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Abstract

We discuss various higher-order discretization methods for diffusion terms in
residual-distribution methods. Categorizing methods into two types: node-based
(Galerkin methods) and cell-based (residual-distribution methods), we begin with
the description of the basic low-order methods. We then consider two different ap-
proaches to extend these methods to higher-order: reconstruction and higher-order
elements. Applying these to the low-order methods, we derive and discuss various
higher-order methods for diffusion, with more emphasis on the cell-based methods,
especially the methods based on the first-order system by which we can avoid dis-
cretizing second-derivatives. Numerical results are given for a simple test problem
to demonstrate the accuracy of the derived schemes. In particular, it is shown
that employing the first-order system we can achieve fourth-order accuracy with
P2 elements. Finally, we discuss an issue for integrating these diffusion schemes
with advection schemes, comparing two possible ways to construct higher-order
advection-diffusion schemes.

1 Introduction

1.1 Motivation

Residual-distribution methods (or fluctuation-splitting methods) are discretization meth-
ods based on nodal solutions and cell-residuals. These methods have been developed ex-
tensively for problems dominated by advection and wave propagation because of the abil-
ity to reflect multidimensional physics of the governing equations. In particular, various
multidimensional upwinding schemes have been derived from this residual-distribution
methodology. On the other hand, little has been studied regarding its application to
diffusion-dominated problems, obviously because diffusion is an isotropic process and
does not benefit particularly from such a multidimensional capability. In fact, any naive
method such as the standard Galerkin method would work equally well for such problems
as long as the discretization is stable and consistent. This is exemplified by the fact that
residual-distribution Navier-Stokes codes have been constructed commonly by adding the
Galerkin discretization of the viscous term, which is not a residual-distribution method,
to an existing residual-distribution Euler code [1, 2, 3]. An issue arises, however, in re-
gions where advection and diffusion effects are equally important: methods for advection
and diffusion may not be compatible and the overall accuracy can then be lost signifi-
cantly. Such a region always exists in the middle of a boundary layer. This was pointed
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out in [4] for the advection-diffusion equation, a model equation for the Navier-Stokes
equations,

ut + (a, b) · gradu = ν div (gradu) (1)

showing that schemes obtained simply by adding the Galerkin discretization to an
residual-distribution advection scheme indeed lost their formal accuracy. This incompat-
ibility issue is extremely important especially when we construct higher-order methods
because any high-order accuracy designed for each individual term may be lost altogether.
To improve the compatibility between advection and diffusion discretization methods,
one possible solution is proposed in [4]; but there are others [5, 6]. Before we conclude
anything about this issue, it would be very important and meaningful to delve into dis-
cretization methods for diffusion-dominated problems. Note that the Galerkin method
is not the only way to discretize the diffusion term. There are methods of residual-
distribution type for diffusion [7, 8, 4], and these methods have several advantages over
the Galerkin method. One such is the residual-property that a scheme preserves exact
polynomial solutions of certain order on arbitrary grids. This property is partly responsi-
ble to the reduced mesh sensitivity of the residual-distribution methods, and therefore it
has been a basis of advection schemes but not so much as stressed for diffusion schemes.
Therefore, by studying what options are available for diffusion discretization and how
they can be extended to higher-order, we enrich our knowledge of diffusion schemes, thus
possibly leading to better ideas on how to synthesize them with higher-order advection
schemes to develop higher-order advection-diffusion schemes. And this is precisely the
purpose of this lecture, i.e. to explore various methods for diffusion terms that can
be used in the residual-distribution framework, focusing on residual-distribution and
higher-order accuracy.

1.2 Residual-Distribution Methods

We call methods residual-distribution if they can be factored into the two steps, residual
evaluation and distribution. Consider, for example, solving a pure advection equation

ut + a ux + buy = 0 (2)

in a certain domain with appropriate boundary conditions. We begin by dividing the
domain of interest into a set of triangles {T}, with a set of nodes {J}, and store the
solution values at nodes. For each triangular cell T ∈ {T}, we evaluate a local cell-
residual (or fluctuation), φT ,

φT = −
∫∫

T

(a ux + buy) dxdy (3)

which becomes, for piecewise linear approximation of u,

φT = −
∑

i∈{iT }
kiui, ki =

1

2
(a, b) · ni (4)

where {iT} denotes a set of nodes that form the cell T and ni is the scaled inward normal
vector of the edge opposite to node i. This defines a measure of the error in satisfying the
equation (2) over the triangular element. And therefore, if the cell-residual is not zero,
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Figure 1: Distribution of non-zero cell-
residual. {iT} = {1, 2, 3}

j

Sj

Figure 2: Median dual cell around node
j created by connecting the centroids of
the triangles {Tj}. Sj denotes the area.

we must change the nodal solutions to reduce the measure. This brings the distribution
step. We determine a fraction of φT to be distributed to the nodes, φT

i by

φT
i = βT

i φT i ∈ {iT} (5)

(see Figure 1) where βT
j is a distribution coefficient with the property

∑

i∈{iT }
βT

i = 1 (6)

for conservation. Note that the cell-residual (4) vanishes for exact linear solutions,
nothing will be distributed then, and the solution is preserved as a result. This is the
residual-property, which is independent of the shape of the cell, thus resulting a superior
accuracy on unstructured grids. Now, accumulating the partial residuals distributed, we
update the solution at node j by

Sju
n+1
j = Sju

n
j + ∆tj

∑

T∈{Tj}
φT

j (7)

where Sj is the median dual cell area, ∆tj is a timestep, and {Tj} denotes a set of
triangles that share node j (see Figure 2). It is the distribution step that gives the mul-
tidimensional capability to the residual-distribution methods: there are three directions
for upwinding while there are only two for methods based on one-dimensional flux func-
tions (along or across an edge). In the case of diffusion problems, however, it is natural to
perform the distribution isotropically, and so such a capability is not a great advantage.
In fact, a popular discretization method for diffusion terms in the residual-distribution
methods is the Galerkin method which is not residual-distribution because there exist
no cell-residuals. There are residual-distribution methods for diffusion terms [8, 7], i.e.
methods based on cell-residuals, but they are very few and have not been extensively
explored. The present lecture will place a particular emphasis on these methods.

1.3 Model Equation

We focus on the diffusion part of the advection-diffusion equation (1),

ut = div (gradu) (8)
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where we have taken ν = 1. This is a typical heat equation. Obviously, there is no
preferred direction along which the solution travels, and therefore any numerical methods
for solving this should have a symmetric stencil or isotropic distribution in the case of
residual-distribution schemes. As we are mainly interested in the steady solution, this is
equivalent to solving the Laplace equation,

div (gradu) = 0 in Ω (9)

which reads in two-dimensional Cartesian coordinates

uxx + uyy = 0 in Ω (10)

with a Dirichlet condition

u = g in ∂Ω (11)

where g is a given function. It is well known that the solution of the Laplace equation
minimizes the so-called energy norm,

F =
1

2

∫∫

Ω

gradu · gradu dV (12)

This interpretation is commonly used to prove the existence and the uniqueness of the
solution of the Laplace equation [9], but here this is particularly useful in deriving nu-
merical schemes. It is also useful to consider discretizing the model equation (1) in the
equivalent first-order form,

ut = px + qy (13)

p = ux (14)

q = uy (15)

This introduces additional variables and equations, but offers several advantages for
designing numerical schemes.

1.4 Outline

Just for the sake of convenience, here we split methods for diffusion into two categories:
node-based and cell-based methods. Note that the solution values are stored at nodes
in both methods and so this categorization is not based on the location of the numerical
solution but on the location where the residual is defined. In the node-based methods,
which is typically the Galerkin method, the Laplace equation is discretized directly
at nodes where the numerical solution resides. This defines residuals at nodes, and
there exist no cell-residuals. In this sense, these methods are not residual-distribution
methods. On the other hand, in the cell-based methods, the equation is first discretized
over cells defining cell-residuals, and then distributed to nodes to drive the evolution of
the nodal solutions. Therefore, these are residual-distribution methods. The basic low-
order schemes in these two categories are described in Section 2. Section 3 describes two
different approaches to higher-order accuracy: reconstruction and high-order elements.
Section 4 and 5 discuss higher-order extensions of node-based and cell-based methods
respectively. Section 6 presents computational results. Section 7 gives final remarks.
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2 Basic Methods

2.1 Node-Based Schemes (Finite-Element Type)

We consider the Galerkin finite-element method. Galerkin-based schemes can be derived
in many different ways. An example is the weighted residual formulation. Suppose we
have divided the domain into a set of triangles {T}, store the solution values uj at
nodes {J}, and introduce the basis functions ϕj by which the numerical solution uh is
represented by

uh =
∑

i∈{J}
ui ϕi (16)

Let v be a weight function which vanishes on the domain boundary. Then, multiply the
Laplace equation by v and integrate by parts over the domain

∫∫

Ω

v div(graduh) dV =

∮

∂Ω

v graduh · n ds−
∫∫

Ω

gradv · graduh dV = 0 (17)

which becomes, because v vanishes on ∂Ω,

∫∫

Ω

gradv · graduh dV = 0 (18)

This is just one equation. To generate a sufficient number of equations to determine
the nodal solutions, we must look for as many distinct functions for v as the number
of unknowns. A natural choice would be the basis function ϕj itself, and this is the
Galerkin discretization,

∫∫

Ω

gradϕj · graduh dV = 0 (19)

for all interior nodes j. Note that the basis function usually has a compact support, so
that the integral above is not over the entire domain but typically over a set of triangles
{Tj} around node j. Note that the same discretization can be obtained by minimizing
the energy norm,

F =
1

2

∫∫

Ω

graduh · graduh dV (20)

with respect to the nodal unknowns. At a minimum, the derivatives of F with respect
to the nodal solutions must vanish, and therefore we have again

∂F
∂uj

=

∫∫

Ω

gradϕj · graduh dV = 0 (21)

for all interior nodes j.
In whatever way the discretization is obtained, it is necessary to solve a set of simul-

taneous equations for the nodal unknowns. Here, we consider iterative methods in the
form,

un+1
j = un

j − ωj

∫∫

Ω

gradϕj · graduh dV (22)
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where n is the iteration index and ωj is a constant small enough to ensure the stabil-
ity. The constant ωj can be estimated by taking Newton’s iteration, but with only the
diagonal elements in the Hessian matrix, i.e.

un+1
j = un

j − cj

(
∂2F
∂u2

j

)−1
∂F
∂uj

(23)

= un
j − cj

(
∂2F
∂u2

j

)−1 ∫∫

Ω

gradϕj · graduh dV (24)

Comparing this with (22), we find

ωj = cj

(
∂2F
∂u2

j

)−1

= cj

(∫∫

Ω

gradϕj · gradϕj dV

)−1

(25)

and therefore cj is a safety factor that is less than or equal to unity. If we write (22) in
the form,

Sju
n+1
j = Sju

n
j −∆tj

∫∫

Ω

gradϕj · graduh dV (26)

then the condition on cj is translated into, via ∆tj = Sjωj,

∆tj ≤ Sj

(∫∫

Ω

gradϕj · gradϕj dV

)−1

(27)

In this form, the scheme looks as if it were a residual-distribution scheme. Even more
so, if we assume that the support of ϕj is {Tj} and write

Sju
n+1
j = Sju

n
j + ∆tj

∑

T∈{Tj}
φT

j (28)

where

φT
j = −

∫∫

T∈{Tj}
gradϕj · graduh dV (29)

However, this is not a residual-distribution scheme. To see this, consider the total cell-
residual over a triangle T , φT , which is given by

φT =
∑

i∈{iT }
φT

i = −
∑

i∈{iT }

∫∫

T

gradϕi · graduh dV (30)

= −
∫∫

T

∑

i∈{iT }
(gradϕi) · graduh dV (31)

= −
∫∫

T

grad


 ∑

i∈{iT }
ϕi


 · graduh dV (32)

But we must always have
∑

i∈{iT }
ϕi = 1 for consistency. Therefore, the cell-residual is

identically zero,

φT = 0 (33)
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Figure 3: Linear basis function ϕj(x, y) for node J . {Tj} denotes the set of
triangles that share node j.

and hence the Galerkin scheme is not a residual-distribution scheme because the changes
in the nodal solutions are not driven by nonzero cell-residuals. This means also that these
schemes do not have the residual property.

An example is the standard Galerkin discretization (P1 Galerkin). This is derived
by choosing piecewise linear functions for the basis function ϕj (see Figure 3). In this
case, the support of ϕj is {Tj}, and the gradients are constants within each T ∈ {Tj}
and given by

(gradϕi)|T =
ni

2ST

(34)

(graduh)|T =
1

2ST

∑
i∈iT

uini (35)

where ST is the area of cell T . From here on, we denote the constant gradients associated
with triangle T , such as (34) and (35), simply by using the superscript T , i.e. (gradu)T =
(graduh)|T and uT

x = ∂uh

∂x
|T . Then, the scheme (26) becomes

Sju
n+1
j = Sju

n
j − ∆tj

∑

T∈{Tj}
(gradu)T · nT (36)

where and nT is the scaled inward normal of the edge opposite to the node j in the
triangle T and

∆tj ≤ Sj


 ∑

T∈{Tj}

nT · nT

4ST



−1

(37)

This scheme can also be derived by directly integrating the Laplacian over the median
dual cell, and also the same condition on the timestep can be obtained from a stability
property of the scheme (See [1, 8, 10] for details). Note that we obtain the same scheme
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also by minimizing the energy norm (20) which is now constant and can be written as

F =
1

2

∑

T∈{T}

[
(uT

x )2 + (uT
y )2

]
ST (38)

This interpretation is useful in deriving higher-order Galerkin schemes as we shall see
later. Naturally, because of the assumption of the linear variation of the solution, this
scheme is second-order accurate.

2.2 Cell-based Schemes (Residual Distribution Type)

We consider schemes of residual-distribution type, i.e. those that distribute a nonzero
cell-residual to nodes. We begin by defining the cell-residual for the Laplace equation,
φT . But in the case of the piecewise linear approximation, we immediately find that the
cell-residual is identically zero,

φT =

∫∫

T

div(graduh) dxdy ≡ 0 (39)

In order to define a nonzero cell-residual, we need to avoid dealing with second derivatives
somehow. To this end, we introduce, for the sake of convenience, the gradient variables
(p, q) = (ux, uy), assume a certain variation of them over a triangle, and then evaluate
the cell-residual as

φT =

∫∫

T

(px + qy) dxdy (40)

Note that p and q must be continuous across (at least) two neighboring cells for conser-
vation. Suppose now that solution gradients are available at nodes. Then, they can be
linearly interpolated over a cell, and the cell-residual is evaluated exactly and given in
any of the following forms,

φT = (pT
x + qT

y )ST =
1

2

∑

i∈{iT }
(pi, qi) · ni = −

∑

i∈{iT }
(pi, qi) · ni (41)

where (pi, qi) denotes the gradient at node i, and the overbar denotes the arithmetic mean
of the nodal gradients along the edge opposite to the node i. Once the cell-residual is
evaluated, we distribute it to the nodes with a distribution coefficient βT

j , resulting the
update at the node j,

Sju
n+1
j = Sju

n
j + ∆tj

∑

T∈{Tj}
φT

j (42)

where

φT
j = βT

j φT (43)

The distribution must be central to reflect the nature of diffusion, and we set

βT
j =

1

3
(44)

This scheme is a residual-distribution scheme because the changes are driven by nonzero
cell-residuals. Now, we consider two different strategies to obtain the nodal gradients.
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1. Gradient Reconstruction

2. Solving p− ux = 0 and qy − uy = 0 for p and q

In the first strategy, we reconstruct gradients at nodes from the numerical solution of
u, {ui}, and directly evaluate the cell-residual using them. A scheme is then defined by
distributing this cell-residual isotropically, which we refer to as nodal gradient scheme.
We will discuss this scheme in detail later, including the choice of the gradient recon-
struction method. Note that because gradient reconstruction methods typically requires
all immediate neighbors of a node of interest, this results in a wide stencil for defining
a cell-residual (see Figure 4-(a)). In the second strategy, essentially, we convert the
diffusion equation into the first-order system

ut = px + qy (45)

p− ux = 0 (46)

q − uy = 0 (47)

and solve for u as well as the new unknowns p and q stored at nodes. A great advantage of
this approach is that no reconstruction is required and schemes can be very compact. The
cell-residuals for a triangle can be defined within that triangle without any reference to
the neighbors (see Figure 4-(b)). The first equation is solved by the distribution scheme
(42), and the two slope equations are solved in a similar way, for example by defining,
with p and q represented by the same linear basis function,

φT
p =

∫∫

T

(p− ux) dxdy = (pT − uT
x )ST (48)

where pT = (p1 + p2 + p3)/3, and distributing with the same coefficients (44)

Sjp
n+1
j = Sjp

n
j −∆tj

∑

T∈{Tj}
βT

j φT
p (49)

similarly for q; this scheme minimizes the residuals φT
p in an L2 norm. Note that the cell-

residuals for p and q vanish for exact linear solutions of u and exact constant solutions of p
and q, and that the cell-residual (41) also vanish for such exact solutions. Hence, we have
the residual-property that the scheme preserves exact linear solutions of u and constant
solutions of p and q, implying second-order accuracy for u and first-order accuracy for p
and q. We refer to this scheme as P1 FOS scheme. As will be shown later, this scheme can
easily be extended to higher-order. The use of the first-order system for discretization
of diffusion terms can be found also in discontinuous Galerkin methods [11]. It is the
advantage of discontinuous basis functions that they allow the slope equations to be
solved explicitly for p and q in terms of u in each computational cell, so that there is
no need to store the variables p and q. In residual-distribution methods, because of the
continuous representation of the variables, they are globally coupled and here we suggest
to solve for them iteratively as in (49) with the solution u.

Yet another strategy for defining the cell-residual is to recover the gradients along
the cell edges and evaluate the cell-residual as a line integral

φT =

∫∫

T

(px + qy) dxdy =

∮

∂T

(p dy − q dx) (50)
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(a) Nodal Gradient Recon-
struction
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reconstruction needed)
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(c) Edgewise Gradient Re-
construction

Figure 4: Stencils required for defining a cell-residual in the three approaches.

This strategy was considered by Paillére et al. [8]. They proposed to estimate the
gradient by a simple average of the constant gradients of two neighboring triangles that
share an edge, i.e.

(p̃i, q̃i) =
1

2

(
(gradu)T + (gradu)T i

)
(51)

or the area-weighted average

(p̃i, q̃i) =
ST (gradu)T + ST i (gradu)T i

ST + ST i

(52)

where (p̃i, q̃i) denotes the estimated gradient on the edge opposite to node i and that
edge is shared by triangle T and its neighbor T i (see Figure 4-(c)). Collecting the
contributions from all edges, we obtain the cell-residual φT , written as a sum over the
nodes,

φT = −
∑

i∈{iT }
(p̃i, q̃i) · ni (53)

Note that the stencil extends but only to the immediate neighbors as shown in Figure 4-
(c). This cell-residual is then distributed by (42) to the nodes (upwind schemes are used
in [8], which are not appropriate for pure diffusion problems we consider here), resulting a
second-order accurate diffusion scheme. In order to extend this method to higher-order,
generalizing their method, we introduce the following approach: reconstruct the solution
u over the two triangles that share an edge, differentiate it to obtain the gradients
along the edge, and then evaluate the line integral by a quadrature rule. In the case
of P1 elements, four vertices are available over two elements, and therefore a bilinear
reconstruction of u is possible. As will be shown later, this yields precisely the cell-
residual (53) with the area-weighted gradient (52). And this approach extends to higher-
order in a natural way as will be discussed later.
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3 Approaches to Higher-Order Accuracy

3.1 Higher-Order Cell Gradients

Higher-order accuracy (higher than second-order) requires more accurate representation
of the solution (better than linear). Here, we consider a quadratic variation of the
solution over a cell, which can be constructed formally by introducing midpoints on the
sides of the cell (see Figure 5). Over such a cell, we can evaluate the cell-average of the
solution gradient more accurately, which is often needed for higher-order schemes, by
Simpson’s rule,

(ux)
T
high =

1

ST

∫∫

T

ux dxdy (54)

=
1

ST

∮
u dy (55)

=
1

6ST

∑

edges

(uL + 4um + uR)∆y (56)

where uL and uR are the solution values at the end points, um is the midpoint value,
and the difference ∆() is taken clockwise along the edge, e.g. ∆y = y3 − y2 for edge
2-3 of the triangle in Figure 5. A similar expression can be obtained for uy. Several
rearrangements are possible for this formula of which useful ones are

(ux)
T
high =

1

ST

∑

edges

{
u− 2

3
(u− um)

}
∆y (57)

= uT
x −

2

3

(
uT

x − uTIV
x

)
(58)

=
1

6

(
uTI

x + uTII
x + uTIII

x + 3uTIV
x

)
(59)

= uT
x −

1

3

(
uTI

x + uTII
x + uTIII

x − 3uTIV
x

)
(60)

where the overbar indicates the arithmetic mean over the edge. It is important to note
here that this evaluation is independent of the solution variation inside the triangle
because this is obtained from a line integral around the boundary, and that it is fourth-
order accurate because Simpson’s rule integrates cubic polynomials exactly, provided of
course the midpoint values are sufficiently accurate. Now, we consider two approaches
to define the solution values at the midpoints.

3.2 Reconstruction

Solutions at the midpoints may be obtained by a high-order interpolation. This approach
was first proposed by Caraeni and Fuchs to develop a third-order residual-distribution
Navier-Stokes code [7]. They showed by least-squares fitting that the midpoint value um

can be interpolated by

um = u− 1

8
∆Uss (61)

where

∆Uss = ∆(ux)∆x + ∆(uy)∆y (62)
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and ∆(ux) is the difference of ux between the end nodes of the edge, similarly for ∆(uy),
assuming the nodal gradients are available. The same formula can be obtained by us-
ing the Hermite cubic interpolation along the edge. This formula requires the nodal
gradients, and they are obtained, for example, by the Green-Gauss reconstruction,

(ux)j =

∑

{Tj}
ST uT

x

∑

{Tj}
ST

, (uy)j =

∑

{Tj}
ST uT

y

∑

{Tj}
ST

. (63)

Of course, other reconstruction techniques, such as least-squares methods with linear or
quadratic functions, can be used, and generally they are more accurate on unstructured
grids [12, 13]. Note that the quadratic reconstruction requires 6 nodes at least, i.e.
5 nodes around a node of interest. The number of immediate neighbors is, however,
not always 5 on triangular grids. If it happens to be less than 5, we would need to
introduce non-immediate neighbors, which is not desirable for compactness. In the case
of linear reconstruction, this problem does not happen as we need only three points to
construct a linear function. In the linear case, inverse-distance weighting is known to
better condition the least-squares matrix[14].

Using the interpolated solution values at the midpoints (61), we can now evaluate
the higher-order cell-gradients. This can be done by a quadrature directly applied to the
element with 6 nodes (a P2 element) as in Caraeni and Fuchs [7] by taking a finite-element
viewpoint. Or we can substitute (61) into (57) to get the following simple expressions.

uT
x |high = uT

x −
1

12ST

∑

edges

∆Uss∆y (64)

uT
y |high = uT

y +
1

12ST

∑

edges

∆Uss∆x (65)

which can be interpreted as the low-order gradients (constant gradients from the piece-
wise linear approximation) with high-order corrections (curvature terms). Nishikawa
et al. developed a third-order residual-distribution Euler code based on this correction
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Figure 6: Split of a triangle for defining local area-coordinates

approach [15]. This is particularly useful when we extend existing second-order residual-
distribution codes to higher-order because the only change in the code is to add these
correction terms to the cell gradients used to evaluate the cell-residuals.

3.3 Higher-Order Elements

Gradient reconstruction may be inaccurate on fully unstructured irregular grids. Also,
if we employ quadratic reconstruction, we may need to introduce non-immediate neigh-
bors and we thus lose one of the advantages of the residual-distribution schemes, i.e.
compactness. An obvious alternative is to take solution values at midpoints as addi-
tional unknowns. In this case, triangular elements with midpoints can be regarded as
P2 elements over which a quadratic variation of the solution can be constructed. The
quadratic solution is written, with 6 degrees of freedom {ui} available, as

u =
6∑

i=1

uiNi (66)

with the quadratic shape functions Ni defined by

N1 = (2L1 − 1)L1

N2 = (2L2 − 1)L2

N3 = (2L3 − 1)L3

N4 = 4L1L2

N5 = 4L2L3

N6 = 4L3L1

(67)

where L1, L2, and L3 are the local area-coordinates of the linear triangle 123 defined by

L1 =
Sp23

S123

, L2 =
S1p3

S123

, L3 =
S12p

S123

(68)
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(See Figure 6, and see [16] for more details) . Over the P2 element, we have well-
structured self-similar elements within a triangle, which enables us to form a quadratic
function with no ambiguity or irregularity. Roe and Abgrall made use of this type
of element to develop high-order residual-distribution advection schemes [17]. Also, it
is an advantage of this approach that schemes can be extended to even higher-order
by introducing more nodes in the element while further extension is not clear in the
reconstruction methods. Note that the quadratic variation implies third-order accuracy,
but the cell-gradients derived in Section 3.1 are still fourth-order accurate because of the
special property of Simpson’s rule as mentioned earlier.

4 Higher-Order Node-Based Schemes

4.1 Higher-Order Galerkin by Reconstruction (RC Galerkin)

Recall that the standard Galerkin scheme,

un+1
j = un

j −
ωj

2

∑

T∈{Tj}
(gradu)T · nT (69)

can be derived by minimizing the discrete energy norm

F =
1

2

∑

T∈{T}

[
(uT

x )2 + (uT
y )2

]
ST (70)

Then, to derive a higher-order scheme, we define a discrete energy norm with upgraded
cell-gradients, uT

x |high and uT
y |high given by (64) and (65) in Section 3.2,

F =
1

2

∑

T∈{T}

[(
uT

x |high

)2
+

(
uT

y |high

)2
]
ST (71)

and minimize this to derive the following scheme

un+1
j = un

j −
ωj

2

∑

T∈{Tj}
(gradu)T |high · nT (72)

where the correction terms in (64) and (65) have been taken as purely numerical values,
thus resulting the same form as the second-order version, i.e. the only difference between
(69) and (72) is the evaluation of the cell-gradients. This scheme has been confirmed
to be third-order accurate with the Green-Gauss reconstruction or linear least-squares,
and fourth-order accurate with quadratic least-squares for regular triangular grids, but
generally one order less for unstructured grids [4].

4.2 P2 Galerkin Scheme

Another approach is to take the midpoint values as unknowns, i.e. the use of P2 elements.
In this case, we need to derive a scheme to update midpoint solutions. It is tempting
to use the discrete energy norm (70) once again with high-order cell-gradients (but not
with the gradient reconstruction this time), and derive a scheme by minimizing this with
respect to the nodal values including midpoints. However, it turns out that the resulting
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scheme is only second-order accurate. In fact, such a method is not really consistent
with the quadratic variation of the solution. A correct way to derive a P2 scheme is to
minimize the energy norm consistent with the piecewise quadratic variation. Evaluating
the energy norm directly, we obtain

F =
1

2

∫∫ (
u2

x + u2
y

)
dxdy =

1

6

∑

T∈{T}

[
û2

x + û2
y

]
ST (73)

where

û2
x = (uTIV

x )2 + (uTI
x )2 + (uTII

x )2 + (uTIII
x )2 − (uT

x )2, (74)

similarly for û2
y. We remark that these quantities are always positive (as they should

be). In fact, the terms can be rearranged as

û2
x =

1

4

{
(uTI

x − uTII
x )2 + (uTII

x − uTIII
x )2 + (uTIII

x − uTI
x )2 (75)

+ (uTI
x + uTIV

x )2 + (uTII
x + uTIV

x )2 + (uTIII
x + uTIV

x )2
}

> 0, (76)

similarly for û2
y. It follows from (74) that the energy norm can be expanded and written

as

F =
∑

T∈{T}





4

3

∑

Tξ∈{Tξ}
FTξ

− 1

3
FT



 (77)

=
4

3

∑

T∈{T}

∑

Tξ∈{Tξ}
FTξ

− 1

3

∑

T∈{T}
FT (78)

where {Tξ} = {TI , TII , TIII , TIV }, and

FT =
1

2

[
(uT

x )2 + (uT
y )2

]
ST (79)

FTξ
=

1

2

[
(u

Tξ
x )2 + (u

Tξ
y )2

]
STξ

(80)

which are the energy norms based on piecewise linear approximations within triangle
T and the subtriangles {Tξ}. Minimizing F , we therefore obtain the following scheme:
four-third of the second-order update on each subtriangle,

un+1
i = un

i −
4

3

{ωi

2
(gradu)Tξ · nTξ

i

}
i ∈ {iTξ

} (81)

followed by subtracting one-third of the second-order update on the original triangle,

un+1
i = un

i +
1

3

{ωi

2
(gradu)T · nT

i

}
i ∈ {iT} (82)

where ωj is a small constant as before. The resulting scheme is in the form of a collec-
tion of the standard second-order Galerkin scheme with appropriate weights, which is a
convenient form in upgrading an existing second-order code. Note that this is equivalent
to the Richardson extrapolation applied to the standard P1 Galerkin method: a leading
truncation error term is eliminated by taking a weighted average of two sets of numerical

15



solutions obtained on two self-similar grids. In particular, in Richardson’s extrapolation,
the weights 4/3 and −1/3 are known to eliminate the second-order truncation error from
a second-order method and yield a third-order method [18]. Therefore, the P2 Galerkin
scheme is third-order accurate in general, but can be fourth-order accurate on regular
grids for which the P1 Galerkin scheme does not have odd order terms in its truncation
error and thus it will be automatically upgraded to fourth-order. Also we point out that
this scheme can be derived straightforwardly by the standard weak formulation described
in 2.1. Hence the scheme is equivalent to the following.

un+1
j = un

j − ωj

∫∫

{Tj}
gradϕj · graduh dV (83)

where the basis function is quadratic as defined in Section 3.3

uh =
∑

i∈{J}
ui ϕi and ϕj|T = Ni(x, y) (84)

In this form, it is clear that the scheme is equivalent to one of the schemes studied for
the advection-diffusion equation by Ricchiuto and Villedieu [5] in the diffusion limit.

5 Higher-Order Cell-Based Schemes

5.1 Nodal Gradient Scheme

If we reconstruct the gradients (pj, qj) = ((ux)j, (uy)j) at nodes by using the Green-
Gauss or least-squares techniques, we can directly evaluate the cell-residual, assuming
the linear variation of p and q,

φT =

∫∫

T

(px + qy) dxdy = −
∑

i∈{iT }
(pi, qi) · ni (85)

Caraeni and Fuchs employed this approach to discretize the viscous term in their Navier-
Stokes code[7]; they distributed the viscous residual together with an inviscid residual
with an upwind distribution coefficient. It would be reasonable, at least in the diffusion
limit, to distribute it isotropically. Employing equal weights βT

j = 1/3, we update the
solution uj by

Sju
n+1
j = Sju

n
j + ∆tj

∑

T∈{Tj}
βT

j φT (86)

It can be shown that this scheme is minimizing the energy norm defined by

F ′
=

1

2

∑

j∈{J}

[
p2

j + q2
j

]
Sj (87)

provided the nodal gradients (pj, qj) are obtained by the Green-Gauss reconstruction.
It is also illustrative that the scheme is equivalent to the following scheme, derived by
splitting the cell-residual (85) edgewise,

Sju
n+1
j = Sju

n
j −∆tj

∑

T∈{Tj}
(pT , qT ) · nT (88)
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where pT is the arithmetic mean of the nodal derivative over the edge of triangle T
opposite to node j, similarly for qT . This is simply because the line integral cancels over
the edge that is shared by two neighboring elements. In this form, it is clear that the
scheme approximates

∂u

∂t
=

∫

T

div(gradu) dV = −
∮

∂T

gradu · n dl. (89)

at node j. This is similar to the RC Galerkin scheme (72) which employs the constant
high-order cell gradients to evaluate the line integral (the same gradients for all edges
within a triangle, and this is why the sum of the contributions vanishes and no cell-
residual can be defined in the Galerkin scheme).

A truncation error analysis reveals that this scheme is in fact fourth-order accurate.
Considering its wide stencil, we may expect such high accuracy. But it is only second-
order accurate in practice because the accuracy of the Green-Gauss formula is lost on
boundaries. Unfortunately, this scheme does not work with better reconstruction meth-
ods such as a quadratic least-squares method (for which minimization property such as
(87) is not guaranteed); it goes unstable.

5.2 Reconstruction Scheme for First-Order System (RC FOS)

The scheme based on the first-order system described in Section 2.2 can be upgraded to
higher-order easily by the high-order correction method described in Section 3.2. Simply
by adding the correction terms in the constant gradients in the low-order cell-residual
(41), we obtain a higher-order cell-residual,

φT =
{
pT

x |high + qT
y |high

}
ST (90)

where pT
x |high and qT

y |high are given by

pT
x |high = pT

x −
1

12ST

∑

edges

∆Pss∆y (91)

qT
y |high = qT

y +
1

12ST

∑

edges

∆Qss∆x (92)

and

∆Pss = ∆(px)∆x + ∆(py)∆y (93)

∆Qss = ∆(qx)∆x + ∆(qy)∆y. (94)

We then distribute this by

Sju
n+1
j = Sju

n
j + ∆tj

∑

T∈{Tj}
βT

j φT (95)

where βT
j = 1

3
. The schemes for p and q can also be upgraded in the same way. The

higher-order cell-residual for p is given by

φT
p =

{
pT |high − uT

x |high

}
ST (96)
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where uT
x |high is computed by the formula (64), and pT |high is the cell-average of the

quadratic function p =
6∑

i=1

piNi with the midpoint values cubically interpolated, which

results in

pT |high =
1

ST

∫∫

T

p dxdy = pT − 1

8

∑

edges

∆Pss, ∆Pss = ∆(px)∆x + ∆(py)∆y (97)

The residual is then distributed with the same equal weights

Sjp
n+1
j = Sjp

n
j −∆tj

∑

T∈{Tj}
βT

j φT
p (98)

A scheme for q can be derived in a similar manner. Note that in this approach, we need
to reconstruct the gradients not only of u but also of p and q, i.e. (ux, uy, px, py, qx, qy).
This scheme also has been confirmed to be third-order accurate with the Green-Gauss
reconstruction or linear least-squares, and fourth-order accurate with quadratic least-
squares in [4], just like the reconstruction Galerkin schemes described in Section 4.1.

5.3 P2 Scheme for First-Order System (P2 FOS)

P2 schemes for the first-order system is highly desirable because the reconstruction of
the gradients for all variables u, p, and q is too extensive. With P2 elements, we store
u, p, and q at nodes including the midpoints, and represent the solution by

p =
6∑

i=1

piNi, q =
6∑

i=1

qiNi, u =
6∑

i=1

uiNi (99)

The cell-residual is then given by

φT =

∫∫

T

(px + qy) dxdy =
{
(px)

T
high + (qy)

T
high

}
ST (100)

where (px)
T
high and (qy)

T
high are given in any of the forms presented in Section 3.1, e.g.

(px)
T
high = pT

x −
2

3

(
pT

x − pTIV
x

)
(101)

(qy)
T
high = qT

y −
2

3

(
qT
y − qTIV

y

)
(102)

Note that this residual vanishes exact cubic solutions of p and q because of the special
property of Simpson’s rule as mentioned earlier. This is distributed to the nodes by

Sju
n+1
j = Sju

n
j + ∆tj

∑

T∈{Tj}
βT

j φT (103)

where the distribution coefficients are defined by

βT
j =

{
1
12

i = 1, 2, 3

1
4

i = 4, 5, 6
(104)
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Figure 8: Dual cell area in P2 element:
threefold for midpoints.

based on the ratio of the median dual cell area (See Figures 7 and 8), which of course
sum up to unity,

6∑
i=1

βT
i = 1 (105)

so that the scheme is conservative. The slope equations are solved in a similar manner.
The higher-order cell-residual for p is given by

φT
p =

∫∫

T

(p− ux) dxdy =
{
pTIV − (ux)

T
high

}
ST (106)

where (ux)
T
high is given by a formula similar to (101) and

pTIV =
1

ST

∫

T

p dxdy =
p4 + p5 + p6

3
(107)

The residual is then distributed with the same weights as (104),

Sjp
n+1
j = Sjp

n
j −∆tj

∑

T∈{Tj}
βT

j φT
p (108)

A scheme for q can be derived in the same way. Note that these residuals for p and q
as well as the residual for u (100) vanish for exact cubic solutions of u and quadratic
solutions of p and q. This means that the scheme preserves exact cubic solutions of u and
quadratic solutions of p and q (residual-property). Therefore, the scheme is third-order
accurate for p and q and fourth-order accurate for u.

5.4 Another P2 Scheme for First-Order System (P2 FOS∗)

We can derive another P2 scheme by applying the concept of residual-distribution to sub-
triangles {TI , TII , TIII , TIV } rather than the whole P2 element as we did in the previous
section. Hence, the first step is to evaluate a cell-residual for each subtriangle. And the
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Figure 9: Distribution of cell-residuals
of subtriangles.

second step is to distribute this to the nodes of that subtriangle. Now, since each subtri-
angle has three degrees of freedom, we can employ any familiar distribution coefficients
developed for P1 elements. This is a great advantage of this approach because we do
not need to invent new distribution coefficients. To achieve higher-order, of course, the
cell-residual must be evaluated based on a higher-order representation of the solution,
i.e. quadratic representation on a P2 element. This idea is due to Roe and Abgrall [17].
They developed higher-order advection schemes with monotonicity-preserving property
based on this approach.

Again, over a P2 element, we have a quadratic representation for each variable.

p =
6∑

i=1

piNi, q =
6∑

i=1

qiNi, u =
6∑

i=1

uiNi (109)

Then, we define the cell-residual φTξ for subtriangle Tξ (ξ = I, II, III, IV ) by

φTξ =

∫∫

Tξ

(px + qy) dxdy (110)

It can be shown that all the resulting cell-residuals can be written in terms of the constant
gradients associated with the subtriangles as follows.

φTξ =
{(

p
Tξ
x + σδpx

)
+

(
q

Tξ
y + σδqy

)}
STξ

(111)

where σ = −1 for ξ = IV , σ = 1 for others, and

δpx =
1

3

(
pTIV

x − pT
x

)
(112)

δqy =
1

3

(
qTIV
y − qT

y

)
(113)

Note that this residual preserves exact quadratic solutions of p and q ( not cubic because
Simpson’s rule is not used here). Similarly, we obtain the cell-residuals for the slope
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equations.

φ
Tξ
p =

∫

Tξ

(p− ux) dxdy =
{(

pTξ + δp
)−

(
u

Tξ
x + σδux

)}
STξ

(114)

where

δp =
1

4

(
pTIV − pT

)
(115)

and similarly for the equation for q. These cell-residuals are then distributed by within
subtriangle Tξ, thus resulting the following update formulas,

Sju
n+1
j = Sju

n
j + ∆tj

∑

T∈{Tj}

∑

Tξ∈{Tξ}
β

Tξ

j φTξ (116)

Sjp
n+1
j = Sjp

n
j −∆tj

∑

T∈{Tj}

∑

Tξ∈{Tξ}
β

Tξ

j φ
Tξ
p (117)

and similarly for q (see Figure 9, and also compare this with Figure 7). In the case of

diffusion problems, the distribution coefficient is simply β
Tξ

i = 1/3 for i ∈ {iTξ
} and

β
Tξ

i = 0 otherwise. Note that the cell-residuals for p and q vanish for exact quadratic
solutions of u and linear solutions of p and q. These exact solutions also make the cell-
residuals for u, φTξ , to vanish. Therefore, this P2 scheme is third-order accurate for u
and second-order accurate for p and q, preserving exact quadratic solutions of u and
linear solutions of p and q.

5.5 Edge-Gradient Schemes

Another possibility is to reconstruct the solution over two neighboring elements and
evaluate the cell-residual in the form of a line integral

φT =

∮

∂T

(p dy − q dx) (118)

where p and q are to be computed directly from the reconstruction of the solution u.
Consider two triangular elements T and T ′ that share an edge as shown in Figure 10.
Over the quadrilateral formed by the two elements, we can construct a bilinear function
that smoothly interpolates the solution values at the four nodes. Then, because the
gradient of a bilinear function varies linearly, we may evaluate the line integral by the
Trapezoidal rule, using the gradients at points 1 and 2, (p1, q1), (p2, q2), i.e.

∫ 2

1

(p dy − q dx) = −1

2
{(p1, q1) + (p2, q2)} · n3 (119)

The nodal gradients are obtained directly from the bilinear function. It can be shown
that the gradients of the bilinear function at the points 1 and 2 are given simply by the
constant gradients over two P1 elements, denoted by TR and TL, formed by the nodes
313′ and 33′2 respectively.

(p1, q1) = (gradu)T R

(120)

(p2, q2) = (gradu)T L

(121)
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Figure 10: Bilinear Reconstruction over
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Figure 11: Biquadratic reconstruction
over two P2 elements, T and T ′.

Therefore,

∫ 2

1

(p dy − q dx) = −1

2

{
(gradu)T R

+ (gradu)T L
}
· n12 (122)

Collecting the contributions from other edges, we obtain the cell-residual for element T ,

φT = −
∑

i∈{iT }
(p̃i, q̃i) · ni (123)

where

(p̃i, q̃i) =
1

2

{
(gradu)T R

+ (gradu)T L
}

(124)

Alternatively, we may employ the Midpoint rule to evaluate the line integral. This
requires the gradient only at the midpoint of the edge 1-2. Again, this can be obtained
directly from the bilinear interpolant, and it turns out to be identical to the area-weighted
average of the constant gradients (120) and (121). Therefore, the cell-residual is still
written in the same form as (123) but with a new definition of the edge gradient,

(p̃i, q̃i) =
ST R (gradu)T R

+ ST L (gradu)T L

ST R + ST L

(125)

which can be easily shown to be equivalent to the area-weighted version of the gradient
(51) in Section 2.2. The cell-residual is then distributed by

Sju
n+1
j = Sju

n
j + ∆tj

∑

T∈{Tj}
βT

j φT (126)

with βT
j = 1/3 or βT

j = −∂φT /∂uj. The latter choice corresponds to minimizing the
cell-residual in the least-squares norm

Fc =
1

2

∑

T∈{T}

(
φT

)2

ST

(127)
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(a) 200, 121 (b) 800, 441 (c) 3200, 1681 (d) 12800, 6561

Figure 12: Unstructured grids used for convergence study (independently generated).
Indicated above are # of triangles (left) and # of nodes (right).

The same approach can be used to derive a P2 scheme. Over two neighboring P2 elements,
we can construct a biquadratic function that interpolates the solution at 9 points (see
Figure 11). From this, we obtain the gradient directly along the edge and evaluate
the line integral. The resulting cell-residual can be expressed again in terms of the
constant gradients of subtriangles. However, for these schemes further study is necessary,
including the issue of possible concave quadrilaterals formed by two triangles which
make a mapping to a reference element invalid. Therefore, here, we do not consider this
approach any further.

6 Results

6.1 Laplace Equation

We consider a test problem in the square domain (0 < x < 1, 0 < y < 1) with the exact
solution,

u(x, y) =
sinh(πx) sin(πy) + sinh(πy) sin(πx)

sinh(π)
(128)

The order of convergence is determined through a series of computation using the four
different unstructured grids (not necessarily Delaunay) shown in Figure 12. Schemes
tested are the P1 Galerkin scheme, the P1 FOS scheme, and their higher-order versions
upgraded either by a quadratic reconstruction or the use of P2 elements, and also the
nodal gradient scheme. Note that reconstruction schemes with the Green-Gauss and
linear least-squares formulas are not included, except for the nodal gradient scheme
which works only with the Green-Gauss formula, because only those with a quadratic
reconstruction can compete P2 schemes. For a boundary condition, the exact solution
(128) is given on the whole boundary. But no boundary conditions are given for p and
q in the case of FOS schemes. All computations were performed in double precision.
Results are shown in Tables 1 to 8 and Figure 13. Note that the tables are numbered in
the order of the actual error levels, from the least accurate scheme to the most accurate
one, and the same is true for the descriptions in Figure 13.

The nodal gradient scheme is second-order accurate as expected. It is disappointing
that the actual errors are rather large compared with other second-order schemes. This
is partly due to a poor performance of the Green-Gauss formula on irregular grids. As
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L2 error of u Order
Grid(a) 1.84E-02
Grid(b) 5.25E-03 1.8
Grid(c) 1.64E-03 1.7
Grid(d) 3.52E-04 2.3

Table 1: Nodal Gradient scheme

L2 error of u Order
Grid(a) 3.93E-03
Grid(b) 1.26E-03 1.6
Grid(c) 3.60E-04 1.8
Grid(d) 9.55E-05 2.0

Table 2: P1-FOS Scheme

L2 error of u Order
Grid(a) 1.68E-03
Grid(b) 5.16E-04 1.6
Grid(c) 1.65E-04 1.6
Grid(d) 3.52E-05 2.3

Table 3: P1 Galerkin scheme

L2 error of u Order
Grid(a) 8.77E-04
Grid(b) 1.65E-04 2.4
Grid(c) 1.92E-05 3.1
Grid(d) 1.93E-06 3.4

Table 4: RC FOS scheme

mentioned before, this scheme is in fact fourth-order accurate. We confirmed this by
giving the exact solutions at the interior nodes directly connected to the boundary so
that the Green-Gauss formula is accurate everywhere (the results are not shown). For
the Galerkin and the FOS schemes, the Galerkin schemes are slightly more accurate
although the order of convergence is very similar: second-order with linear basis and
third-order with reconstruction. Comparing their P2 versions, the P2 Galerkin scheme
and the P2 FOS∗ scheme both of which are third-order accurate, we find again that the P2

Galerkin scheme is slightly more accurate than the P2 FOS∗ scheme. Now, the results for
the P2 FOS scheme are striking: the errors are one or more orders of magnitude smaller
than those of other P2 schemes and this scheme achieved indeed fourth-order accurate
with the same P2 elements. Also, from Table 8, we see that the gradient variables (p, q)
were computed with third-order accuracy as expected.

6.2 Advection-Diffusion Equation

In order to show how higher-order schemes can miserably lose their accuracy as well
as how the accuracy can be preserved, we consider two different P2 advection-diffusion
schemes. One is a simple sum of the P2 Galerkin scheme in Section 4.2 and the P2

LDA advection scheme developed in [19]. The P2 LDA advection scheme distributes the
higher-order P2 advective residual

φT
adv = −

∫∫

T

(a ux + b uy) dxdy = − [
a (ux)

T
high + b (uy)

T
high

]
ST (129)

to node j by the coefficient γT
j ,

γT
j =





1
5
χT

j j = 1, 2, 3

4
5
χTIV

j j = 4, 5, 6
(130)

where χT
j is the standard LDA distribution coefficient defined for linear triangle T ,

χT
j =

(kT
j )+

∑

i∈{iT }
(kT

i )+
, (kT

i )+ = max

(
0 ,

1

2
(a, b) · nT

i

)
(131)
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L2 error of u Order L2 error of p Order L2 error of q Order
Grid(a) 2.52E-04 2.81E-02 2.68E-02
Grid(b) 5.51E-05 2.2 6.98E-03 2.0 6.97E-03 1.9
Grid(c) 9.56E-06 2.5 1.78E-03 2.0 1.72E-03 2.0
Grid(d) 9.19E-07 3.5 3.04E-04 2.6 3.13E-04 2.5

Table 5: P2 FOS∗ scheme

L2 error of u Order
Grid(a) 4.04E-04
Grid(b) 4.88E-05 3.0
Grid(c) 5.67E-06 3.1
Grid(d) 4.82E-07 3.7

Table 6: RC Galerkin scheme

L2 error of u Order
Grid(a) 8.83E-05
Grid(b) 1.15E-05 2.9
Grid(c) 1.71E-06 2.8
Grid(d) 1.92E-07 3.2

Table 7: P2 Galerkin scheme

which is a simplified form of the original scheme presented in [19]. By adding the P2

Galerkin scheme to this, we obtain the following P2 advection-diffusion scheme,

Sju
n+1
j = Sju

n
j + ∆tj


 ∑

T∈{Tj}
γT

j φT
adv − ν

∫∫

{Tj}
gradϕj · graduh dxdy


 (132)

with the quadratic basis function ϕj. This scheme is not residual-distribution because
there exist no cell-residuals for the advection-diffusion equation. The other advection-
diffusion scheme is a combination of the P2 FOS scheme and the P2 LDA scheme, which
is written as

Sju
n+1
j = Sju

n
j + ∆tj

∑

T∈{Tj}
αT

j φT (133)

where the cell-residual φT is for the whole advection-diffusion equation evaluated as in
Section 3.1,

φT =

∫∫

T

[−(a ux + b uy) + ν(px + qy)] dxdy (134)

=
[−a (ux)

T
high − b (uy)

T
high + ν

(
(px)

T
high + (qy)

T
high

)]
ST (135)

and αT
j is the combination of the distribution coefficients of the P2 LDA, γT

j , and the P2

FOS scheme, βT
j by (104), in the form,

αT
j =

γT
j + βT

j /Reh

1 + 1/Reh

, Reh =
∑

i∈{iTIV
}
(kTIV

i )+/ν (136)

This type of distribution coefficient was studied in [4]. We consider also a third-order
version of the above scheme which can be derived by computing the cell-residual (134)
for each subtriangle as in Section 5.4, distributing it with the standard LDA scheme
γT

j = χT
j and the isotropic coefficient βT

j = 1/3 combined as in (136) with Reh defined
locally for that subtriangle. This is equivalent to integrating the third-order LDA scheme
in [17], denoted by LDA∗, and our P2 FOS∗ scheme. Note that these schemes are
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L2 error of u Order L2 error of p Order L2 error of q Order
Grid(a) 1.68E-05 2.59E-04 3.07E-04
Grid(b) 1.45E-06 3.5 4.00E-05 2.7 4.81E-05 2.6
Grid(c) 1.29E-07 3.5 6.74E-06 2.6 6.98E-06 2.8
Grid(d) 6.04E-09 4.5 6.17E-07 3.5 6.44E-07 3.5

Table 8: P2 FOS scheme

residual-distribution because they are based on the cell-residual (over the whole element
or subelement) for the entire advection-diffusion equation.

We consider a test problem in a square domain (0 < x < 1, 0 < y < 1) with the exact
solution u = − cos(2πη)exp(0.5ξ(1 − √1 + 16π2ν2)/ν) with ν = 0.1 and (a, b) = (5, 1)
(ξ = ax + by, η = bx − ay), which is taken from [4]. Results are shown in Figure
14. Clearly, simply adding two P2 schemes does not work. The scheme is not higher-
order any more: it is only second-order and it gets worse for finer grids. It is certainly
higher-order in the advection and the diffusion limits, but not in between. As pointed
out in [4], this is a compatibility problem between the advection discretization and the
diffusion discretization: low-order terms in their truncation errors, which vanish for a
pure advection and a pure diffusion equations, do not vanish for the advection-diffusion
equation. In [4], to overcome this difficulty, a strategy of employing the equivalent first-
order system was suggested. The combined P2 schemes described above are the extension
of this approach to P2 elements. As can be seen in Figure 14, these schemes do not suffer
such a convergence problem, and they are still higher-order for the advection-diffusion
problem. Note that the scheme based on the cell-residuals for the whole P2 elements (P2

LDA and P2 FOS) is much more accurate here again.

7 Final Remarks

Various methods are available to discretize diffusion terms with higher-order accuracy
in residual-distribution methods. They can be categorized into two types: node-based
and cell-based. Node-based schemes are based on the Galerkin discretization method
directly applied to diffusion terms. Cell-based schemes are based on cell-residuals, and
further split into three: nodal gradient scheme, FOS schemes, and edge-gradient schemes.
To extend these schemes to higher-order, we considered two approaches: reconstruc-
tion and high-order elements. Reconstruction schemes are very easy to implement (just
adding high-order correction terms), but gradient reconstruction methods may be grid-
dependent and also destroy the compactness of residual-distribution schemes as pointed
out earlier. Besides, it can be very expensive for the first-order system for which the
gradients of the gradient variables (p, q) must also be reconstructed. For these reasons,
one may find P2 schemes more attractive than reconstruction schemes for practical ap-
plications.

For successful higher-order advection-diffusion schemes, we have a choice. Schemes
based on the Galerkin discretization are very good candidates. These schemes are based
on a solid theoretical background, and can be derived in a highly systematic manner
for any type of high-order elements. Although the P2 Galerkin scheme showed a poor
performance in the advection-diffusion testcase in the previous section, it can be made to
be uniformly accurate by a careful integration with advection schemes. See the lecture
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Figure 13: L2 error for low-order and high-order diffusion schemes. The numbers
indicate slopes determined by least-squares fit. h is the average edge length.

notes by Ricchiuto and Villedieu [5] for details. Schemes based on the first-order system
are also good candidates. One of the advantages is that the schemes can be easily
integrated with higher-order advection schemes, defining the cell-residual for the whole
advection-diffusion equation. Moreover they have the residual-property: the P1 FOS
scheme preserves exact linear solutions, the P2 FOS∗ scheme preserves exact quadratic
solutions, the P2 FOS scheme preserves exact cubic solutions on arbitrary grids. And
because of this, the P2 FOS scheme achieves fourth-order accuracy with P2 elements,
which is one order higher than the accuracy of other P2 schemes. Finally, these FOS
schemes make it possible to extend the residual-distribution philosophy “evaluate a cell-
residual and distribute it ” to the diffusion and the advection-diffusion equations, and it
seems that the P2 FOS scheme does so in the most natural way.
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L2 error of u Order
Grid(a) 1.65E-02
Grid(b) 3.62E-03 2.2
Grid(c) 2.06E-03 0.8
Grid(d) 1.59E-03 0.4

Table 9: P2 LDA + P2 Galerkin

L2 error of u Order
Grid(a) 1.02E-02
Grid(b) 1.30E-03 2.9
Grid(c) 4.15E-04 1.7
Grid(d) 5.74E-05 2.9

Table 10: P2 LDA∗ and P2 FOS∗

L2 error of u Order
Grid(a) 1.82E-03
Grid(b) 2.00E-04 3.2
Grid(c) 3.68E-05 2.5
Grid(d) 2.89E-06 3.8

Table 11: P2 LDA and P2 FOS
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