

An Implicit Gradient Method for Cell-Centered Finite-Volume Solver on Unstructured Grids

$$\mathbf{M}_{jj}\mathbf{g}_{j} + \sum_{k \in \{k_{j}\}} \mathbf{M}_{jk}\mathbf{g}_{k} = GG$$

AIAA2019-1155

This work was supported by the Hypersonic Technology Project, through the Hypersonic Airbreathing Propulsion Branch of the NASA Langley Research Center, under Contract No. 80LARC17C0004

Hiroaki Nishikawa, *National Institute of Aerospace* AIAA SciTech 2019, January 9, 2019

Hyperbolic Method

Hyperbolize and discretize it. JCP2007 ~

$$\frac{\partial u}{\partial t} = \nu(\partial_{xx}u + \partial_{yy}u)$$

First-order system

$$\frac{\partial u}{\partial t} = \nu(\partial_x p + \partial_y q)$$

$$0 = \partial_x u - p$$

$$0 = \partial_y u - q$$

$$\downarrow \text{Discretize}$$

$$du_j$$

Many existing schemes are here.

First-order hyperbolic system

$$\frac{\partial u}{\partial \tau} = \nu(\partial_x p + \partial_y q) - \frac{\partial u}{\partial t}$$

$$\frac{\partial p}{\partial \tau} = \frac{1}{T_r} (\partial_x u - p)$$

$$\frac{\partial q}{\partial \tau} = \frac{1}{T_r} (\partial_y u - q)$$

Discretize by upwind $\frac{d}{dt} \begin{bmatrix} u_j \\ 0 \\ 0 \end{bmatrix} = \mathbf{Res}_j^{'} \qquad \frac{\partial u}{\partial \tau} = \frac{\partial p}{\partial \tau} = \frac{\partial q}{\partial \tau} = 0$

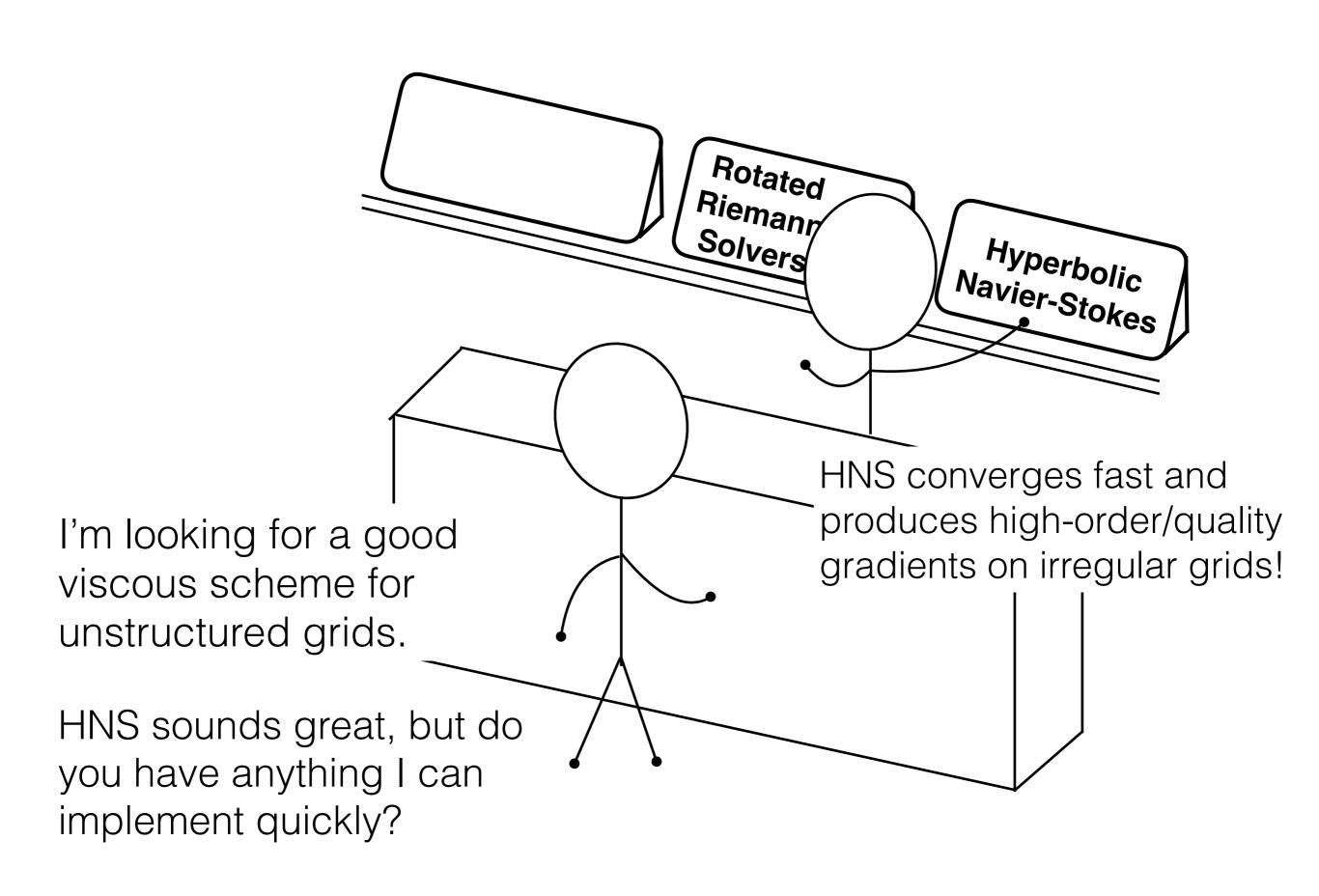
Superior discretization via hyperbolic system:

(1) high-order gradients, (2) convergence acceleration, (3) high-order advection/inviscid.

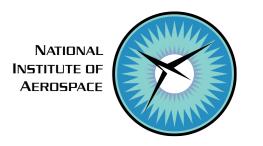
Extended to 3D Navier-Stokes — Hyperbolic Navier-Stokes (HNS) AIAA2016 ~

DG/rDG HNS solver: Just presented a minute ago. See AIAA2019-1150

Customers want robust viscous schemes but something simpler to implement...



Alpha-Damping Scheme AIAA2010-5093



Extract a conventional (scalar) scheme from hyperbolic scheme.

First-order hyperbolic system

$$\frac{\partial u}{\partial \tau} = \nu(\partial_x p + \partial_y q) - \frac{\partial u}{\partial t}$$

$$\frac{\partial p}{\partial \tau} = \frac{1}{T_r} (\partial_x u - p)$$

$$\frac{\partial q}{\partial \tau} = \frac{1}{T} (\partial_y u - q)$$

Hyperbolic scheme

$$\frac{du}{dt} = Res'(1) \qquad \qquad \frac{du}{dt} = Res'(1)$$

$$0 = Res'(2) \longrightarrow$$

$$0 = Res'(3)$$

(p,q) = LSQ gradient

Extracted scheme

Derivation is applicable to various discretization methods (FV/DG/SV/RD), and gave birth to a new class of adjustable diffusion/viscous schemes for unstructured grids.

See AIAA2010-5093, AIAA2011-3044, JCP2017 for details.

Alpha-damping diffusion/viscous scheme is being used in commercial CFD codes SC/Tetra (CFDS28-2014) and scFLOW, and NASA's VULCAN code (JANNAF-2017), etc.

Many customers want robust gradient methods...

Issues on gradients for finite-volume methods:

- Instability on triangles/tetrahedra if LSQ gradients are computed with face-neighbors

Diskin&Thomas AlAAJ2011 Haider et.al. Numer. Math. 2009

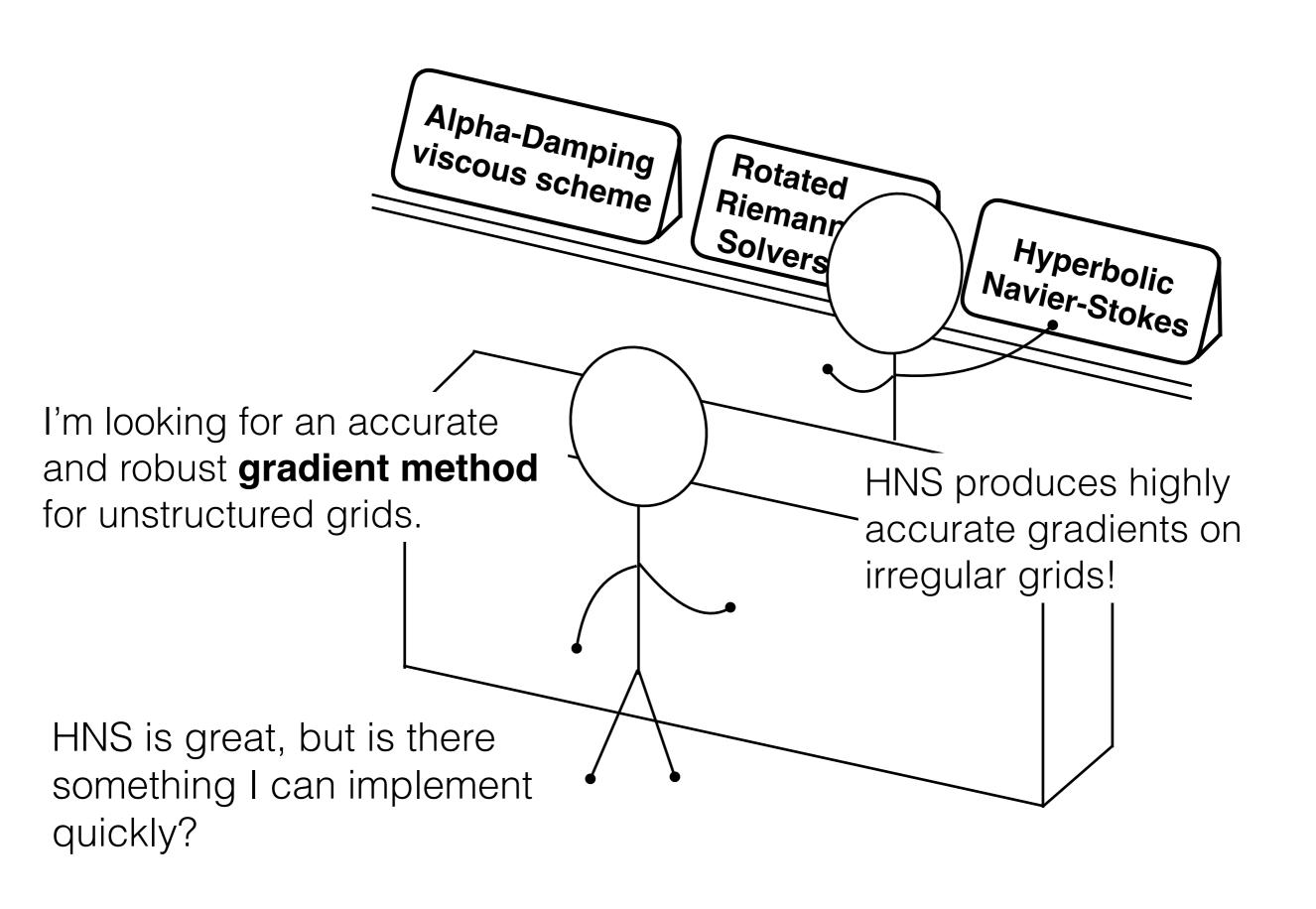
Larger stencil tends to stabilize a solver, but not guaranteed...

- Instability with accurate gradients for inviscid terms.

Diskin&Thomas AIAAJ2011

- Instability with inaccurate gradients for turbulence-model source terms.

 Diskin&Thomas NIA2008
- Inaccuracy on high-aspect-ratio and curved thin grids. Mavriplis AIAA2003



Implicit Green-Gauss Gradient

H. Nishikawa, "From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids", Journal of Computational Physics, Volume 372, 2018, Pages 126-160

Extract a gradient scheme from a hyperbolic diffusion scheme.

First-order hyperbolic system

$$\frac{\partial u}{\partial \tau} = \nu(\partial_x p + \partial_y q) - \frac{\partial u}{\partial t}$$

$$\frac{\partial p}{\partial \tau} = \frac{1}{T_r} (\partial_x u - p)$$

$$\frac{\partial q}{\partial \tau} = \frac{1}{T_r} (\partial_y u - q)$$

Hyperbolic scheme

$$\frac{du}{dt} = Res'(1)$$

$$0 = Res'(2) \longrightarrow 0 = Res'(2)$$

$$0 = Res'(3)$$

Implicit Gradient scheme

Solution u is given.

$$0 = Res'(2)$$

$$0 = Res'(3)$$

Leading to a global linear system for gradients.

$$\mathbf{M}_{jj}\mathbf{g}_{j} + \sum_{k \in \{k_{j}\}} \mathbf{M}_{jk}\mathbf{g}_{k} = GG$$

$$\mathbf{g}_{j} = (\partial_{x}u_{j}, \partial_{y}u_{j})$$

$$\mathbf{g}_j = (\partial_x u_j, \partial_y u_j)$$

RHS is the Green-Gauss gradient —> Implicit Green-Gauss (IGG).

Advantages of IGG gradient

$$\mathbf{M}_{jj}\mathbf{g}_{j} + \sum_{k \in \{k_{j}\}} \mathbf{M}_{jk}\mathbf{g}_{k} = GG$$

- (1) Stabilizes a FV solver with many neighbors: Gradient stencil spans the entire grid.

 Wang, et. al. JCP2017: Variational Reconstruction. LSQ on RHS.
- (2) Exact for linear functions: first-order accurate on irregular grids (higher-order possible).
- (3) One relaxation is cheap and compact: only face neighbors, low storage (< LSQ coeffs). Gauss-Seidel relaxation for IGG:

$$\mathbf{g}_{j}^{n+1} = \mathbf{g}_{j}^{n} + \omega_{g} \left[\sum_{k \in \{k_{j}\}} \left\{ -\mathbf{C}_{jk} \mathbf{g}_{k}^{n} + \mathbf{c}_{jk} (u_{j} + u_{k}) \right\} - \mathbf{g}_{j}^{n} \right] \qquad 0 \leq \omega_{g} \leq 1$$

[Advantages demonstrated by Wang et. al. JCP2017 with a different implicit gradient method, called variational reconstruction (VR).]

In this work, we investigate IGG for Euler/Navier-Stokes finite-volume solvers.

IGG is Nice and Adjustable

Nishikawa JCP2018

A parameter α_g is inherited from the upwind dissipation.

$$\mathbf{M}_{jj}(\alpha_g)\mathbf{g}_j + \sum_{k \in \{k_i\}} \mathbf{M}_{jk}(\alpha_g)\mathbf{g}_k = GG$$

(I) Resolution improves with decreasing α_g , and 4th-order accuracy is achieved at 1/6 through boundaries on regular quadrilateral grids.

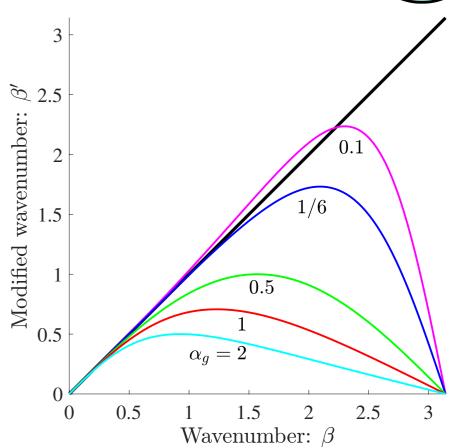
IGG (and VR) is an extension of compact schemes to unstructured grids.

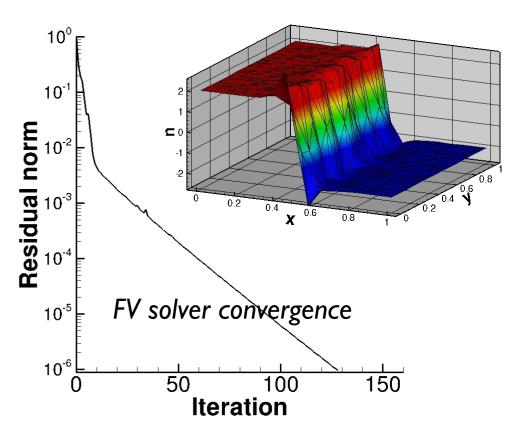
(2) Large α_g helps FV solver by damping out the gradient for discontinuous solutions:

Facilitate limiting and convergence (gradient is already small

Good to have an adjustable parameter if you know how to choose its value: 1/6 for 4th-order accuracy on regular grid, a large (e.g., 5) for discontinuities.

See JCP2018 for details.





Hyperbolic Diffusion/Viscous System

Discretize it by upwind schemes.
$$\frac{\partial u}{\partial \tau} = \nu(\partial_x p + \partial_y q) - \frac{\partial u}{\partial t} \quad \frac{\partial p}{\partial \tau} = \frac{1}{T_r} (\partial_x u - p) \quad \frac{\partial q}{\partial \tau} = \frac{1}{T_r} (\partial_y u - q)$$

Hyperbolic Diffusion/Viscous Scheme: $\frac{d\mathbf{U}_j}{d\tau} = \mathbf{Res}_j$

Solve for
$$(p_j, q_j)$$
 for a given u_j

Gradient method Implicit Green-Gauss (IGG)

$$0 = \mathbf{Res}_{j}(2) \approx \partial_{x}u - p$$

$$0 = \mathbf{Res}_{j}(3) \approx \partial_{y}u - q$$
|CP2018, AIAA2019

Solve for (u_i, p_i, q_i)

$$\frac{du_j}{dt} = \mathbf{Res}_j(1)$$
$$0 = \mathbf{Res}_j(2)$$
$$0 = \mathbf{Res}_j(3)$$

JCP2007, 2010, 2012 AIAA papers 2009-2018

Solve for u_i with, e.g., $(p_i, q_i) = LSQ(u)$

Diffusion/Viscous Scheme: alpha-damping scheme

$$\frac{du_j}{dt} = \mathbf{Res}_j(1) \approx \nu(\partial_{xx}u + \partial_{yy}u)$$

AIAA2010-5093, C&F2011, AIAA2011-3044, JCP2017

- Implicit method for gradients
- Extended compact scheme
- Adjustable parameters
- 4th-order through boundary
- Accurate for distorted grids
- Stabilize FV solvers

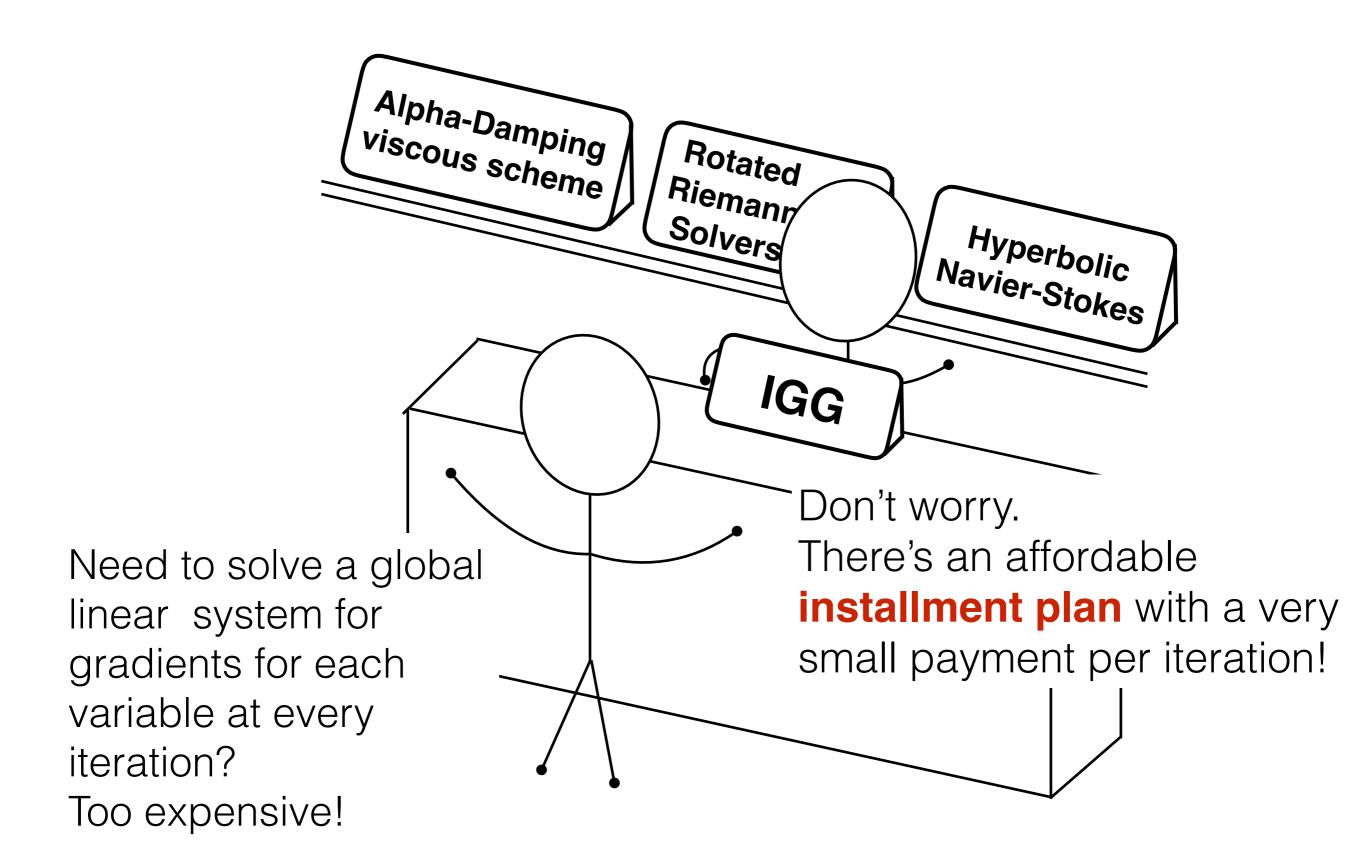
- Coupled system scheme
- Highly accurate gradients
- Same accuracy order: u, p, q.
- dtau=O(h), Jac=O(1/h)
- Fast convergence
- Higher-order inviscid scheme
- Implemented in SC/Tetra, FUN3D

- Scalar diffusion scheme
- (p,q) one-order lower than u.
- $dt=O(h^2)$, $Jac=O(1/h^2)$
- Consistent and damping terms
- Adjustable damping coefficient lpha
- Used in SC/Tetra, scFLOW, and NASA's VULCAN code.

Affordability matters...

Expensive algorithms hardly sell.

Supercomputer is not available to all CFD users...



Three Plans available

IDC: Implicit defect-correction Navier-Stokes solver with 1st/0th-order residual Jacobian.

(I) IDC solver with IGG

Solve:

$$\mathbf{M}_{jj}\mathbf{g}_j + \sum_{k \in \{k_i\}} \mathbf{M}_{jk}\mathbf{g}_k = GG^n$$

Relax: $J\Delta U = -Res(U^n, g)$

Update: $\mathbf{U}^{n+1} = \mathbf{U}^n + \Delta \mathbf{U}$

Solve IGG system at every iteration - "Too expensive!"

(2) IDC-IGG solver

Relax:

$$\mathbf{M}_{jj}\mathbf{g}_{j}^{n+1} = GG^{n} - \sum_{k \in \{k_{j}\}} \mathbf{M}_{jk}\mathbf{g}_{k}^{n}$$

Relax: $\mathbf{J}\Delta\mathbf{U} = -\mathbf{Res}(\mathbf{U}^n, \mathbf{g}^{n+1})$

Update: $\mathbf{U}^{n+1} = \mathbf{U}^n + \Delta \mathbf{U}$

Iterate for IGG gradients along with the IDC solver.
As cheap as LSQ!

(3) Coupled Newton solver

Coupled residual and Jacobian - 20x20 block for 3D NS.

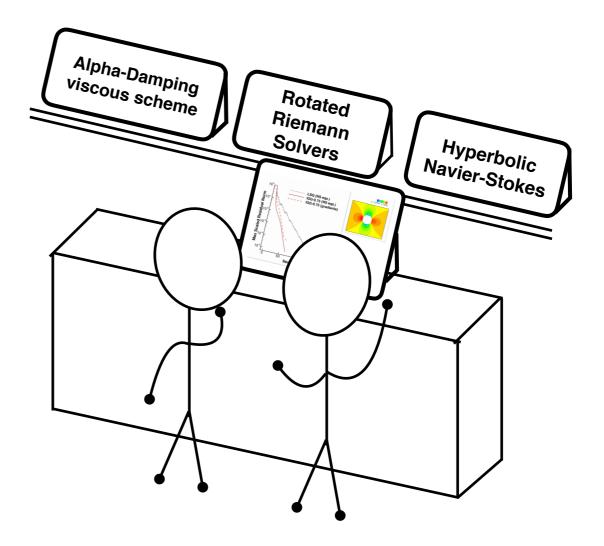
Relax: $J^{exact}\Delta U = -Res(U^n)$

Update: $\mathbf{U}^{n+1} = \mathbf{U}^n + \Delta \mathbf{U}$

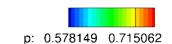
Requires more memory and cost per iteration, but very robust.

In this paper, we consider Plan (2) for Euler and Navier-Stokes computations.

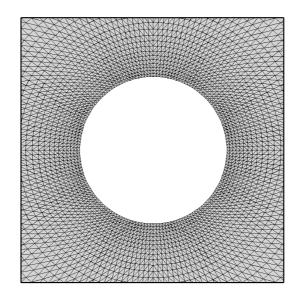
Now start a sales pitch.

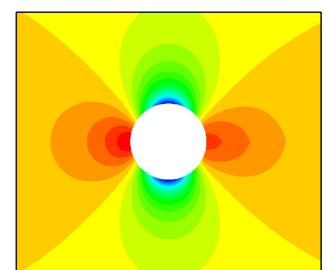


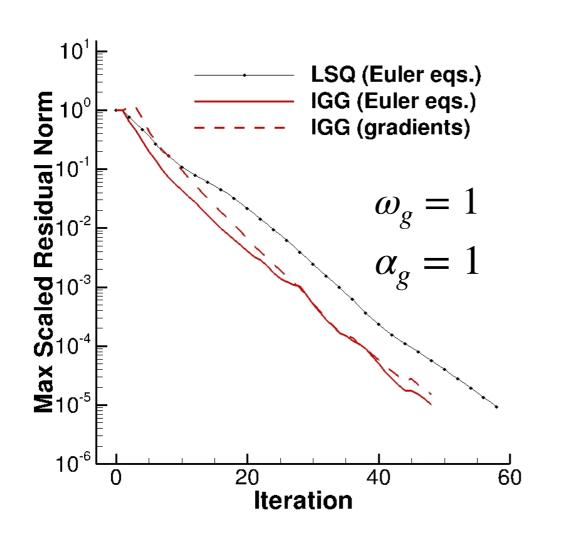
Subsonic Cylinder at Mach=0.3 (Roe flux)

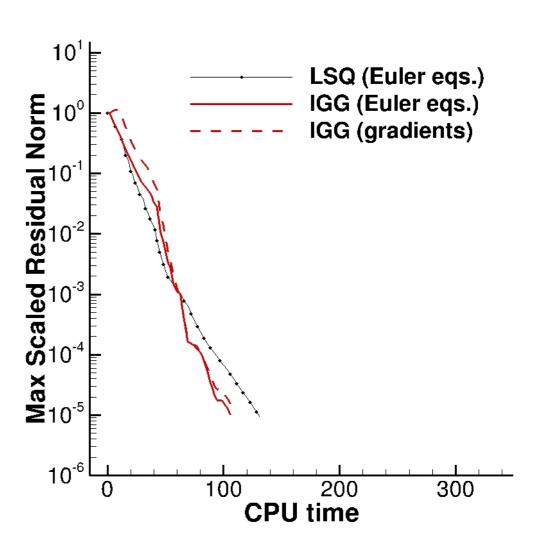


LSQ with vertex neighbors: all neighbors sharing vertices of a target cell.



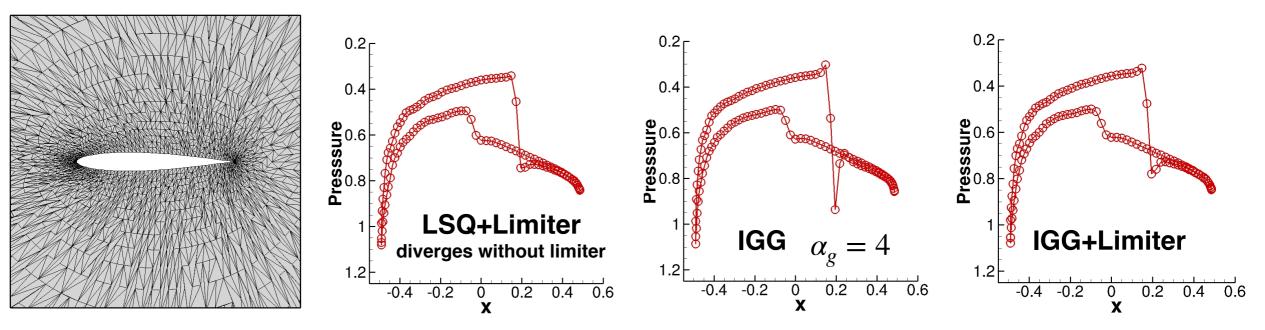




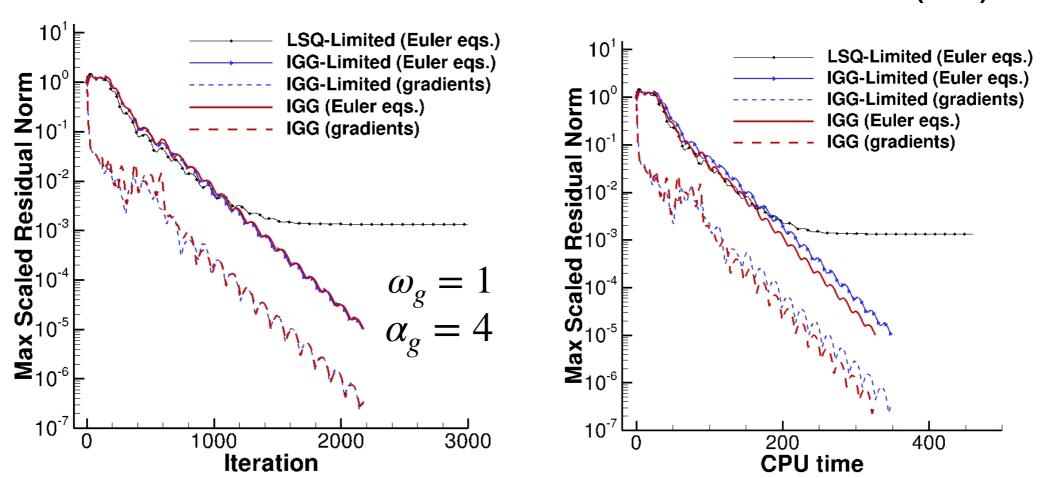


IGG is not more expensive than LSQ gradients

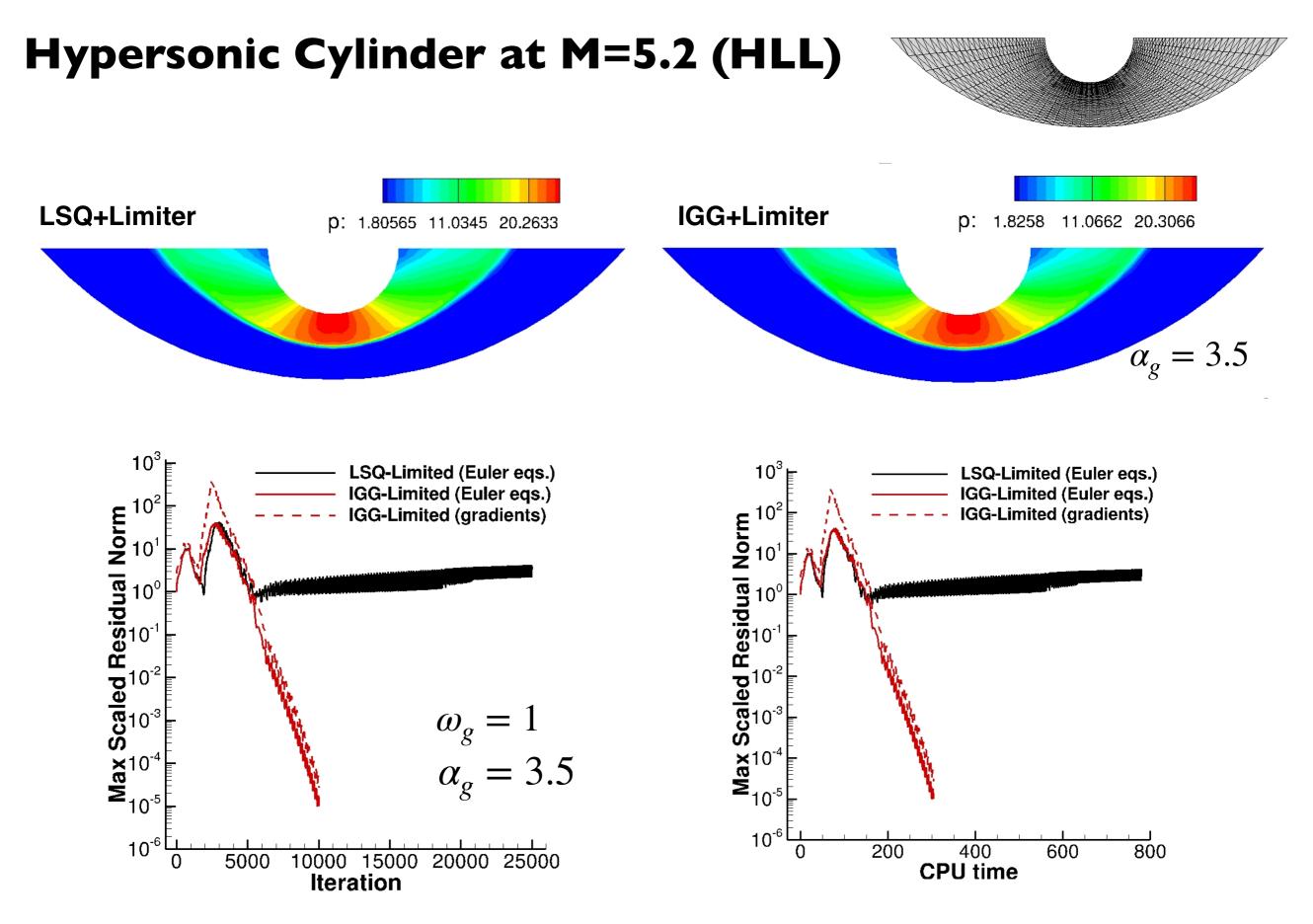
Transonic Airfoil at Mach=0.8 (Roe flux)



Limiter is Venkat with vertex enforcement (MLP).



IDC-IGG converges with/without a limiter on highly-irregular grid.



IDC-IGG converges with a large damping coefficient.

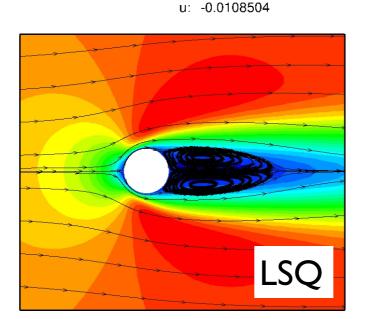
Low-Re Cylinder at Mach=0.3, Re=40 (Roe, Alpha-damp)

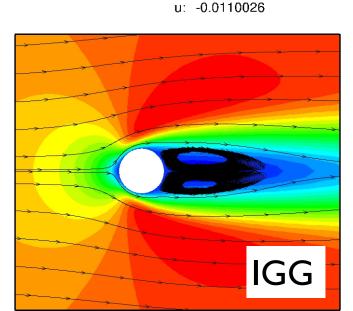
IDC-IGG solver diverged with

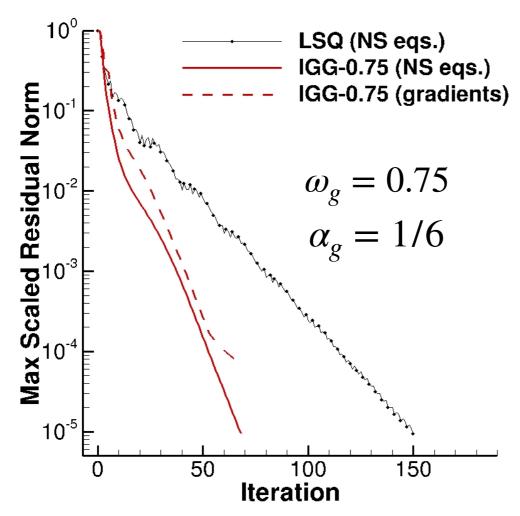
$$\omega_g = 1.0$$

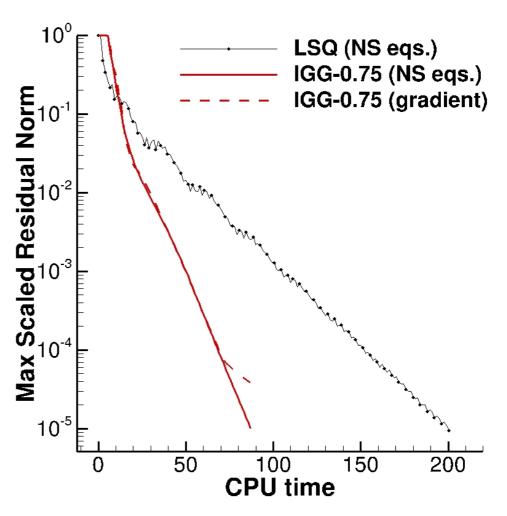
which needed to be reduced to

$$\omega_{g} = 0.75$$





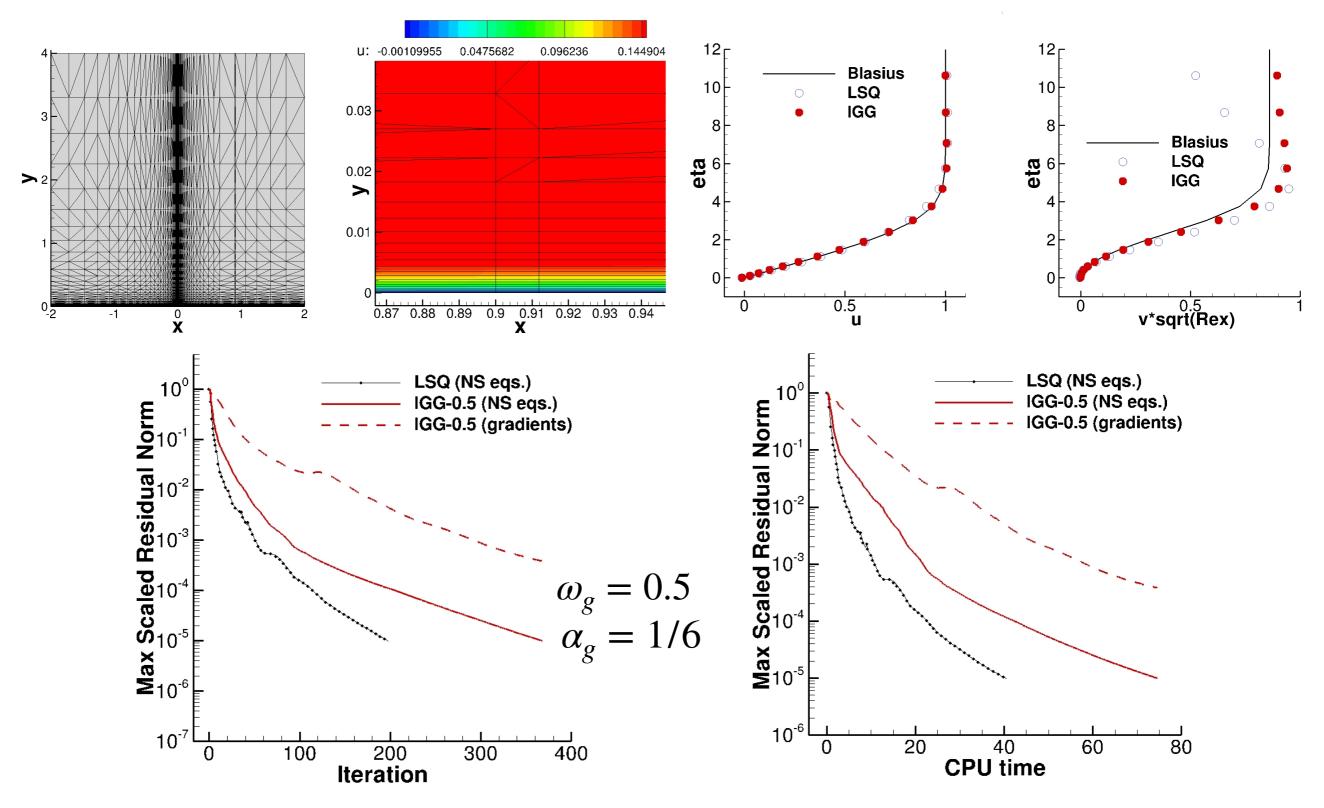




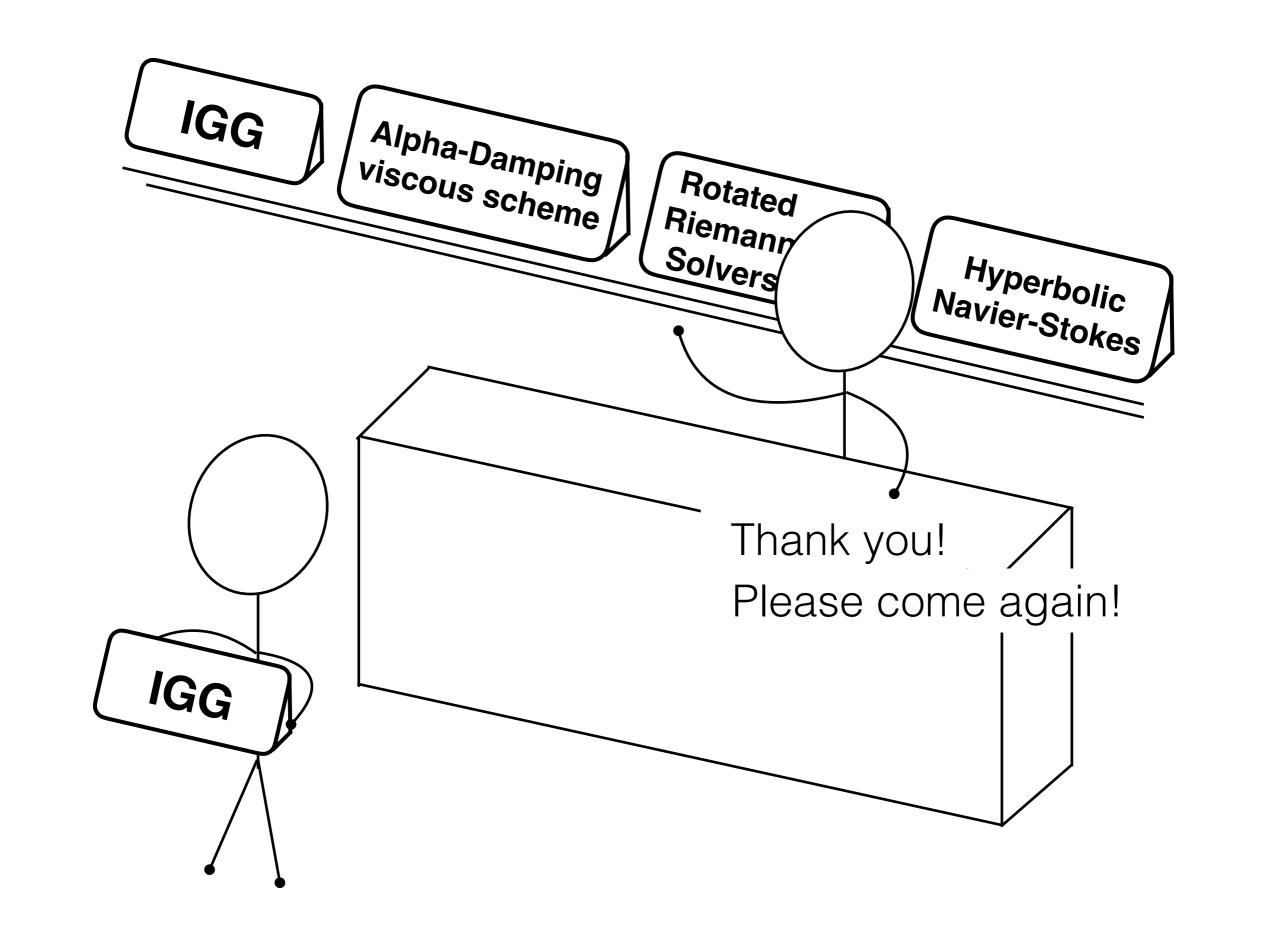
IDC-IGG converges faster than with LSQ.

High-Re Flat Plate at M=0.15, Re=10^6 (Roe, Alpha-damp)

IDC-IGG solver diverged with $\,\omega_{g}=0.75\,$ which needed to be reduced to $\,\omega_{g}=0.5\,$



IDC-IGG is slower here but produces more accurate solution.



Conclusions

- IGG gradients demonstrated for subsonic to hypersonic flows.
- Affordable and as cheap as LSQ with "Installment plan": relax per iteration
- IGG gradient can be adjusted so that a solver converges without a limiter.
- It can stabilize and speed up computations.
- Instability can occur, but can be overcome with a small relaxation factor. Better to gain gradient accuracy slowly?

Future work:

- More tests especially for practical problems in 3D.
- Explore Plan 3: Newton solver
 - *Very robust but many linear relaxations required: Very efficient linear solver needed.
 - * 20 residual and 20x20 Jacobean blocks -> then, HNS is more advantageous?
- Adaptive IGG with a locally defined coefficient: $\alpha_{\scriptscriptstyle \rho}$

Looking for a robust algorithm? Visit the nearest shop today!