtained by rotating the
tangent vector; i.e.,

n
i

= (⌧
y

i

,�⌧
x

i

), n̂
i

=
n
i

|n
i

| . (A.16)

Appendix B. High-order reconstruction of the edge midpoint normals and solutions

Here we present a Hermite polynomial reconstruction technique to estimate the boundary edge
midpoint normals and solutions for curved boundaries that are represented with the linear (straight-
sided) elements. In this present study, the boundary edge normals and solutions are used for high-
order integration on solid curved boundaries with the three-point Simpson rule. Note that the
presented technique is not restricted to the proposed high-order schemes, and applicable to any
scheme that can produce high-order solution and/or solution gradients on the curved boundaries.

The midpoint normals are computed by defining the Hermite interpolating functions in the
parameter space ⇠ = (r � r

i

)/(r
i+1 � r

i

) 2 (0, 1):

Hx(⇠) = (2⇠3 � 3⇠2 + 1)x
i

+ (�2⇠3 + 3⇠2)x
i+1 + (⇠3 � 2⇠2 + ⇠)⌧̂

x

i

�s12 + (⇠3 � ⇠2)⌧̂
i+1
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�s12, (B.1)
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i+1

y

�s12, (B.2)

where r is the arc-length parameter, r
i

= 0, r
i+1 = �s12, �s12 is the length of the straight

boundary edge, and ⌧̂
i

and ⌧̂
i+1 are the unit tangent vectors, ⌧/|⌧ |, at the boundary nodes i and

i+1, respectively. Note, ⇠ is zero at the boundary node i and one at the boundary node i+1. We
then di↵erentiate the Hermite interpolating functions w.r.t. the arc-length parameter r at ⇠ = 1/2
(i.e., the midpoint), and obtain the midpoint tangent vectors, ⌧

m

:
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The midpoint unit normals, n
m

can be found by rotating the unit tangent vectors; i.e., n̂
x

m

= ⌧̂
y

m

,
n̂
y

m

= �⌧̂
x

m

.
The solution or the solution gradients at the midpoints is evaluated similarly, by replacing x

or y in the Hermite interpolation functions with ũ, and ⌧̂
x

or ⌧̂
y

with dũ/dr. We then set ⇠ = 1/2
(i.e., the midpoint), and arrive at
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which is the same formula given by Eq. (61), but now expressed in the arc-length parameter r.
Using the chain rule, we have

dũ

dr
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dũ

dx
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+

dũ
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43



Substituting Eq. (B.5) into Eq. (B.4), we arrive at

ũ
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�
�s12. (B.6)

We note that if ũ denotes the solution (not the solution gradients), ũ
x

and ũ
y

are then the solution
gradients, which are already available as part of the hyperbolic system formulation and therefore
no LSQ reconstruction is needed. On the other hand, quadratic LSQ reconstructions of ũ

x

and ũ
y

variables are needed if ũ represents the solution gradients.
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