
An Implicit Gradient Method for Cell-Centered

Finite-Volume Solver on Unstructured Grids

Hiroaki Nishikawa∗

National Institute of Aerospace, Hampton, VA 23666, USA

In this paper, we investigate an implicit gradient method for a second-order cell-centered
finite-volume method on unstructured grids. In the implicit gradient method, solution
gradients are obtained by solving a global system of linear equations, but they can be
computed iteratively along with an implicit finite-volume solver iteration for the Euler or
Navier-Stokes equations. The cost of the implicit gradient computation is thereby made
comparable to or even cheaper than that of explicit gradient methods such as a least-squares
method. Furthermore, a known stability issue with a face-neighbor gradient stencil is
effectively circumvented by expanding the gradient stencil to the entire domain. We discuss
the relative performance of the implicit gradient method and a least-squares method for
various inviscid and viscous flow computations on unstructured grids.

1. Introduction

Convergence and accuracy of implicit finite-volume solvers widely used in practical computational fluid
dynamics (CFD) codes are greatly affected by gradient computation methods, especially on unstructured
grids. Despite great progress made over the last decades, represented by an extensive study on least-
squares gradients in Ref.[1], current state-of-the-art unstructured-grid finite-volume solvers still encounter
robustness issues when dealing with highly-distorted grids as typical in practical applications involving
complex geometries. In practical solvers, inconsistent gradient methods such as the Green-Gauss method
are locally employed for robustness [2,3,4], or simply gradients are ignored in problematic regions (e.g., in a
cell having a large face angle). Also, stable computations often require different types of gradient methods
for different terms, e.g., unweighted least-squares (LSQ) gradients for the inviscid terms, and weighted LSQ
gradients for the viscous terms and the source terms [2, 5]. Another known problem is that finite-volume
schemes with LSQ gradients computed over face neighbors are unstable for triangular and tetrahedral grids
[6,7]. Development of gradient methods for increasing robustness and efficiency without degrading accuracy,
therefore, remains an important subject of research [8, 9, 10].

Recently, in a series of papers [11, 12, 13], a new approach called the variational reconstruction (VR)
method was proposed. In this method, a globally coupled system of linear equations for the gradients is
derived by minimizing the solution jumps at faces. The system is iteratively solved along with a finite-volume
flow solver. If only one iteration is performed for the gradients per solver iteration, then the cost per iteration
is almost the same as the explicit methods such as the GG and LSQ methods, or more efficient than LSQ
methods with extended stencils beyond face neighbors. The stability issue mentioned earlier is effectively
circumvented by the gradient stencil spanning the entire grid. A further advantage lies in the straightforward
extension to high-order through minimizing the jumps of high-order polynomials [11,12,13,14,15]. Inspired by
the VR method, we developed a similar implicit gradient methodology called the implicit Green-Gauss (IGG)
gradient method [16], which was derived from a second-order finite-volume discretization of a hyperbolic
diffusion model. In Ref.[16], the IGG gradient method was demonstrated, for model advection-diffusion
problems, to produce accurate gradients on highly distorted grids including highly-curved thin grids, and
also allow implicit finite-volume solvers to converge for a discontinuous solution. In this paper, we investigate
the IGG gradient method for inviscid and viscous flow problems.

∗Associate Research Fellow (hiro@nianet.org), 100 Exploration Way, Hampton, VA 23666 USA, Associate Fellow AIAA

1 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

 AIAA Scitech 2019 Forum

 7-11 January 2019, San Diego, California

 10.2514/6.2019-1155

 Copyright © 2019 by Hiroaki Nishikawa. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA SciTech Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2019-1155&domain=pdf&date_stamp=2019-01-06

2. Governing Equations

Consider the compressible Navier-Stokes (NS) equations in two dimensions:

∂u

∂t
+

∂fx
∂x

+
∂fy
∂y

= 0, (2.1)

where

u =


ρ

ρu

ρv

ρE

 , fx = f invx + fvisx =


ρu

ρu2 + p

ρuv

ρuH

+


0

−τxx

−τxy

−τxxu− τxyv + qx

 , (2.2)

fy = f invy + fvisy =


ρv

ρuv

ρv2 + p

ρvH

+


0

−τyx

−τyy

−τyxu− τyyv + qy

 , (2.3)

ρ is the density, (u, v) is the velocity vector, p is the pressure, E is the specific total energy, and H = E+p/ρ
is the specific total enthalpy. The viscous stresses (τxx, τxy, τyy), and the heat fluxes qx and qy are given by

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y

)
, τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)
, τyy =

2

3
µ

(
2
∂v

∂y
− ∂u

∂x

)
, (2.4)

qx = − µ

Pr(γ − 1)

∂T

∂x
, qy = − µ

Pr(γ − 1)

∂T

∂y
. (2.5)

where T is the temperature, γ is the ratio of specific heats, Pr is the Prandtl number, and µ is the viscosity
defined by Sutherland’s law. All the quantities are assumed to have been nondimensionalized by their free-
stream values except that the velocity and the pressure are scaled by the free-stream speed of sound and the
free-stream dynamic pressure, respectively (see Ref.[17]). Thus, the viscosity is given by the following form
of Sutherland’s law:

µ =
M∞

Re∞

1 + C/T̃∞

T + C/T̃∞
T

3
2 , (2.6)

where T̃∞ is the dimensional free stream temperature in Kelvin (K), and C = 110.5 [K] is the Sutherland
constant. The ratio of the free stream Mach number M∞ to the free stream Reynolds number Re∞ arises
from the nondimensionalization. The system is closed by the nondimensionalized equation of state for ideal
gases: γp = ρT .

3. Finite-Volume Discretization

A cell-centered finite-volume discretization is employed for the discretization, where the residual is defined
as an approximation to the NS system integrated over a computational cell j (see Figure 1) with the midpoint
rule:

Resj =
∑

k∈{kj}

ΦjkAjk, (3.1)

where {kj} is a set of neighbors of the cell j, Ajk is the length of the face across j and k, and Φjk is a
numerical flux.

2 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

j

k

m
∆xjm

∆xkm

n̂jkAjk

Figure 1: Stencil for cell-centered finite-volume discretization.

In this work, the Roe [18] and HLL [19] fluxes are used for the inviscid terms, and the alpha-damping flux
[20,21,22,23] for the viscous terms. These numerical fluxes are functions of the primitive-variable gradients,
∇Wj and ∇Wk, and the primitive variables W = (ρ, u, v, p) linearly extrapolated at the face midpoint from
the two adjacent cells j and k:

WL = Wj + ϕj∇Wj ·∆xjm, WR = Wk + ϕk∇Wk ·∆xkm, (3.2)

where ∆xjm = xm − xj , ∆xkm = xm − xk, xm is the face-midpoint position, xj and xk are the centroid
coordinates of the cells j and k, respectively, and ϕj and ϕk are the Venkat limiter functions computed based
on the enforcement at nodes as described in Refs.[24, 25]. The limiter function is defined by the minimum,
as typically done, of those computed for all primitive variables. The cell gradients, ∇Wj and ∇Wk, need
to be computed from the numerical solutions stored at cells. These gradients are typically computed by a
LSQ method or the Green-Gauss method. In this study, the IGG gradient method [16] is employed and its
performance is investigated and compared with a LSQ gradient method. For the viscous flux, these gradients
will be used to evaluate the consistent term of the alpha-damping viscous flux: for example, the x-velocity
gradient is given by

∇u|face =
1

2
[∇uj +∇uk] +

α

|ejk · n̂jk|
(uR − uL)n̂jk, ejk = xk − xj , (3.3)

where the first term is the consistent term (i.e., consistently approximating the gradient), the second term is
the damping term (i.e., responsible for damping high-frequency errors) with the damping coefficient α given
an optimal value: α = 4/3 (see Refs.[20,22] for details), and n̂jk = (n̂x, n̂y) is the unit vector normal to the
face pointing from j to k.

4. Implicit Green-Gauss Gradient (IGG) Method

The IGG gradient method [16] is an implicit method that determines the cell-gradients (∂xwj , ∂ywj) for
a given set of numerical solution values, {wj} = {ρj}, {uj}, {vj}, or {pj}, as a solution to a global linear
system, where the equations corresponding to a cell j is given by

Mjjgj +
∑

k∈{kj}

Mjkgk = bj , (4.1)

3 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

where {kj} is a set of face-connected neighbors of the cell j, the 2×2 matrices Mjj and Mjk are given by

Mjj =
1

2Vj

∑
k∈{kj}

−

 ∆xjmn̂x ∆yjmn̂x

∆xjmn̂y ∆yjmn̂y

+ Lr

 n̂2
x n̂xn̂y

n̂xn̂y n̂2
y

+ cj

∆xjm · n̂jk 0

0 ∆xjm · n̂jk

Ajk, (4.2)

Mjk =
1

2Vj

−

 ∆xkmn̂x ∆ykmn̂x

∆xkmn̂y ∆ykmn̂y

− Lr

 n̂2
x n̂xn̂y

n̂xn̂y n̂2
y

+ (1− cj)

∆xjm · n̂jk 0

0 ∆xjm · n̂jk

Ajk,(4.3)

and

gj =

 ∂xwj

∂ywj

 , gk =

 ∂xwk

∂ywk

 , bj =
1

2Vj

∑
k∈{kj}

 (wj + wk)n̂x

(wj + wk)n̂y

Ajk, (4.4)

where ∆xjm = (xjm, yjm), ∆xkm = (ykm, ykm), Vj is the area of the cell j. Note that the right hand side bj

is the Green-Gauss gradient over the cell j, and the gradients are coupled with neighbors on the left hand
side; thus, it is called the implicit Green-Gauss gradient method. As discussed in Ref.[16], the IGG method
produces first-order accurate gradients on arbitrary unstructured grids whereas the Green-Gauss method
loses accuracy, as is well known, on irregular grids. The parameter cj is defined in the cell j and changes its
value depending on the grid skewness as described in Ref.[16]. The length Lr is defined based also on the
skewness:

Lr = αg|ejk · n̂jk|, ejk = xk − xj , (4.5)

where αg is a constant. As discussed in Ref.[16], the IGG gradient method can be considered as an extension
of the compact finite-difference methods to unstructured grids; the parameter αg controls the resolution
in much the same way as in the compact finite-difference schemes. A large value of αg has the effect of
smoothing the gradient at a discontinuous solution and allows an implicit finite-volume solver to converge
without a limiter. On the other hand, decreasing αg has the effect of picking up more high-frequency modes,
and eventually achieves fourth-order accuracy on a rectangular grid at αg = 1/6 through a domain boundary.
The IGG method is, therefore, a convenient way of implementing a compact scheme without any special
treatment at domain boundaries. See Ref.[16] for further details.

5. Implicit Defect-Correction (IDC) and IGG Solver

The set of discrete equations to be solved are the residual equation for the NS equations:

0 = Res(U), (5.1)

where U denotes the global vector of the conservative variables, and the residual equation for the gradients
of each primitive variable, i.e., a global expression of Equation (4.1):

0 = Resg(g), (5.2)

where g denotes the global vector of the gradients. Note that there are four gradient residual equations for
w = ρ, u, v, and p. There can be various different strategies for solving these equations. In this paper, we
consider a loosely-coupled implicit defect-correction (IDC) solver.

The IDC solver for the NS residual is given by

Un+1 = Un +∆U, (5.3)

(
D+

∂Res

∂U

)
∆U = −Res(Un), (5.4)

where n is the iteration counter, D is the pseudo-time diagonal matrix with the j-th diagonal block, which
corresponds to the cell j, is defined by Djj = Vj/∆τj I, where I is the 4×4 identity matrix and ∆τj is a local

4 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

pseudo time step, and the Jacobian ∂Res/∂U is the exact differentiation of the low-order compact residual
Res with zero gradients (i.e., first-order accurate for the inviscid terms and zero-th order for the viscous
terms). The linear system is relaxed by the block Gauss-Seidel relaxation scheme, which is written for a cell
j as

∆Um+1
j = ∆Um

j + ωrj , rj =

(
∂Resj
∂Uj

)−1
 ∑
k∈{kj}

∂Resj
∂Uk

−Resj(U
n)

 , (5.5)

where m is the relaxation counter, ω is a relaxation factor, and
∂Resj
∂Uj

and
∂Resj
∂Uk

are the 4×4 diagonal and

off-diagonal matrices, respectively.
The gradient residual equation is relaxed for each primitive variable, gj = (∂xwj , ∂ywj), where wj =

ρj , uj , vj , or pj , by directly applying the GS relaxation scheme [16]:

gn+1
j = gn

j + ωg

 ∑
k∈{kj}

{−Cjkg
n
k + cjk(wj + wk)} − gn

j

 , (5.6)

where ωg is a relaxation factor, and

Cjk = M−1
jj Mjk, cjk = M−1

jj

1

2Vj
n̂jkAjk. (5.7)

It is pointed out that there is a typo in the GS relaxation scheme in Ref.[16]; the above is the correct form.
Note that the same iteration counter n is used in both iterations, meaning that the gradient relaxation is
performed once per IDC iteration. As discussed in Ref.[16], this iteration strategy renders the IGG gradient
method comparable or more economical than the IDC solver with the LSQ gradient method (with augmented
stencils beyond face neighbors) in terms of both computing time and storage, and in both two and three
dimensions. This strategy has successfully been employed in other works related to the VR gradient method
[11, 12, 13, 14, 15]. In the rest of the paper, the IDC solver with the IGG Gauss-Seidel relaxation is referred
to as IDC-IGG while the IDC solver with the LSQ gradient method is referred to as IDC-LSQ.

The IDC-IGG solver is controlled by the following parameters:

tolerance_u = Tolerance for the flow-equation residuals.

tolerance_g = Tolerance for the gradient residuals.

max_relax_linear_u = Maximum number of relaxations for the flow-equation GS relaxation.

max_relax_linear_g = Maximum number of relaxations for the gradient GS relaxation.

tolerance_linear_u = Tolerance for the flow-equation GS relaxation.

tolerance_linear_g = Tolerance for the gradient GS relaxation.

omega = Relaxation factor for the flow-equation GS relaxation.

omega_g = Relaxation factor for the gradient GS relaxation.

The first two determines convergence by the order of magnitude of the residual reduction achieved in the
L1 norm for all the Euler/NS residuals and the gradient residuals. For problems considered in this paper,
we choose tolerance_u = 1.0e-05 and tolerance_u = 1.0e-03 since it was observed that any further
residual reduction in the gradient residuals did not bring a noticeable change in the solution. For the linear
relaxation, we typically require one order of magnitude reduction; the maximum numbers of relaxations
depend on the grid size and are given sufficiently larger values to meet the tolerance in all cases considered
in this paper. The relaxation factor parameter omega sets an initial value; it is adaptively modified based on
the history of the linear residual norm ||r||2 during the relaxation: increased by 25 % if the norm is below
the initial value while decreased by 5% if above, with the minimum and maximum values of 0.05 and 1.0,
respectively. For the gradient relaxation, the relaxation factor omega_g is fixed as 1.0, 0.75, or 0.5; we will
discuss later.

We remark that the IDC-IGG solver as described above can be considered as a simplified version of a
fully-coupled solver. If we add all the gradients to the solution vector U and add the gradient residuals to
the residual equation (5.1), then we can construct Newton’s method:

Un+1 = Un +∆U, (5.8)

5 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

∂Res

∂U
∆U = −Res(Un), (5.9)

where the residual Jacobian is compact and exact. In fact, the second-order finite-volume discretization
with the IGG gradients is compact once the gradients are included in U as additional discrete unknowns.
However, in this case, the residual Jacobian consists of 12×12 blocks for 4 conservative variables and 8
primitive-variable gradient components (20×20 blocks in three dimensions). The size of the discrete problem
is equivalent to the P1 discontinuous Galerkin method, where the solution gradients are introduced as
additional discrete unknowns, and to the hyperbolic Navier-Stokes method [26, 27, 28, 29, 30, 31], where the
solution gradients are introduced as additional unknowns in the differential-equation-level. Clearly, it would
require much more memory to store the Jacobian matrix although it is quite feasible and can be very
effective for iterative convergence. Note that written in the form (5.9) with the global vector of solutions and
gradients, the IDC-IGG solver corresponds to simplifying the exact Jacobian by ignoring all the coupling
terms between the conservative variables and the primitive-variable gradients:

∂Res

∂U
→



A
B

B
B

B


(5.10)

where A is a 4N×4N sparse matrix equivalent to the Jacobian in Equation (5.4) and B is a 2N×2N sparse
matrix for the gradient residual, where N is the number of cells in a grid. As they are completely decoupled,
the linear system can be relaxed independently for the solution correction, and the gradient correction for
each primitive-variable gradient. The latter can be relaxed by the same Jacobian matrix B for all primitive
variables; there is no need to store the matrix for different primitive-variable gradients separately. This
is a rather drastic simplification, but very memory efficient and practical. In this paper, we focus on the
decoupled IDC-IGG solver and investigate its performance.

6. Numerical Results

The IDC-IGG solver is tested and compared with the IDC-LSQ solver for inviscid and viscous problems.
Unless otherwise stated, the following parameters are used in all calculations:

tolerance_u = 1.0e-05

tolerance_g = 1.0e-03

max_relax_linear_u = 500

max_relax_linear_g = 1

tolerance_linear_u = 0.1

tolerance_linear_g = 0.1

omega = 0.85

omega_g = 1.0

Note that omega = 0.85 is the initial value; it will be adaptively adjusted during the linear relaxation. The
LSQ gradient method, which is used for a comparison purpose, is based on the vertex/node-neighbors and
weighted by the inverse distance to the power of 0.25. See Ref.[16] for details. All convergence results will be
shown in terms of the maximum of the L1 norms of the residual components normalized by the corresponding
initial norm. In all the results shown below, solution contours are plotted in terms of nodal values computed
by averaging the linearly interpolated values at nodes from the elements sharing each node with a limiter

6 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

applied to the gradients. The pseudo time step is defined by

∆τj = CFL
2Vj∑

k∈{ kj}

[|un|+ a+ ah]Ajk

, (6.1)

where un is the flow speed in the direction normal to the face, a is the speed of sound at the face, and ah is
a characteristic speed associated with the viscous heating wave (see Ref.[21]):

ah =
2αγµ

ρPr|ejk · n̂jk|
. (6.2)

All fluid properties are set based on a standard air: γ = 1.4, Pr = 0.72, at the free stream temperature
T̃∞ = 300[K]. Boundary conditions are imposed weakly through a numerical flux with the right state
specified by physical boundary conditions.

6.1. Euler Equations

6.1.1. Subsonic flow over a circular cylinder at M∞ = 0.3

We consider an inviscid compressible flow over a circular cylinder at M∞ = 0.3. The domain is defined
by the cylinder of unit diameter and the circular outer boundary of radius 100. The problem is solved on a
triangular grid shown in Figures 2(a) and 2(b): 12800 nodes, 25280 triangles, 161 nodes over the cylinder,
and the minimum and maximum skewness measures of 0.720 and 1.000 respectively. For the IGG gradient
method, αg = 1.0 is used. In all calculations, we set CFL= 1015. Both the IDC-LSQ and IDC-IGG solvers
converged as shown in Figure 2(e), and similar solutions are obtained as in Figures 2(c) and 2(d). For this
problem, the solver converged with a fewer number of iterations with the IGG gradients than with the LSQ
gradients. As can be expected, it leads to faster convergence in CPU time as shown in Figure 2(f).

6.1.2. Transonic flow over a Joukowsky airfoil at M∞ = 0.8

The next inviscid test case is a transonic flow over a Joukowsky airfoil of a unit chord at M∞ = 0.8 at the
angle of attack 1.25 degrees. The outer boundary is taken as a circle of radius 50. The grid is an irregular
triangular grid as shown in Figures 3(a) and 3(b): 4235 nodes, 8228 triangles, 122 nodes over the airfoil,
the minimum and maximum skewness measures of 0.0273 and 0.9999 respectively. In all calculations, we set
CFL= 10. The LSQ method was applied with the Venkat limiter [24] as described in Section 3. The IGG
method was applied with αg = 4.0 to smooth the gradients across shocks and with and without the Venkat
limiter. Otherwise, the same parameter setting was used as in the previous case. The limiter was applied
with the parameter K = 5.0 for the LSQ gradients and K = 10.0 (less limiting) for the IGG gradients [24].

Convergence histories are shown in Figures 4(a) and 4(b); the IDC-LSQ solver stalls (not shown but
diverged without a limiter), while the IDC-IGG solver converges with and without the limiter (denoted by
IGG-Limited and IGG, respectively, in the figure). Note that the IDC-LSQ solver converges on a structured
quadrilateral/triangular grid without a limiter; the divergence without a limiter is therefore considered due
to the irregularity. The limited version of the IDC-IGG solver is slightly slower in CPU time apparently due
to the limiter calculation. Solutions are compared in Figure 5. As expected, the IGG solution without a
limiter has over- and under-shoots around the shock on the upper surface (see Figure 5(e)); and they are
greatly reduced by the limiter as can be seen in Figure 5(f). Contours of the limiter function are plotted
in Figures 5(g)-5(i). it is observed that the limiter acts much less on the IGG gradients than on the LSQ
gradients, thus preserving accuracy better with the IGG gradients.

6.1.3. Hypersonic flow over a cylinder at M∞ = 5.2

To further demonstrate the robustness of the IDC-IGG solver, we consider a hypersonic flow over a
cylinder at M∞ = 5.2 on a triangular grid as shown in Figures 6(a) and 6(b): 1089 nodes, 2048 triangles,
32 nodes over the cylinder surface, the minimum and maximum skewness measures of 0.3037 and 1.000
respectively. The LSQ method was applied with the Venkat limiter (K = 0.1) [24]. The IGG method was
applied with αg = 3.5 to smooth the gradients across the bow shock with the Venkat limiter (K = 5.0).
For this problem, the CFL number is initially set to be 0.1 and linearly increased in terms of the iteration

7 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

number towards 10 over 50000 iterations. The linear relaxation tolerance for the Euler equations is set to
be 0.001: tolerance_linear_u = 0.001. The HLL flux is used for the inviscid flux instead of the Roe flux.

As shown in Figures 6(c) and 6(d), the IDC-IGG solver converges whereas the IDC-LSQ solver gradually
diverges up to the maximum iteration of 25000. Despite the gradual divergence, the solution looks reasonably
accurate and very similar to the converged solution obtained by the IDC-IGG solver. See Figures 6(e) and
6(f); the corresponding limiter function distributions are shown in Figures 6(g) and 6(h).

6.2. Navier-Stokes Equations

6.2.1. Viscous flow over a circular cylinder at M∞ = 0.3 and Re∞ = 40

The first viscous test case is a viscous flow over a circular cylinder at M∞ = 0.3 and Re∞ = 40 with the
same grid used in the inviscid cylinder test case. The IGG method was applied with αg = 1/6. It was found
that the IDC-IGG solver diverged unless the relaxation factor omega_g is reduced to 0.75. Results shown
are obtained with omega_g=0.75. The CFL number is 1015 for all cases.

Convergence results are shown in Figures 7(a) and 7(b). For this problem, the IDC-IGG solver is twice
as fast as the IDC-LSQ solver in both iteration and CPU time, producing nearly identical solutions as in
Figures 7(c)-7(f).

6.2.2. Viscous flow over a flat plate at M∞ = 0.15 and Re∞ = 106

Finally, we consider a high-Reynolds-number laminar flow over a flat plate at M∞ = 0.15 and Re∞ = 106.
The grid is a mixed-element grid with 3264 nodes, 3638 triangles, 1330 quadrilaterals (which covers the
boundary layer), 30 nodes over the flat plate located at y = 0 and x ∈ [0, 2], and the minimum and
maximum skewness measures of 0.0049 and 1.000 respectively. See Figures 8(a) and 8(b); the latter shows
that the interface between triangular and quadrilateral regions is not smooth. The IGG method was applied
with αg = 1/6. For this problem, the IDC-IGG solver diverged even with omega_g=0.75, and thus further
reduced to omega_g=0.5.

Convergence results are shown in Figures 8(c) and 8(d). In this case, the IDC-IGG solver takes a larger
number of iterations, and therefore a longer CPU time to converge. However, the solution obtained with the
IGG gradient method is more accurate (closer to the Blasius solution) than that with the LSQ gradients.
See Figures 8(e)-8(g), where the numerical solutions are compared with the Blasius solution at x = 0.9: the
x-velocity u, the y-velocity v

√
Rex, where Rex is the Reynolds number based on the distance along the plate

from the leading edge, and the vorticity in the normalized coordinate η = y
√
Rex/x.

7. Concluding Remarks

The implicit Green-Gauss gradient method was tested and compared with the least-squares gradient
method for a cell-centered finite-volume method on unstructured grids for inviscid and viscous problems.
The gradients are computed by iteratively solving a global system of linear equations with the Gauss-Seidel
relaxation scheme. An implicit defect-correction solver was tested, where the Gauss-Seidel relaxation is
performed once for the gradient in each nonlinear iteration. Numerical results have confirmed that the per-
iteration cost of the implicit Green-Gauss gradient method is comparable to the LSQ gradient computation.
The implicit solver has been demonstrated to converge to a specified tolerance for all problems (subsonic,
transonic, and hypersonic inviscid flows, and low- and high-Reynolds-number viscous flows) even with shock
waves and limiters whereas it stalled with the least-squares gradients; and it converged faster in CPU time
than the solver with the LSQ gradients in all cases except the flat plate case. The solution, however, was
found to be more accurate with the implicit Green-Gauss gradient method.

Despite the demonstrated robustness, the solver needs further improvements. The need for the relaxation
factor adjustment in the IGG relaxation seems to imply that the IDC-IGG solver can become unstable if
the gradients gain accuracy too fast. Apparently, the implicit Euler/NS solver and the implicit Green-
Gauss gradient relaxation are not always compatible with each other. A fully-coupled solver is one possible
strategy to address the issue. There can be, at least, two variants. One is Newton’s method applied to
the entire set of residual equations, where the Jacobian is compact and exact but larger (i.e., 20×20 blocks
in three dimensions). Another would be a Jacobian-Free Newton-Krylov (JFNK) method with the IDC-
IGG solver used as a preconditioner. These solvers will be particularly useful for allowing parameters (e.g.,

8 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

αg) to be defined locally to adapt the gradients to local flow features while keeping different values in the
Jacobian/preconditioner for robust convergence. A preliminary study indicates that the Newton solver is
much more robust than the IDC-IGG and JFNK solvers, but requires a very efficient linear solver (e.g.,
multigrid) to minimize the overall computing time; it seems suggest that the hyperbolic Navier-Stokes
formulation is better suited since the linear relaxation converges rapidly by the reduced condition number
(due to the elimination of second derivatives) [26,27,28,29,30,31].

Acknowledgments

This work was supported by the Hypersonic Technology Project, through the Hypersonic Airbreathing
Propulsion Branch of the NASA Langley Research Center, under Contract No. 80LARC17C0004. The
author would like to thank Jeffery A. White (NASA Langley Research Center) for valuable comments and
discussions.

References

1Diskin, B. and Thomas, J. L., “Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio,” NIA Report
No. 2008-12 , 2008.

2Mavriplis, D. J., “Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes,” Proc.
of 16th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2003-3986, Orlando, Florida, 2003.

3Shima, E., Kitamura, K., and Haga, T., “Green-Gauss/Weighted-Least-Squares Hybrid Gradient Reconstruction for
Arbitrary Polyhedra Unstructured Grids,” AIAA J., Vol. 51, No. 11, 2013, pp. 2740–2747.

4Moukalled, F., Mangani, L., and Darwish, M., The finite volume method in computational fluid dynamics: An intro-
duction with OpenFOAM and matlab, Fluid Mechanics and Its Applications, Volume 13, Springer International Publishing,
2015.

5May, G. and Jameson, A., “Unstructured algorithms for inviscid and viscous flows embedded in a unified solver architec-
ture,” Proc. of 43rd AIAA Aerospace Sciences Meeting and Exhibit , AIAA Paper 2005-318, Reno, Nevada, 2005.

6Diskin, B. and Thomas, J. L., “Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretiza-
tions: Inviscid Fluxes,” AIAA J., Vol. 49, No. 4, 2011, pp. 836–854.

7Haider, F., Croisille, J.-P., and Courbet, B., “Stability analysis of the cell centered finite-volume MUSCL method on
unstructured grids,” Numer. Math., Vol. 113, No. 4, 2009, pp. 555–600.

8White, J. A., Baurle, R., Passe, B. J., Spiegel, S. C., and Nishikawa, H., “Geometrically Flexible and Efficient Flow
Analysis of High Speed Vehicles Via Domain Decomposition, Part 1, Unstructured-grid Solver for High Speed Flows,” JANNAF
48th Combustion 36th Airbreathing Propulsion, 36th Exhaust Plume and Signatures, 30th Propulsion Systems Hazards, Joint
Subcommittee Meeting, Programmatic and Industrial Base Meeting, Newport News, VA, 2017.

9Zangeneh, R. and Ollivier-Gooch, C., “Reconstruction Map Stability Analysis for Cell Centered Finite Volume Methods
on Unstructured Meshes,” 55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-0734, Grapevine, Texas, 2017.

10Zhang, F., “A vertex-weighted-Least-Squares gradient reconstruction,” arXiv:1702.04518 [physics.flu-dyn], 2017.
11Wang, Q., Ren, Y.-X., Pan, J., and Li, W., “Compact high order finite volume method on unstructured grids I: Basic

formulations and one-dimensional schemes,” J. Comput. Phys., Vol. 314, 2016, pp. 863–882.
12Wang, Q., Ren, Y.-X., Pan, J., and Li, W., “Compact high order finite volume method on unstructured grids II: Extension

to two-dimensional Euler equations,” J. Comput. Phys., Vol. 314, 2016, pp. 883–908.
13Wang, Q., Ren, Y.-X., Pan, J., and Li, W., “Compact high order finite volume method on unstructured grids III:

Variational reconstruction,” J. Comput. Phys., Vol. 337, 2017, pp. 1–26.
14Li, L., Liu, X., Lou, J., Luo, H., Nishikawa, H., and Ren, Y., “A Finite Volume Method Based on Variational Recon-

struction for Compressible Flows on Arbitrary Grids,” 23rd AIAA Computational Fluid Dynamics Conference, AIAA Paper
2017-3097, Denver, Colorado, 2017.

15Li, L., Liu, X., Lou, J., Luo, H., Nishikawa, H., and Ren, Y., “A Discontinuous Galerkin Method Based on Variational
Reconstruction for Compressible Flows on Arbitrary Grids,” 56th AIAA Aerospace Sciences Meeting, AIAA Paper 2018-0831,
Kissimmee, Florida, 2018.

16Nishikawa, H., “From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured
Grids,” J. Comput. Phys., Vol. 372, 2018, pp. 126–160.

17Masatsuka, K., “I do like CFD, VOL.1, Second Edition,” http://www.cfdbooks.com, 2013.
18Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys., Vol. 43,

1981, pp. 357–372.
19Harten, A., Lax, P. D., and van Leer, B., “On Upstream Differencing and Godunov-Type Schemes for Hyperbolic

Conservation Laws,” SIAM Rev., Vol. 25, No. 1, 1983, pp. 35–61.
20Nishikawa, H., “Beyond Interface Gradient: A General Principle for Constructing Diffusion Schemes,” Proc. of 40th

AIAA Fluid Dynamics Conference and Exhibit , AIAA Paper 2010-5093, Chicago, 2010.
21Nishikawa, H., “Two Ways to Extend Diffusion Schemes to Navier-Stokes Schemes: Gradient Formula or Upwinding,”

20th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2011-3044, Honolulu, Hawaii, 2011.
22Nishikawa, H., “Robust and Accurate Viscous Discretization via Upwind Scheme - I: Basic Principle,” Comput. Fluids,

Vol. 49, No. 1, October 2011, pp. 62–86.

9 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

http://www.cfdbooks.com

23Nishikawa, H., Nakashima, Y., and Watanabe, N., “Effects of High-Frequency Damping on Iterative Convergence of
Implicit Viscous Solver,” J. Comput. Phys., Vol. 348, 2017, pp. 66–81.

24Venkatakrishnan, V., “Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Lim-
iters,” J. Comput. Phys., Vol. 118, 1995, pp. 120–130.

25Seok Park, J., Hwan Yoon, S., and Kim, C., “Multi-dimensional limiting process for hyperbolic conservation laws on
unstructured grids,” J. Comput. Phys., Vol. 229, 2010, pp. 788–812.

26Nishikawa, H., “New-Generation Hyperbolic Navier-Stokes Schemes: O(1/h) Speed-Up and Accurate Viscous/Heat
Fluxes,” Proc. of 20th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2011-3043, Honolulu, Hawaii, 2011.

27Nishikawa, H., “First, Second, and Third Order Finite-Volume Schemes for Navier-Stokes Equations,” Proc. of 7th AIAA
Theoretical Fluid Mechanics Conference, AIAA Aviation and Aeronautics Forum and Exposition 2014 , AIAA Paper 2014-2091,
Atlanta, GA, 2014.

28Nishikawa, H., “Alternative Formulations for First-, Second-, and Third-Order Hyperbolic Navier-Stokes Schemes,” Proc.
of 22nd AIAA Computational Fluid Dynamics Conference, AIAA Paper 2015-2451, Dallas, TX, 2015.

29Nakashima, Y., Watanabe, N., and Nishikawa, H., “Hyperbolic Navier-Stokes Solver for Three-Dimensional Flows,” 54th
AIAA Aerospace Sciences Meeting, AIAA Paper 2016-1101, San Diego, CA, 2016.

30Liu, Y. and Nishikawa, H., “Third-Order Inviscid and Second-Order Hyperbolic Navier-Stokes Solvers for Three-
Dimensional Inviscid and Viscous Flows,” 46th AIAA Fluid Dynamics Conference, AIAA Paper 2016-3969, Washington, D.C.,
2016.

31Li, L., Lou, J., Luo, H., and Nishikawa, H., “A New Formulation of Hyperbolic Navier-Stokes Solver based on Finite
Volume Method on Arbitrary Grids,” AIAA 2018 Fluid Dynamics Conference, AIAA Paper 2018-4160, Atlanta, Georgia, 2018.

10 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

(a) Grid. (b) Close view of the grid.

(c) Pressure contours: LSQ. (d) Pressure contours: IGG.

(e) Maximum residual versus iteration. (f) Maximum Residual versus CPU time.

Figure 2: Inviscid flow over a cylinder at M∞ = 0.3 on a triangular grid.

11 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

(a) Grid. (b) Close view.

Figure 3: Irregular triangular grid used for the inviscid flow over a cylinder at M∞ = 0.3.

(a) Maximum residual versus iteration. (b) Maximum Residual versus CPU time.

Figure 4: Convergence history for the airfoil case.

12 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

(a) LSQ + Limiter (b) IGG (c) IGG + Limiter

(d) LSQ + Limiter (e) IGG (f) IGG + Limiter

(g) LSQ + Limiter (h) IGG (i) IGG + Limiter

Figure 5: Inviscid flow over a Joukowsky airfoil at M∞ = 0.85 on a triangular grid.

13 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

(a) Grid. (b) Close view of the grid.

(c) Maximum residual versus iteration. (d) Maximum Residual versus CPU time.

(e) Pressure contours: LSQ. (f) Pressure contours: IGG.

(g) Limiter contours: LSQ. (h) Limiter contours: IGG.

Figure 6: Hypersonic flow over a cylinder at M∞ = 5.2 on a triangular grid.

14 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

(a) Maximum residual versus iteration. (b) Maximum Residual versus CPU time.

(c) Pressure contours: LSQ. (d) Pressure contours: IGG.

(e) Streamlines and x-velocity contours: LSQ. (f) Streamlines and x-velocity contours: IGG.

Figure 7: Viscous flow over a cylinder at M∞ = 0.3 and Re∞ = 40 on a triangular grid.

15 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

x

y

­2 ­1 0 1 2
0

1

2

3

4

(a) Mixed grid. (b) Close view with numerical solution (LSQ).

(c) Maximum residual versus iteration. (d) Maximum residual versus CPU time.

(e) Velocity u at x = 0.9. (f) Velocity v at x = 0.9. (g) Vorticity at x = 0.9.

Figure 8: Viscous flow over a flat plate on a mixed grid at M∞ = 0.15 and Re∞ = 106.

16 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 H

ir
oa

ki
 N

is
hi

ka
w

a
on

 J
an

ua
ry

 7
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

55

	Introduction
	Governing Equations
	Finite-Volume Discretization
	Implicit Green-Gauss Gradient (IGG) Method
	Implicit Defect-Correction (IDC) and IGG Solver
	Numerical Results
	Euler Equations
	Subsonic flow over a circular cylinder at M= 0.3
	Transonic flow over a Joukowsky airfoil at M= 0.8
	Hypersonic flow over a cylinder at M= 5.2

	Navier-Stokes Equations
	Viscous flow over a circular cylinder at M= 0.3 and Re= 40
	Viscous flow over a flat plate at M= 0.15 and Re= 106

	Concluding Remarks
	Acknowledgments
	References

