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New-Generation Hyperbolic Navier-Stokes Schemes:

O(1/h) Speed-Up and Accurate Viscous/Heat Fluxes

Hiroaki Nishikawa∗

National Institute of Aerospace, Hampton, VA 23666, USA

In this paper, we introduce a first-order hyperbolic system model for viscous flows, and
propose a unique way of computing steady viscous flows: integrate the hyperbolic Navier-
Stokes system in time toward the steady state. We construct an upwind finite-volume scheme
for the hyperbolic Navier-Stokes system and demonstrate remarkable advantages of the re-
sulting Navier-Stokes code: O(1/h) speed-up over traditional Navier-Stokes codes, where h is
the mesh spacing, and the capability of simultaneously computing the viscous stresses and the
heat fluxes to the same order of accuracy as that of the main variables on irregular grids. The
paper concludes with discussions on the future developments and the potential impact on the
future algorithm development for computational fluid dynamics.

1. Introduction

In this paper, we extend the first-order hyperbolic system method developed for model equations in a series
of papers [1,2] to the Navier-Stokes equations. We thereby propose a non-traditional way of computing viscous
flows: integrate an equivalent first-order hyperbolic system in time toward the steady state. The first-order
system is deliberately designed such that it reduces to the original Navier-Stokes equations in the steady state;
its viscous part is a hyperbolic system on its own. Navier-Stokes codes arising from the proposed method will
be radically different from those currently used.

Simplified Discretization

Robust and accurate viscous discretization is made simple because the viscous term is hyperbolic just like
the inviscid term. Methods developed for the inviscid term such as upwind fluxes and limiters, are directly
applied to the viscous term. The first-order hyperbolic system method has a great potential for overcoming
many difficulties associated with the viscous discretization encountered particularly in unstructured grids and
high-order methods (see [3, 4] and references therein). Note that the proposed method is different from the
mixed finite-element method [5] and other first-order system methods [6, 7] in that our system is hyperbolic in
time while their systems have no such characterization. It is the hyperbolicity that brings a drastic change in
the viscous discretization.

O(1/h) Speed-up

Because the system is hyperbolic, the explicit time step is determined by the CFL condition, leading to
an O(h) time step where h is the mesh spacing. It implies O(1/h) speed-up over traditional schemes with
an O(h2) time step. For implicit time-stepping schemes, the advantage comes in the condition number of the
linearized system to be inverted at every time step: O(1/h) versus O(1/h2). It brings O(1/h) speed-up for
iterative methods for solving the linearized system. In either case, the acceleration factor grows for larger-scale
problems. In three-dimensional simulations, it will be O(100) for 1 million grid points, and O(1000) for 1 billion
grid points. Such an orders-of-magnitude improvement in the algorithm will not only allow us to overcome the
current hardware limit, but also bring a continuously-growing advantage for larger-scale problems along with
the increase in computing power.
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Accurate Viscous/Heat Fluxes

The first-order hyperbolic system method generates a new class of Navier-Stokes codes that are capable of
computing the viscous stresses and the heat fluxes simultaneously with the main flow variables to the same
order of accuracy on irregular grids. The use of irregular grids is common in practical applications due to
complex geometries; the irregularity is hard to avoid particularly once we start adapting grids for viscous flows.
On such grids, the physical quantities sought by the viscous simulation, such as the viscous stresses and the
heat fluxes, can be obtained only with a lower order of accuracy, typically one order less than that of the main
flow variables. They also often exhibit erroneous behavior. For example, current state-of-the-art Navier-Stokes
codes are known to produce erratic viscous stress and heating distributions [8, 9]. The proposed method has a
great potential for overcoming these difficulties. Also, it can be extended to produce accurate vorticity as well
as the viscous stresses and the heat fluxes.

The core of the proposed method lies in the construction of a hyperbolic model for viscous flows. Therefore,
it is fully compatible with virtually any numerical method (e.g., finite-volume/element, residual-distribution, and
other modern higher-order methods such as discontinuous Galerkin and spectral-volume/difference methods).
Many advantages such as those described above are intrinsic properties of the proposed method. In this paper,
we present an example of such a hyperbolic model for the compressible Navier-Stokes equations, and show how
it can be discretized by the finite-volume method. We present preliminary results obtained by the resulting
Navier-Stokes code, and demonstrate the O(1/h) speed-up and accurate viscous/heat fluxes on irregular grids.
Finally, we discuss the future developments and the impact of the proposed method on the future algorithm
development in computational fluid dynamics (CFD).

2. First-Order Hyperbolic Navier-Stokes System

2.1. One Dimension

Consider the compressible Navier-Stokes equations in one dimension:

∂ρ

∂t
+

∂(ρu)

∂x
= 0, (2.1)

∂(ρu)

∂t
+

∂(ρu2 + p− τ)

∂x
= 0, (2.2)

∂(ρE)

∂t
+

∂(ρuH − τu+ q)

∂x
= 0, (2.3)

where ρ is the density, u is the velocity, p is the pressure, E is the specific total energy, and H = E + p/ρ is the
specific total enthalpy. The viscous stress τ and the heat flux q are given by

τ =
4

3
µ
∂u

∂x
, q = − µ

Pr(γ − 1)

∂T

∂x
, (2.4)

where T is the temperature, γ is the ratio of specific heats, Pr is the Prandtl number, µ is the viscosity
defined by Sutherland’s law, and Stokes’ hypothesis has been assumed. All the quantities are assumed to be
nondimensionalized by their free stream values except that the velocity and the pressure are scaled by the speed
of sound a∞ and the dynamic pressure ρ∞a2∞, respectively. Thus, the viscosity is given by the following form
of Sutherland’s law:

µ =
M∞

Re∞

1 + C/T∞

T + C/T∞
T

3
2 , (2.5)

where T∞ is the dimensional free stream temperature, and C = 110.5 [K] is the Sutherland constant. The ratio
of the free stream Mach number, M∞, to the free stream Reynolds number, Re∞, arise from the nondimension-
alization. The system is closed by the nondimensionalized equation of state for ideal gases:

γp = ρT. (2.6)
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Traditionally, the Navier-Stokes system is discretized in two steps: the inviscid term is discretized by a
method suitable for hyperbolic systems (e.g., upwind differencing) followed by the discretization of the viscous
term by a method suitable for parabolic equations (e.g., central differencing). We challenge the tradition by
proposing the following first-order system model:

∂ρ

∂t
+

∂(ρu)

∂x
= 0, (2.7)

∂(ρu)

∂t
+

∂(ρu2 + p− τ)

∂x
= 0, (2.8)

∂(ρE)

∂t
+

∂(ρuH − τu+ q)

∂x
= 0, (2.9)

∂τ

∂t
− µv

Tv

(
∂u

∂x
− τ

µv

)
= 0, (2.10)

∂q

∂t
− µh

Th

(
− 1

γ(γ − 1)

∂T

∂x
− q

µh

)
= 0, (2.11)

where µv and µh are the scaled viscosities,

µv =
4

3
µ, µh =

γµ

Pr
, (2.12)

Tv and Th are relaxation times associated with the viscous stress and the heat flux. Note that the first-order
system has been deliberately constructed such that it reduces to the original Navier-Stokes system in the steady
state for arbitrary Tv and Th. Based on the previous work [1, 2], we define these relaxation times as

Tv =
L2

νv
, Th =

L2

νh
, (2.13)

where L is a length scale of O(1) defined as suggested in Ref. [2], and νv and νh are the kinematic viscosities,

νv =
µv

ρ
, νh =

µh

ρ
. (2.14)

As we will see shortly, the viscous term of the first-order system is hyperbolic, and therefore the whole system
can be discretized by a method for hyperbolic systems only. The first-order system is then integrated in time
to the steady state; the steady solution, including the viscous stress and the heat flux, will satisfy the original
Navier-Stokes equations. Accuracy of the solution is determined by the discretization method, and it is expected
to be uniform for all variables. For simple and systematic discretization, we cast the first-order system in the
following preconditioned conservative form:

P−1 ∂U

∂t
+

∂F

∂x
= S, (2.15)

where

U =



ρ

ρu

ρE

τ

q


, F =



ρu

ρu2 + p− τ

ρuH − τu+ q

−u

a2

γ(γ − 1)


, S =



0

0

0

τ/µv

q/µh


, P−1 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 Tv/µv 0

0 0 0 0 Th/µh


, (2.16)

where a =
√
γp/ρ =

√
T is the speed of sound. The matrix P can be thought of as a local-preconditioning

matrix. The wave structure of the system can be analyzed, in principle, by the Jacobian matrix:

PA = P
∂F

∂U
, (2.17)
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but it has not been fully analyzed yet. Meanwhile, we split the Jacobian into the inviscid and viscous parts:

PA = PAi +PAv, (2.18)

where Ai and Av are the Jacobians derived from the inviscid and viscous fluxes, respectively:

Fi =



ρu

ρu2 + p

ρuH

0

0


, Fv =



0

−τ

−τu+ q

−u

a2

γ(γ − 1)


. (2.19)

The eigen-structure of the inviscid Jacobian is well known: the eigenvalues are

λi
1 = u− a, λi

2 = u, λi
3 = u+ a, λi

4,5 = 0, (2.20)

with the corresponding linearly independent right-eigenvectors denoted by ri1, r
i
2, r

i
3, r

i
4, and ri5. These eigen-

vectors represent the inviscid acoustic and entropy waves, constituting the inviscid subspaces. On the other
hand, the viscous Jacobian has the following eigenvalues,

λv
1 = −av, λv

2 = av, λv
3 = −ah, λv

4 = ah, λv
5 = 0, (2.21)

where av and ah are the viscous and heating wave speeds defined by

av =

√
νv
Tv

, ah =

√
νh
Th

. (2.22)

These eigenvalues imply that the viscous and heating waves are symmetric waves traveling in the opposite
directions at the same speed. The associated right-eigenvectors are given by

rv1,2 =



0

1

u± τPrn
(Pr2n − 1)ρah

±av

− τ

(Pr2n − 1)ρ


, rv3,4 =



0

0

1

0

∓ah


, rv5 =



1

u

E

0

0


, (2.23)

where Prn is the ratio of the two wave speeds,

Prn ≡ av
ah

. (2.24)

Clearly, these eigenvectors are linearly independent. It follows, therefore, that the viscous part is a hyperbolic
system by itself, describing the symmetric viscous and heating waves.

In both the inviscid and viscous parts, the corresponding left-eigenvectors denoted by ℓik and ℓvk where
k = 1, 5 can be found since the right-eigenvectors are linearly independent. Then, the full Jacobian can be
expressed as a sum of seven (not necessarily orthogonal) subspaces:

PA =

3∑
k=1

λi
kΠ

i
k +

4∑
k=1

λv
kΠ

v
k, (2.25)

where Πi
k and Πv

k are the pure inviscid and viscous projection matrices,

Πi
k = rikℓ

i
k, Πv

k = rvkℓ
v
k. (2.26)

This is a sum of seven waves: three inviscid waves and two pairs of viscous and heating waves. The subspaces
in each part are orthogonal to one another but not across the inviscid and viscous parts.
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2.2. Two Dimensions

Consider the two-dimensional compressible Navier-Stokes equations:

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0, (2.27)

∂(ρu)

∂t
+

∂(ρu2 + p− τxx)

∂x
+

∂(ρuv − τyx)

∂y
= 0, (2.28)

∂(ρv)

∂t
+

∂(ρuv − τxy)

∂x
+

∂(ρv2 + p− τyy)

∂y
= 0, (2.29)

∂(ρE)

∂t
+

∂(ρuH − τxxu− τxyv + qx)

∂x
+

∂(ρvH − τyxu− τyyv + qy)

∂x
= 0, (2.30)

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y

)
, τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)
, τyy =

2

3
µ

(
2
∂v

∂y
− ∂u

∂x

)
, (2.31)

qx = − µ

Pr(γ − 1)

∂T

∂x
, qy = − µ

Pr(γ − 1)

∂T

∂y
, (2.32)

where τxx, τxy, and τyy are the viscous stresses, and qx and qy are the heat fluxes. We construct a first-order
Navier-Stokes system by replacing Equations (2.31) and (2.32) by the following evolution equations for the
viscous stresses and the heat fluxes:

∂τxx
∂t

=
µv

Tv

(
∂u

∂x
− 1

2

∂v

∂y
− τxx

µv

)
,

∂τxy
∂t

=
µv

Tv

(
3

4

∂u

∂y
+

3

4

∂v

∂x
− τxy

µv

)
,
∂τyy
∂t

=
µv

Tv

(
∂v

∂y
− 1

2

∂u

∂x
− τyy

µv

)
, (2.33)

∂qx
∂t

=
µh

Th

(
− 1

γ(γ − 1)

∂T

∂x
− qx

µh

)
,

∂qy
∂t

=
µh

Th

(
− 1

γ(γ − 1)

∂T

∂y
− qy

µh

)
. (2.34)

As in one dimension, we cast the first-order system in the form of a preconditioned conservative system:

P−1 ∂U

∂t
+

∂F

∂x
+

∂G

∂y
= S, (2.35)

where

U =



ρ

ρu

ρv

ρE

τxx

τxy

τyy

qx

qy



, F =



ρu

ρu2 + p− τxx

ρuv − τxy

ρuH − τxxu− τxyv + qx

−u

−3v/4

u/2

a2

γ(γ − 1)

0



, G =



ρv

ρuv − τxy

ρv2 + p− τyy

ρvH − τxyu− τyyv + qy

v/2

−3u/4

−v

0

a2

γ(γ − 1)



, (2.36)
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S =



0

0

0

0

τxx/µv

τxy/µv

τyy/µv

qx/µh

qy/µh



, P−1 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 Tv/µv 0 0 0 0

0 0 0 0 0 Tv/µv 0 0 0

0 0 0 0 0 0 Tv/µv 0 0

0 0 0 0 0 0 0 Th/µh 0

0 0 0 0 0 0 0 0 Th/µh



. (2.37)

The wave structure of the system can be analyzed by the Jacobian matrix projected along an arbitrary vector,
(nx, ny):

PAn ≡ P

(
∂F

∂U
nx +

∂G

∂U
ny

)
. (2.38)

Again, we split the Jacobian into the inviscid and viscous parts:

PAn = PAi
n +PAv

n, (2.39)

where Ai
n and Av

n are the projected Jacobians derived from the inviscid and viscous fluxes, respectively. The
eigen-structure of the inviscid Jacobian is well known: the eigenvalues are

λi
1 = un − a, λi

2 = un, λi
3 = un, λi

4 = un + a, λi
5,6,7,8,9 = 0, (2.40)

where un = unx + vny. The corresponding linearly independent right-eigenvectors are denoted by rik, k =
1, 2, 3, . . . , 9. The first four eigenvectors represent the inviscid acoustic, shear, and entropy waves, constituting
the inviscid subspaces. The other eigenvectors, rik, k = 5, 6, 7, 8, 9, are the vectors having 1 in the k-th component
and 0 elsewhere. The viscous Jacobian has the following eigenvalues,

λv
1 = −anv, λv

2 = anv, λv
3 = −amv, λv

4 = amv, λv
5 = −ah, λv

6 = ah, λv
7,8,9 = 0, (2.41)

where

anv =

√
νv
Tv

, amv =

√
3νv
4Tv

, ah =

√
νh
Th

. (2.42)

The speed, anv, is associated with the normal viscous stress; it is called the normal viscous wave. On the other
hand, amv is associated with the shear viscous stress; it is called the shear viscous wave. As in one dimension, ah
is the speed of the heating wave. The corresponding linearly independent right-eigenvectors can be found and
denoted by rvk, k = 1, 2, 3, . . . , 9. Thus, the viscous part is a hyperbolic system by itself, describing the isotropic
normal/shear viscous and heating waves.

In both the inviscid and viscous parts, the corresponding left-eigenvectors denoted by ℓik and ℓvk, k =
1, 2, 3, . . . , 9 can be found. Then, the full Jacobian can be expressed as a sum of 10 (not necessarily orthogonal)
subspaces:

PA =
4∑

k=1

λi
kΠ

i
k +

6∑
k=1

λv
kΠ

v
k, (2.43)

where Πi
k and Πv

k are the pure inviscid and viscous projection matrices,

Πi
k = rikℓ

i
k, Πv

k = rvkℓ
v
k. (2.44)

As in one dimension, the subspaces are orthogonal only within the inviscid and viscous parts, not orthogonal
across them.
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xj−2 xj−1 xj

L

R

xj+1 xj+2
x

u

Figure 3.1. Piecewise linear data in one dimension.

3. Discretization

3.1. One Dimension

Consider a one-dimensional grid of N nodes with uniform spacing, h. The solution data are stored at the
nodes denoted by xj , j = 1, 2, 3, . . . , N . Integrating the hyperbolic Navier-Stokes system over a dual cell,
Ij = [xj−1/2, xj+1/2], we obtain a standard semi-discrete finite-volume discretization:

P−1
j

dUj

dt
= − 1

h

[
Fj+1/2 − Fj−1/2

]
+

1

h

∫
Ij

S dx, (3.1)

where Uj denotes the solution value at the node j, and Fj+1/2 is the interface flux to be defined. To achieve
second-order accuracy, we compute the solution gradients by the central-difference formula at each node, and
reconstruct a piecewise linear solution within each dual volume as shown in Figure 3.1. Because the system is
hyperbolic, we define the interface flux as an upwind flux of the form:

Fj+1/2 =
1

2
[FR + FL]−

1

2
P−1 |PA|∆U, (3.2)

where ∆U = UR −UL, UR and UL denote the extrapolated solution values at the interface, and FR and FL

are the physical fluxes evaluated by these interface values. Note that the dissipation term has been constructed
following the well-known procedure in the local preconditioning technique [10]. The evaluation of the absolute
Jacobian, |PA|, requires the complete eigen-structure of the full Jacobian that is not known at the moment.
Here, we take the following approximate approach:

|PA| ≈
3∑

k=1

|λi
k|Π

i
k +

4∑
k=1

|λv
k|Π

v
k. (3.3)

This is a crude but reasonably simple approximation. It is possible and perhaps more sensible to weight them by
the Reynolds number as suggested in Ref. [2]. The precise form and the effect of weighting is a subject of future
work. The interface quantities necessary to evaluate the dissipation matrix are computed by the Roe-averages
[11] in the inviscid part and by the arithmetic averages in the viscous part. In the inviscid limit, the resulting
numerical flux will, therefore, reduce to the Roe flux [11]. The viscous part of the dissipation term can be
simplified, and here it is implemented as a single vector. We emphasize that this is an upwind scheme for the
hyperbolic Navier-Stokes system; it is upwind for all Reynolds numbers. To integrate in time, we employ the
forward Euler explicit scheme with the time step restricted by

∆t = CFL
h

max(|u|+ a+ ah)j
, (3.4)

where CFL is the Courant-Friedrichs-Lewy number less than or equal to 1, and the denominator is the maximum
wave speed approximated as the sum of the maximum inviscid wave speed and the maximum viscous wave speed
(av < ah for air). Observe that the time step is O(h), not O(h2) which is typical in traditional Navier-Stokes
schemes. It should be emphasized here that this O(h) time step is not a particular feature of the finite-volume
scheme above; it is an intrinsic feature of numerical schemes solving the hyperbolic Navier-Stokes system.
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r
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n̂
`
jk

Figure 3.2. Dual control volume for node-centered finite-volume schemes with unit normals asso-
ciated with an edge, {j, k}.

3.2. Two Dimensions

Given a computational grid composed of quadrilaterals and/or triangles, we store the solution data at nodes,
and discretize the hyperbolic Navier-Stokes system by the edge-based finite-volume method:

P−1
j

dUj

dt
= − 1

Vj

∑
k∈{Kj}

ΦjkAjk +
1

Vj

∫
Ωj

S dV, (3.5)

where Uj is the solution vector at the node j, Vj is the median dual volume, {Kj} is a set of neighbors of the
node j, Φjk is a numerical flux along the directed area vector (see Figure 3.2),

njk = nℓ
jk + nr

jk, (3.6)

defined at the midpoint of the edge, and Ajk is the magnitude of the directed area vector (i.e., Ajk = |njk|).
For second-order accuracy, we compute the solution gradients by the unweighted least-squares method at nodes,
and reconstruct a linear solution within each dual control volume. On the boundary, a suitable boundary flux is
applied with the linearity-preserving quadrature formulas [3,12] (see Appendices of Ref. [3] for a comprehensive
list of linearity-preserving quadrature formulas in both two and three dimensions). We define the numerical flux
as an upwind flux of the form:

Φjk =
1

2
[Hjk (UR) +Hjk (UL)]−

1

2
P−1 |PAn|∆U, (3.7)

where ∆U = UR −UL, UR and UL are the extrapolated solution vectors at the midpoint of the edge, {j, k},
Hjk is the physical flux projected along the directed area vector,

Hjk = [F,G] · n̂jk, n̂jk =
njk

|njk|
, (3.8)

and An = ∂Hjk/∂U. The dissipation matrix is again computed by the simple approximation:

|PAn| ≈
4∑

k=1

|λi
k|Π

i
k +

6∑
k=1

|λv
k|Π

v
k. (3.9)

The interface quantities are computed similarly as in one dimension; and thus the resulting numerical flux will
reduce to the Roe flux in the inviscid limit. Also, we simplified the viscous part of the dissipation term and
implemented it as a single vector. Note that the resulting numerical flux is upwind for all Reynolds numbers. The

8 of 14

American Institute of Aeronautics and Astronautics Paper AIAA 2011-3043



20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Number of Nodes

It
er

at
io

n

(a) Iteration vs. N

1.2 1.4 1.6 1.8 2
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

Log
10

(Number of Nodes)

L
og

10
(I

te
ra

tio
n)

Slope 2

Slope 1

(b) Log-log plot of (a).

20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Nodes

C
PU

 T
im

e 
(s

ec
on

d)

(c) CPU time vs. N .

1 1.5 2

−1.5

−1

−0.5

0

0.5

1

Log
10

(Number of Nodes)

L
og

10
(C

PU
 T

im
e)

Slope 3

Slope 2

(d) Log-log plot of (c).

Figure 3.3. Convergence results for the one-dimensional problem. Stars: the traditional scheme. Circles: the hyperbolic
scheme.

semi-discrete equation (3.5) is then integrated in time by the forward-Euler time-stepping scheme. The global
time-step, ∆t, is defined as the minimum of the local time-step, ∆tj , restricted by the local CFL condition:

∆tj = CFL
2Vj∑

k∈{Kj}

(|un|+ a+ ah)jAjk

, CFL ≤ 1. (3.10)

Again, the time step is O(h), not O(h2); it is an intrinsic property of numerical schemes solving the hyperbolic
Navier-Stokes system.

4. Results

Preliminary results are available for a viscous shock-structure problem whose exact solution can be obtained
by numerically solving a pair of ordinary differential equations for the velocity and the temperature [13]. The
program used to generate the exact solution in this study can be downloaded at http://www.cfdbooks.com/
cfdcodes.html. In all computations, we take M∞ = 3.5, Pr = 3/4, γ = 1.4, Re∞ = 25, and T∞ = 400 [k].

4.1. One-Dimensional Problem

We use the exact solution as the initial solution, and integrate the hyperbolic Navier-Stokes system toward the
steady state with CFL= 0.99. The domain is taken as x = [−1, 1]. All grids are uniformly spaced with 21, 31,
41, 51, 61, 71, 81 nodes. To fix the shock location, we keep the exact pressure at x = 0.5 for all grids. On the
left and right boundaries, the flux is computed by the numerical flux with the left and right states given by
the exact solutions, respectively. The steady state is taken as reached when the divided residual is reduced by
six orders of magnitude in the L1 norm. The hyperbolic Navier-Stokes scheme is compared with a traditional
Navier-Stokes scheme based on the Roe flux for the inviscid term and the central-difference scheme for the
viscous term.

Figure 3.3 shows the convergence results for the hyperbolic Navier-Stokes scheme and the traditional Navier-
Stokes scheme. As seen from Figures 3(a) and 3(b), the number of iterations for the traditional schemes shows
a quadratic increase with the number of nodes. On the other hand, the number of iterations for the hyperbolic
Navier-Stokes scheme increases linearly with the number of nodes. These behaviors agree with the results in
Ref. [2]. This tremendous speed-up is carried over to the CPU time required to reach the steady state as shown
in Figure 3(c). Every iteration requires O(N) work, and therefore we expect that the CPU time increases as
O(N3) and O(N2) for the traditional and hyperbolic schemes, respectively. These estimates are confirmed by
Figure 3(d). The hyperbolic scheme is, therefore, faster than the traditional scheme despite the fact that it
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Figure 4.1. Error convergence results for the main variables in the one-dimensional problem. Stars: the traditional scheme.
Circles: the hyperbolic scheme.
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Figure 4.2. Error convergence results for the viscous stress and the heat flux in the one-dimensional problem. Stars: the
traditional scheme. Circles: the hyperbolic scheme.

carries more unknowns and solves equations for them. The speed-up factor is O(1/h) in both iterations and
CPU time; the factor increases with the problem size. A clever programming or code optimization may bring
the CPU time further down for the traditional scheme, but it will be difficult, if not impossible, to change the
cubic increase. The hyperbolic scheme will dominate performance eventually as the number of nodes increases.

Error convergence results are given in Figures 4.1 and 4.2. For the traditional scheme, the viscous stress
and the heat flux were computed at the end of the iterations by the central-difference formula. In this case, on
uniform grids, we expect second-order accuracy in all variables for both schemes. These figures show, indeed,
that both schemes are second-order accurate in all variables. Superior accuracy in the viscous stress and the

10 of 14

American Institute of Aeronautics and Astronautics Paper AIAA 2011-3043



x

y

-1 0 10

1

Figure 4.3. Irregular triangular grid for the viscous shock-structure problem (793 nodes).

heat flux by the hyperbolic scheme is observed on unstructured grids, which we show for a two-dimensional
problem.

4.2. Two-Dimensional Problem

We consider the one-dimensional viscous shock-structure problem in a two-dimensional rectangular domain.
Results are available for irregular triangular grids generated from 21x5, 41x9, 61x13, 81x17, 101x21 regular
grids by random perturbation, random diagonal splitting, and stretching. In each grid, the nodes are clustered
over the viscous shock as shown in Figure 4.3. Again, the exact solution is used as the initial solution. Also, a
similar internal pressure condition and boundary conditions are applied as in one dimension. Time integration
is performed with CFL= 0.99 until the divided residual is reduced by six orders of magnitude in the L1 norm.
The hyperbolic Navier-Stokes scheme is compared with a traditional Navier-Stokes scheme based on the Roe
flux for the inviscid term and the face-tangent average-least-squares scheme for the viscous term [3,4].

Figure 4.4 shows the convergence results for the hyperbolic Navier-Stokes scheme and the traditional Navier-
Stokes scheme. As clearly seen in Figure 4(a), the traditional scheme takes orders of magnitude larger number
of iterations to reach the steady state than the hyperbolic scheme. As predicted in Ref. [2] and confirmed by
Figure 4(b), it increases linearly with the total number of nodes, denoted by N , for the traditional scheme
while it is proportional to the square root of the number of nodes for the hyperbolic Navier-Stokes scheme. As
demonstrated in Figure 4(c), the speed-up in iterations does overwhelm the additional cost of carrying more
unknowns and solving the equations for them. Every iteration requires O(N) work, and therefore we expect
that the CPU time increases as O(N2) and O(N1.5) for the traditional and hyperbolic schemes, respectively.
These estimates are confirmed by Figure 4(d). Again, the speed-up is O(1/h) in both iterations and CPU time.
Note again that the speed-up factor grows with the number of nodes. The hyperbolic scheme gets faster and
faster than the traditional scheme for larger-scale problems.

Error convergence results are given in Figures 4.5 and 4.6. For the traditional scheme, the viscous stress and
the heat flux were computed once at the end of the iterations by the unweighted least-squares reconstruction.
Figure 4.5 shows that both schemes are second-order accurate in the main flow variables. The traditional scheme
has some irregularity in the error convergence. It is considered as a result of the mesh irregularity; we observed
a uniform second order convergence for different sets of grids. Figure 4.6 shows the error convergence in the
viscous stresses and the heat fluxes (τyy is equivalent to τxx, and thus the result is not shown). As expected,
the hyperbolic scheme achieved second-order accuracy in these quantities. The reconstructed values for the
traditional scheme are only first-order accurate. This difference in the order of error convergence implies orders
of magnitude smaller errors in further grid refinement. We emphasize that this superior accuracy in the viscous
stresses and the heat fluxes comes with the O(1/h) faster iterative convergence. Even if second-order accuracy
is achieved by high-order or implicit reconstruction for the traditional scheme, it remains extremely slower than
the hyperbolic scheme.
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Figure 4.4. Convergence results for the two-dimensional problem. Stars: the traditional scheme. Circles: the hyperbolic
scheme.
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Figure 4.5. Error convergence results for the main variables in the two-dimensional problem. Stars: the traditional scheme.
Circles: the hyperbolic scheme.

5. Concluding Remarks and Future Developments

In this paper, we have introduced a first-order hyperbolic Navier-Stokes system to compute the steady state
solution of the compressible Navier-Stokes equations. A finite-volume scheme has been constructed for the
hyperbolic system based on an upwind flux. Preliminary results demonstrated the advantages of the resulting
Navier-Stokes code over traditional Navier-Stokes codes: the O(1/h) speed-up by the explicit time-stepping
scheme and the second-order accuracy of the viscous stresses and the heat fluxes on fully irregular unstructured
grids.

For a simple and systematic discretization, we have introduced a preconditioned conservative form of the
hyperbolic Navier-Stokes system. This particular approach greatly simplifies the analysis of the wave structure
of the system by avoiding complications arising from the nonlinearity. It also paves the way for further improve-
ments by setting a stage for the local preconditioning technique to ensure the accuracy in the low-Mach number
limit as well as to accelerate the convergence to the steady state [14]. If the full eigen-structure were available
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Figure 4.6. Error convergence results for the viscous stresses and the heat fluxes in the two-dimensional problem. Stars:
the traditional scheme. Circles: the hyperbolic scheme.

for the hyperbolic system in the steady form, the optimal local preconditioning matrix could be constructed
for the whole system in one and two dimensions [14]. This preconditioned-form approach is a general approach
applicable to other nonlinear equations. It makes the proposed method available to a wide range of practical
applications. Also, we have introduced an approximate evaluation of the upwind dissipation matrix: the full
absolute Jacobian is approximated by a sum of the inviscid and viscous absolute Jacobians. This approximate
approach simplifies the construction of the interface flux for the hyperbolic Navier-Stokes system. Although the
approach has been found successful for the problem considered here, it may be more sensible to weight them by
the Reynolds number as suggested in Ref. [2]. Yet, we may simply view it as a sum of the Roe inviscid flux and
the upwind viscous flux, and explore other choices for each flux. For example, we can employ a more robust
inviscid flux such as the Rotated-RHLL flux [15] for applications involving strong shocks.

For flows with shock waves, a mechanism to prevent oscillations such as a limiter needs to be incorporated,
perhaps, not only for the main flow variables but also for the extra variables. It can be considered as introducing
a means to control the nonlinear stability such as the positivity of the viscous discretization. Positivity is
considered as a very important property for the viscous discretization, but it remains difficult to devise a
positive viscous discretization on general unstructured grids. In the first-order hyperbolic system method, if we
have a positive scheme for the inviscid term, we almost immediately have a positive scheme for the viscous term.
The development of shock-capturing hyperbolic Naiver-Stokes schemes is underway. In practical applications,
the computational grid is typically highly-stretched for resolving viscous layers. For such grids, it would be
desired to have implicit time-stepping schemes available. In this case, the residual Jacobian, which needs to be
inverted at every time step, has an O(h) times smaller condition number, and thus we expect O(1/h) faster
iterative convergence. The development of implicit time-stepping schemes is a very important subject of future
work. Eventually, we will extend the method to time-accurate simulations by employing the dual-time stepping
technique where the Navier-Stokes code arising from the proposed method can be used in the inner iteration.
A rapid convergence is expected over each physical time step. It should be noted that the first-order hyperbolic
system for the Navier-Stokes equations is by no means unique. There are many other possible choices. For
example, an alternative system can be constructed such that it leads to not only accurate viscous stresses and
heat fluxes but also accurate vorticity on unstructured grids. The development of such alternative systems is
currently underway.

The first-order hyperbolic system method is a general method applicable to various partial differential equa-
tions involving second and higher order derivatives. As shown in Ref. [1], O(1/h) times faster iterative methods
can be constructed for the Laplace/Poisson type equations with accurate solution gradients simultaneously
computed. Applications of the resulting fast elliptic solvers include the elliptic grid generation/adaptation, the
Poisson equation for the pressure in the incompressible Navier-Stokes equations, etc. In Ref. [2], the method was
extended to the advection-diffusion equation, and in particular a uniform iterative convergence over a wide range
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of Reynolds numbers was demonstrated for boundary-layer type problems on stretched grids. The resulting hy-
perbolic advection-diffusion scheme can be readily applied, for example, to scalar turbulence model equations.
Application to higher-order derivative terms is also possible: construct an extended first-order hyperbolic system
and solve it by an upwind scheme. That is, partial differential equations of arbitrary order can be discretized by
methods for hyperbolic systems, and it leads to orders of magnitude more efficient and accurate solvers. Finally,
the method has been extended to nonlinear systems in this paper. Opportunities for practical applications are
now wide open: incompressible Navier-Stokes equations, thermal flow and heat transfer phenomena in nuclear
applications, resistive magneto-hydrodynamic simulations, ground-water simulations in hydro-geology, chemical
diffusion, and so on. The impact of the proposed method on the future CFD development is expected to grow
larger as the grid size gets larger and the geometry gets more complex. This paper has just opened the door to
the next generation of CFD codes. It is only the beginning.
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