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In this paper, we extend the third-order active-flux diffusion scheme introduced in Ref.[AIAA
Paper 2014-2092] to advection diffusion problems. It is shown that a third-order active-flux
advection-diffusion scheme can be constructed by adding the advective term as a source term
to the diffusion scheme. The solution gradient, which is computed simultaneously to third-
order accuracy by the diffusion scheme, is used to express the advective term as a scalar source
term. To solve the residual equations efficiently, Newton’s method is employed rather than
explicit pseudo-time iterations, which requires a large number of residual evaluations. For
unsteady computations, it leads to a third-order implicit time-stepping scheme with Newton’s
method. Numerical experiments show that the resulting advection-diffusion scheme achieves
third-order accurate and the Newton solver converges very rapidly for both steady and un-
steady problems.

1. Introduction

Active flux schemes have been developed for hyperbolic systems of conservation laws in Refs.[1, 2], built
upon Scheme V of Van Leer [3], as a viable alternative to high-order methods. Active flux schemes are finite-
volume-based compact high-order schemes. These schemes are substantially different from other high-order
schemes and have attractive features for a practical implementation. First, active flux schemes do not rely
on a typical one-dimensional flux across a control-volume face, but incorporate multi-dimensional physics into
the residual. The numerical flux at a face is determined not by solving a one-dimensional Riemann problem,
but calculated by the method of spherical mean, which is an exact solution to a multi-dimensional initial-
value problem. It is equivalent to a solution to the characteristic equations in one dimension. Second, the
memory requirement is much reduced compared with discontinuous Galerkin methods due to sharing of degrees
of freedom among elements. In addition to cell-averages, active flux schemes carry point-values at faces; the
latter are shared by adjacent cells, thus resulting in 2 degrees of freedom per cell for third-order accuracy in
one dimension, and approximately 3.5 in two and three dimensions. In order to make an impact on practical
turbulent-flow simulations, however, the method needs to be extended to diffusion and viscous terms. It is,
in fact, straightforward to construct an explicit active-flux diffusion scheme based on the Taylor expansion as
shown in Ref.[4], which can actually be shown to be equivalent to the recovery approach in Ref.[5]. However,
a severe stability restriction imposed on the explicit time step discourages the use for practical problems. To
overcome the limitation, an implicit time-stepping scheme was constructed in Ref.[6]. The construction is made
straightforward by the hyperbolic formulation of diffusion [7]. It has also been shown in Ref.[6] that the active-
flux schemes lose third-order accuracy unless source terms are discretized in a compatible manner and that the
scheme can become inconsistent unless the boundary condition is implemented correctly.

In this paper, we extend the implicit active-flux diffusion scheme to advection diffusion problems. It should be
pointed out that the extension is not as straightforward as adding the diffusion scheme to the advection scheme.
Such a naive extension will destroy the third-order accuracy easily. This is a well-known issue for schemes that
require compatible discretizations, including the residual-distribution method [8], the third-order edge-based
finite-volume method [9], and the active-flux method. One way to ensure the compatibility is to formulate
the advection-diffusion equation as a single hyperbolic system [10]. Then, the construction of the active-flux
scheme will be trivially simple for the advection-diffusion equation. However, this strategy is currently not
applicable to the compressible Navier-Stokes equations because a complete characteristic decomposition has not
been discovered yet for hyperbolic formulations of the compressible Navier-Stokes equations [11]. As a practical
alternative, we propose a strategy of adding the advective term to the diffusion scheme as a source term. The
idea is applied to the computation of the face values, and the cell-averages are updated by the usual finite-volume
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method with the sum of advective and diffusive fluxes to guarantee discrete conservation. We demonstrate that
the resulting advection-diffusion scheme yields third-order accurate solution and gradients for both steady and
unsteady advection diffusion problems. This work also aims at overcoming very slow convergence by the pseudo-
time iterations employed in the previous work [6] for solving a system of globally coupled residual equations. It
is shown that the convergence is significantly improved by Newton’s method: five and two Newton iterations
(i.e., only five and two residual evaluations) are sufficient for steady and unsteady problems, respectively.

2. Hyperbolic Advection-Diffusion System

2.1. Advection-Diffusion Equation

Consider the advection-diffusion equation:

∂τu+ a ∂xu = ν ∂xxu+ s1, (2.1)

where τ denotes a pseudo time, a is a constant advection speed, ν is a constant diffusion coefficient, and
s1 = s1(x, u) is a source term. The source term includes forcing functions as well as a physical time derivative,
e.g., the backward difference formula (BDF), for time accurate computations. In the discussion that follows, we
focus on the pseudo steady state, but it is equivalent to advancing one time step in the physical time. Hence,
the algorithm presented is equally applicable to steady and unsteady computations.

The active flux scheme is already available individually for the advective term [1] and the diffusive term [6].
In some methods, a third-order advection-diffusion scheme can be easily constructed by adding the advection
and diffusion schemes. Examples include the finite-volume methods and the discontinuous Galerkin methods.
However, in other methods, such a simple construction is known to destroy the formal accuracy of the individual
schemes, for example, in the residual-distribution method [8] and in the third-order edge-based finite-volume
method [9]. The active flux scheme is a mixture of both as it consists of two steps: the characteristic flux
computation step and the finite-volume discretization step. The simple construction is applicable to the finite-
volume discretization step, but not to the flux computation step. The latter requires a careful construction to
preserve the accuracy as discussed in details for a hyperbolic system with source terms in Ref.[6]. In this paper,
we propose a strategy for constructing active flux schemes for the advection-diffusion equation based on two
alternative forms of the advection-diffusion equation.

2.2. Conservative Form

We write the advection-diffusion equation as a first-order hyperbolic system:

∂τu+ ∂xf = s, (2.2)

where

u =

[
u

p

]
, f =

[
au− νp

−u/Tr

]
, s =

[
s1
s2

]
, (2.3)

where s2 = −p/Tr. Note that the system is equivalent to the advection-diffusion equation in the pseudo steady
state for any nonzero value of the relaxation time, Tr. The equivalence in the steady state is the key idea
first introduced in Ref.[7] for constructing diffusion schemes. Therefore, the relaxation time has no physical
importance, and can be determined solely by numerical consideration, e.g., fast convergence to the steady state.
A typical choice is the following:

Tr =
L2
r

ν
, Lr =

1

2π
, (2.4)

which can be derived for pure diffusion by requiring Fourier modes to propagate to enhance the iterative
convergence as discussed in Ref.[10]. The same choice has been derived based on a similar argument applied to
a first-order finite-volume scheme as described in Ref.[9].

2.3. Source Form

The conservative form (2.2) is suitable for the finite-volume discretization step of the active flux scheme. How-
ever, the flux computation step relies on the solution of the characteristic equations, and therefore requires the
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complete eigen-structure for the hyperbolic advection-diffusion system (2.2). The complete eigen-structure is
available for the advection-diffusion as described in Ref.[10], but currently not available for the compressible
Navier-Stokes equations. To avoid the difficulty, we propose a method based on the following form of the
advection-diffusion equation:

∂τu = ν ∂xp+ s1 − ap, (2.5)

∂τp =
1

Tr
(∂xu− p) , (2.6)

where the advective term has been expressed by p, which will be equivalent to ux in the pseudo steady state,
and taken to the right hand side. A major advantage of this particular form is that it is exactly in the form of a
hyperbolic system with source terms, for which the active flux scheme is already available [6]. The eigenvalues
of the system are exactly the same as those of the hyperbolic diffusion system:

λ1 = −
√

ν

Tr
, λ2 =

√
ν

Tr
, (2.7)

and the eigenvectors are also the same [6]. Therefore, the flux computation step is exactly the same as described
in Ref.[6] for pure diffusion problems, except that the source term includes the advective term as −ap. Note
that since it requires only the eigen-structure of the diffusive term, it can be extended to the compressible
Navier-Stokes equations for which a complete eigen-structure is known for a hyperbolized viscous term.

3. Active Flux Scheme for Advection-Diffusion Equation

To discretize the hyperbolic advection-diffusion system (2.2) by the active flux scheme, we begin by storing
the cell-averages within each cell and the point-values at each face in a one-dimensional grid. In each cell,
we construct quadratic polynomials, u(x) and p(x), by interpolating the face values and requiring that the
cell-average of the polynomial reduces to the cell-averaged solution. Integrating the system (2.2) over a space-
(pseudo-)time control volume of the cell j and the pseudo time interval [k, k + 1], we obtain

(uk+1
j − uk

j )h = −∆τ
[
fj+1/2 − fj−1/2

]
+∆τ

∫ xj+h/2

xj−h/2

s dx, (3.1)

where h = xj+1/2 − xj−1/2 is the mesh spacing and ∆τ = τk+1 − τk is the pseudo time step. Note that fj+1/2

and fj−1/2 are time-averaged fluxes, which can be evaluated by Trapezoidal rule without degrading accuracy
[6], and that the source term is independent of pseudo time. It leads to the following pseudo-time marching
scheme:

uk+1
j = uk

j − ∆τ

h
Resj , (3.2)

where

Resj = fj+1/2 − fj−1/2 −
∫ xj+h/2

xj−h/2

s dx. (3.3)

The source term discretization is performed exactly with the quadratic representation of the solution.
The time-averaged flux is computed by Trapezoidal rule:

fj+1/2 =


a
uk
j+1/2 + uk+1

j+1/2

2
− ν

pkj+1/2 + pk+1
j+1/2

2

−
uk
j+1/2 + uk+1

j+1/2

2Tr

 , (3.4)

and similarly for fj−1/2. The face values at k + 1 are computed by solving the characteristic equations. Here,
we employ the source form in Section 2.3. It is in the form of the hyperbolic diffusion system with source terms.
Therefore, the algorithm developed in Ref.[6] is directly applicable. The solution to the characteristic equations
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of the hyperbolic diffusion system with source terms is given by

uk+1
j+1/2 =

1

2

[
u(xR) + u(xL) + Lr(p(xR)− p(xL)) +

1

λ1

∫ xj+1/2

xR

sw1 dx+
1

λ2

∫ xj+1/2

xL

sw2 dx

]
, (3.5)

pk+1
j+1/2 =

1

2

[
p(xR) + p(xL) +

1

Lr

(
u(xR)− u(xL) +

1

λ1

∫ xj+1/2

xR

sw1 dx− 1

λ2

∫ xj+1/2

xL

sw2 dx

)]
, (3.6)

where

xL =
xj+1/2 + xj−1/2

2
, xR =

xj+3/2 + xj+1/2

2
, (3.7)

sw1 = Lrs2 + (s1 − ap), sw2 = Lrs2 − (s1 − ap). (3.8)

Note that the pseudo-time step ∆τ is taken locally with the CFL number 0.5 in the above formulas. The
derivation of the above formulas is described in details in Ref.[6]. For unsteady computations, the physical time
derivative discretized by the third-order backward difference formula (BDF3) is added to the source term s1.
See Ref.[6] for details.

4. Implicit Solver

For both steady or unsteady problems, it is necessary to solve the residual equation:

Res(Uh) = 0, (4.1)

where Uh is a global numerical solution vector containing all cell-averages and face-values. The global residual
vector Res(Uh) is defined by a set of the cell-residuals (3.3) and the face-residuals. The face-residual is defined
by

Resj+1/2 =

 uk+1
j+1/2 − uk

j+1/2

pk+1
j+1/2 − pkj+1/2

 , (4.2)

for the face j + 1/2. As in the previous study, the residual equation can be solved by the pseudo-time iteration
(3.2) with the explicit face-value evaluation as in Equations (3.5) and (3.6). Thanks to the hyperbolic formulation
for diffusion, the number of pseudo-time iterations exhibits linear increase with respect to the grid size, instead
of quadratic that is typical for diffusion, as demonstrated in Ref.[6]. However, it still requires hundreds of
residual evaluations for convergence and it is highly desirable to improve the solver convergence. To this end,
we construct Newton’s method:

Uk+1
h = Uk

h +∆Uh, (4.3)

where the correction ∆Uh is obtained by solving the linearized system,

∂Res

∂Uh
∆Uh = −Res(Uk

h). (4.4)

The residual Jacobian on the left hand side is constructed exactly, and the system is relaxed by the Gauss-Seidel
relaxation with the under-relaxation parameter of 0.2 to reduce the linear residual by one order of magnitude
in the L∞ norm. Typically, we perform the Newton iteration to reduce the residual by six and two orders of
magnitude for steady and unsteady problems, respectively. The advantage of the linear (instead of quadratic)
increase in the number of iterations by the hyperbolic formulation is expected now in the number of linear
relaxations. The implicit active-flux advection-diffusion scheme may be compared with the third-order residual-
distribution scheme developed in Ref.[12]. Both schemes are based on the hyperbolic advection-diffusion system
and third-order accurate for both the solution and the gradient on irregular grids. The implicit solver is not
exactly Newton’s method for the third-order residual-distribution scheme, but the residual Jacobian is block
tri-diagonal and the convergence is as rapid as Newton’s method in practice. On the other hand, our solver is
exactly Newton’s method, but the Jacobian is not compact having more than two off-diagonal blocks.

Note that we have completely ignored the pseudo-time derivative, and thus no pseudo-time stepping is
performed. Therefore, the resulting unsteady scheme is not a dual time-stepping scheme. It is an implicit
time-stepping scheme with the unsteady residual equation solved by Newton’s method.
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5. Results

5.1. Steady Problem

We consider a steady advection-diffusion problem taken from Refs.[10, 12,13]:

a ∂xu = ν ∂xxu+ s1, (5.1)

with the boundary conditions u(0) = 0 and u(1) = 1, and the forcing term,

s1 =
νπ

a
[a cos(πx) + νπ sin(πx)]. (5.2)

The exact solution is given by

u(x) =
exp(−a/ν)− exp(ax/ν − a/ν)

exp(−a/ν)− 1
+

ν

a
sin(πx). (5.3)

The parameters are set as a/ν = 0.01, 0.1, 1.0, 10, 100. The Dirichlet boundary condition is imposed weakly
at both ends as described in Ref.[6]. Therefore, the solution values are determined by the numerical scheme
for all cells and faces, including the boundary faces. Steady convergence is taken to be achieved when the L1

norm of the residual is reduced by six orders of magnitude. The initial solution is set by a randomly perturbed
exact solution. Computations have been performed for a series of grids: 16, 32, 64, and 128 cells. The grids are
uniformly spaced for a/ν = 0.01, 0.1, 1.0, and slightly stretched for a/ν = 10, 100.

Results are shown in Figures 1-10. As shown in Figures 1, 3, 5, 7, and 9, the numerical solutions are very
accurate throughout he boundaries even on the coarsest grid of 16 cells. Figures 2, 4, 6, 8, 10 show that third-
order accuracy has been verified for both the solution and the gradient for all cases. In the case of a/ν = 100,
Figure 10 shows that fourth-order accuracy is achieved for the solution and the gradient at faces and the
gradient in the cells. Although one order higher order of accuracy has been known to occur for a finite-volume
hyperbolic advection-diffusion scheme when advection dominates [9], it is not immediately clear how it happens
to the active-flux scheme. These results show that the implicit solver converged within five Newton iterations
and the number of linear relaxations increases linearly with the number of nodes, not quadratically which is
typical for diffusion problems. Note that these results demonstrate significant improvements over the explicit
pseudo-time stepping scheme as it only requires about five residual evaluations to obtain the solution, rather
than hundreds of residual evaluations [9].

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

x

u

 

 
uc
uf
Exact

0 0.2 0.4 0.6 0.8 1

−300

−200

−100

0

100

200

300

x

q

 

 
qc
qf
Exact

Figure 1. a/ν = 0.01: Steady solution on the 16-cell grid.
(uc, pc) are the cell-averaged values, and (uf, pf) are the
point values at the face.
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Figure 2. a/ν = 0.01: L1 Error and iterative convergence
results for a steady problem.

5.2. Unsteady Problem

We consider the following unsteady advection-diffusion problem,

∂tu+ a ∂xu = ν ∂xxu, (5.4)
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Figure 3. a/ν = 0.1: Steady solution on the 16-cell grid.
(uc, pc) are the cell-averaged values, and (uf, pf) are the
point values at the face.
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Figure 4. a/ν = 0.1: L1 Error and iterative convergence
results for a steady problem.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

u

 

 
uc
uf
Exact

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

x

q

 

 
qc
qf
Exact

Figure 5. a/ν = 1.0: Steady solution on the 16-cell grid.
(uc, pc) are the cell-averaged values, and (uf, pf) are the
point values at the face.
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Figure 6. a/ν = 1.0: L1 Error and iterative convergence
results for a steady problem.

with the following boundary conditions:

u(0) = 0, (5.5)

u(1) = U cos(ωt), (5.6)

where U and ω are arbitrary constants. The exact solution exists to this problem; it can be found in Ref.[14].
For numerical results, the parameters have been set as follows:

a = 4.246, ν = 2.123, U = 2.0, ω = 2π. (5.7)

Again, the boundary condition is imposed weakly and thus the solutions are computed by the numerical scheme
at all cells and faces. At every physical time step, the initial solution is set as the solution at the previous
physical time step, and the Newton sub-iteration is taken to be converged when the L1 norm of the unsteady
residual is reduced by two orders of magnitude. To start up the computation, we use BDF1 over the first step,
BDF2 in the next step, and BDF3 thereafter. Ideally, it would be best to perform the first two steps with a
small enough time step not to introduce large errors, but numerical results show that the low-order errors in
the first two steps do not greatly impact the accuracy of the solution at a later time.

We tested the scheme for a given grid of 20 cells with randomly distributed nodes by refining the time step:
0.4/2m, where m = 0, 1, 2, 3. The final time is 6.0, i.e., six periods in the unsteady boundary condition. Results
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Figure 7. a/ν = 10: Steady solution on the 16-cell grid.
(uc, pc) are the cell-averaged values, and (uf, pf) are the
point values at the face.
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Figure 8. a/ν = 10: L1 Error and iterative convergence
results for a steady problem.
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Figure 9. a/ν = 100: Steady solution on the 16-cell grid.
(uc, pc) are the cell-averaged values, and (uf, pf) are the
point values at the face.
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Figure 10. a/ν = 100: L1 Error and iterative conver-
gence results for a steady problem.

are shown in Figure 11, which confirms the formal third-order time accuracy. The accuracy deteriorates in the
finest grid apparently because the spatial error begins to dominate. Also shown is the iterative convergence
for the Newton sub-iteration. Only two iterations, thus two residual evaluations, are required at every physical
time step. This is a tremendous improvement over the explicit pseudo-time stepping scheme in Ref.[6], which
requires hundreds of residual evaluations per physical time step. The cell-averaged solution and gradient at
t = 5.0, 5.25, 5.5, 5.75 are plotted in Figures 12, 13, 14, 15, respectively. These results show that the active-
flux advection-diffusion scheme enables highly accurate unsteady simulations on a rather coarse grid even for
irregular grids.

6. Concluding Remarks

In this paper, we have extend the third-order active-flux diffusion scheme introduced in Ref.[6] to advection-
diffusion problems. We constructed a third-order active-flux advection-diffusion scheme by adding the advective
term as a source term to the diffusion scheme. The solution gradient, which is computed simultaneously to
third-order accuracy by the diffusion scheme, is used to express the advective term as a scalar source term.
For unsteady computations, we employ a third-order implicit time-stepping scheme with the unsteady residual
equations solved by Newton’s method. Third-order accuracy in the solution as well as in the gradient, and rapid
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Figure 11. Numerical results for BDF3. Time accuracy on the left and the number of
sub-iterations on the right.

convergence by Newton’s method have been demonstrated for steady and unsteady problems.
Future work should focus on extensions to two and three dimensions as well as to the Navier-Stokes equations.

The idea of treating the advective term as a source term can be extended to the compressible Navier-Stokes
equations by a new hyperbolic formulation for the Navier-Stokes equations proposed in Ref.[15].
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Figure 12. Unsteady solution at t = 5.0. ∆t = 0.1 and 20
cells.
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Figure 13. Unsteady solution at t = 5.25. ∆t = 0.1 and 20
cells.
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