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Abstract

In this paper, we introduce a general principle for constructing robust and accurate viscous discretiza-
tion, which is applicable to various discretization methods, including finite-volume, residual-distribution,
discontinuous-Galerkin, and spectral-volume methods. The principle is based on a hyperbolic model for the
viscous term. It is to discretize the hyperbolic system by an advection scheme, and then derive a viscous
discretization from the result. A distinguished feature of the proposed principle is that it automatically
introduces a damping term into the resulting viscous scheme, which is essential for effective high-frequency
error damping and, in some cases, for consistency also. In this paper, we demonstrate the general principle
for the diffusion equation on uniform grids in one dimension and unstructured grids in two dimensions, for
node/cell-centered finite-volume, residual-distribution, discontinuous-Galerkin, and spectral-volume meth-
ods. Numerical results are presented to verify the accuracy of the derived diffusion schemes and to illustrate
the importance of the damping term for highly-skewed typical viscous grids.

1 Introduction

Towards highly efficient and accurate viscous simulations by Navier-Stokes codes, a great deal of effort has
recently been devoted to the development of diffusion schemes with particular emphases on high-order methods
[1–9] and unstructured grid methods [10–17]. A background approach of constructing diffusion schemes common
to many methods is to evaluate the solution gradient on a control volume boundary (e.g., by reconstruction)
and compute the diffusive flux directly with them. The evaluation of the gradient is performed typically by
using every nearby solution value around, reflecting, in a way, the isotropic nature of diffusion. Although seem-
ingly flawless, this approach is known to result in unsatisfactory schemes: for example, non-convergent schemes
[18, 19] and poor h-elliptic (poor high-frequency damping) schemes [20–22]. Hence, this approach by itself is
not complete. In many methods, it is, therefore, augmented in one form or another in a manner specific to
each discretization method. An example is the so-called penalty term in the discontinuous-Galerkin method
[23, 24], and another is the edge-term in the finite-volume method [12, 25, 26]. These terms, playing a role of
high-frequency damping, are known to improve the h-ellipticity and also to resolve the inconsistency problem
that arises in high-order methods. However, these techniques are highly specialized. It is not straightforward to
extend them to other methods, e.g., to the residual-distribution method for which a similar practical technique
has not yet been developed. Even if a satisfactory diffusion scheme is devised, it may still encounter a compat-
ibility problem (e.g., lost accuracy) when combined with an advection scheme for advection-diffusion problems
[27,28]. Although it may be possible to continue to devise another specialized fix for each problematic situation,
what is really needed or highly desired is to improve the approach that is incomplete, so that practical diffusion
schemes can be easily constructed for all discretization methods.

In high-order methods, several improved approaches have recently been proposed [2, 5–8, 29, 30]. These
approaches have been shown to generate some satisfactory schemes in the method they are proposed for. But it
is, again, not immediately clear how to extend them to other discretization methods, particularly to the residual-
distribution method. What is still missing, or highly sought, is a guiding principle that is independent of the
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discretization method, such as ‘upwinding’ for advection schemes. The failures of the common approach seem
to be suggesting that the diffusion equation by itself is not enough to devise practical numerical schemes. Then,
a possible avenue that we may take would be to explore other physical models for diffusion. A better model to
be solved could then be found, but it is also possible to use such an alternative model just to derive a numerical
scheme for the diffusion equation. The present paper demonstrates that the latter is indeed possible and it
moreover gives birth to a general principle for deriving practical diffusion schemes for various discretization
methods.

A model that we employ for deriving a diffusion scheme is a first-order hyperbolic relaxation system for
diffusion [31–33], which we call the first-order hyperbolic diffusion system, or simply the hyperbolic diffusion
system. The system being hyperbolic, a well-established principle for advection such as the upwinding principle
is directly applicable. We propose to discretize this system (instead of the diffusion equation) by an upwind
advection scheme, and derive a diffusion scheme from the result by discarding extra variables and their associated
equations. As will be shown by many examples, the diffusion scheme thus derived contains a term responsible
for high-frequency damping which is inherited from the dissipation term of the generating advection scheme.
It may be pointed out at this point that the proposed principle is independent of the discretization method.
In this paper, we demonstrate its general applicability by deriving diffusion schemes for node/cell-centered
finite-volume, residual-distribution, discontinuous-Galerkin, and spectral-volume methods.

There exist other methods that utilize a first-order representation of the diffusion equation [5,34], but their
system is fundamentally different from the system we employ here. Our first-order system is hyperbolic in time
while their system has no such characters. In deriving a diffusion scheme, we thus fully exploit the hyperbolic
structure of the first-order system, enabling a straightforward design of a numerical scheme by a well-established
principle for hyperbolic systems. There is also a method based on a relaxation model for diffusion [35]. Their
relaxation system is also a first-order system, but it has a form of a system of advection equations with a
relaxation term for the diffusive flux [35]. On the other hand, the system we employ here has no such advective
terms; a part of the relaxation term is used to form a hyperbolic system. There is also a kinetic method based on
the BGK kinetic model of the Boltzmann equation [36]. Our construction is different from the kinetic method
in that it does not require any kinetic model and directly discretizes the macroscopic equation. The first-order
system we employ is similar to the one used in Ref.[32] for a study of relaxation methods. But the same system
is used here for a different purpose: we utilize the system to derive a scheme for the diffusion equation whereas
the method in Ref.[32] attempts to solve the first-order system instead of the diffusion equation. The difference
between the proposed approach and others will be made clearer in a subsequent paper presenting extensions to
the Navier-Stokes equations.

Main contributions of the present paper are three-fold. Firstly, we propose a simple universal recipe for
constructing robust and accurate diffusion schemes in various discretization methods. Its general applicability
will be demonstrated by many examples: node/cell-centered finite-volume, residual-distribution, discontinuous-
Galerkin, and spectral-volume methods. Secondly, we show that a diffusion scheme generally consists of two
essential terms: consistent and damping terms. The former is responsible for approximating the diffusive
flux consistently while the latter is for providing a high-frequency error damping property. This particular
perspective is obvious in interior-penalty schemes, but has not been well perceived in other methods. Thirdly,
we present a practical guide for defining the damping coefficient with a single parameter that controls the
damping property independently of the grid size. In particular, we introduce the grid skewness measure into the
damping coefficient and demonstrate that it is essential to robust and accurate computations on highly-skewed
grids typical in practical viscous simulations. In this paper, we consider only second-order accurate schemes for
the diffusion equation which are sufficient to illustrate these contributions.

The paper is organized as follows. Section 2 describes the first-order hyperbolic diffusion system employed for
deriving diffusion schemes. Section 3 presents the principle for constructing diffusion schemes and the definition
of the relaxation time suitable for deriving diffusion schemes. Section 4 describes applications of the proposed
principle to the one-dimensional diffusion equation, deriving various finite-volume, discontinuous-Galerkin, and
spectral-volume schemes. Section 5 presents various diffusion schemes for the two-dimensional diffusion equa-
tion on unstructured grids: node/cell-centered finite-volume, residual-distribution, discontinuous-Galerkin, and
spectral-volume schemes. Section 6 presents numerical results for time-dependent diffusion problems on uniform
grids in one dimension and on highly-skewed anisotropic irregular triangular grids in two dimensions. Finally,
Section 7 contains conclusions and discussions on future developments.
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2 First-Order Hyperbolic Diffusion System

Consider the diffusion equation:

ut = ν uxx, (2.1)

where ν > 0. To derive a numerical scheme for the diffusion equation, we propose to discretize the first-order
hyperbolic diffusion system:

ut = ν px,

pt = (ux − p)/Tr,
(2.2)

that is asymptotically equivalent to the diffusion equation at large time, t≫ Tr [31,32] when the extra variable
p, called here the gradient variable, relaxes to ux. This relaxation process is characterized by the time scale,
Tr, which is called the relaxation time. In the vector form, the system (2.2) is written as

Ut + Fx = Q, (2.3)

where

U =

[
u

p

]
, F =

[
−νp

−u/Tr

]
, A =

∂F

∂U
=

[
0 −ν

−1/Tr 0

]
, Q =

[
0

−p/Tr

]
. (2.4)

The Jacobian matrix, A, has a pair of real eigenvalues,

±
√

ν

Tr
, (2.5)

and linearly independent eigenvectors [37]. Hence, the first-order system (2.2) is a hyperbolic system; various
well-established techniques are available for discretization [38–41]. The system describes two waves traveling in
opposite directions at the same speed. Note, however, that as shown in Ref. [32], at large t compared to Tr, the
waves will be damped out by a source term effect, recovering a smooth feature of the diffusion equation (2.1).
This particular behavior is best illustrated by a Riemann problem for the hyperbolic diffusion system (2.2): two
different states brought in contact begin to interact instantaneously. Typically, the initial discontinuity breaks
up into two pieces carried by the two waves with a smooth Gaussian-type solution developed in between as
shown in Figure 2.1. These waves eventually disappear by a damping effect of the source term, and the smooth
solution spreads over the domain [32]. The initial stage is called the relaxation stage or frozen limit (the wave
speeds (2.5) are called frozen speeds); thus, p is not equal to ux yet. The last stage is called the equilibrium
limit at which the waves have disappeared and we have p = ux, thus satisfying the original diffusion equation
(2.1). Further details can be found in Ref. [32]. Here, we are interested not to solve the hyperbolic diffusion
system (2.2) but to derive time-accurate numerical schemes for the diffusion equation (2.1) by discretizing the
hyperbolic diffusion system: derive an equilibrium scheme from a frozen scheme. Yet in other words, we derive
a diffusion scheme from an advection scheme.

3 Principle

3.1 Diffusion Scheme from Advection Scheme

For simplicity, but without loss of generality, consider a one-dimensional grid of uniform spacing, ∆x. The
numerical solution is stored at each data point j (a node or a cell center). The solution vector at a time level n
is denoted by Un

j . Suppose we discretized the hyperbolic diffusion system (2.3) in the form:

Un+1
j −Un

j

∆t
= −Resnj +Qn

j , (3.1)

where ∆t is a time step, and Resnj = [Resnj,1, Res
n
j,2]

t, where the superscript t denotes the transpose, is a
discretized version of Fx. We emphasize here that the system is hyperbolic and hence the type of scheme we
need to define Resnj is of advection, not diffusion. Hence, we assume that the spatial discretization, Resnj , is

3



Preprint: Computers and Fluids, Volume 49, Issue 1, Pages 62-86, 2011

−0.1 −0.05 0 0.05 0.1 0.15

−40

−30

−20

−10

0

10

20

0.25
0.5
0.75
1
2
3
4
5
6
7
8
9
10
11
12

x

p

t/Tr

Figure 2.1: Exact solution to the Riemann problem for the gradient variable, p, computed
by an analytical formula given in Ref. [32]. Plots are shown for various times: t/Tr =
0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, vertically shifted for better visibility. The
initial condition is a jump in u and p = 0.

obtained by an advection scheme. The specific form of Resnj depends on the method; it is left open here. The
following argument is applicable to any discretization method. Write out the scheme (3.1) by components:

un+1
j − unj

∆t
= −Resnj,1, (3.2)

pn+1
j − pnj

∆t
= −Resnj,2 −

1

Tr
pnj . (3.3)

This scheme is not time-accurate for the diffusion equation (2.1) in general because pnj may not be an accurate
approximation to the solution gradient. To make this scheme time-accurate, we must instantaneously drive the
gradient variable to the equilibrium limit: p → ux. We propose to achieve this by an explicit evaluation of
pnj from the approximate solution of u (e.g., gradient reconstruction), so that the extra variable, pnj , no longer
needs to be stored. Then, Equation (3.3) is also not needed any more, and we are left with

un+1
j − unj

∆t
= −Resnj,1, (3.4)

which is now time-accurate for the diffusion equation. We have thus derived a time-accurate diffusion scheme
from an advection scheme applied to the hyperbolic diffusion system.

Some remarks are in order. It is expected that well-designed advection schemes incorporate some form of
dissipation; it then enters the right hand side of Equation (3.4) as a damping term. This is how a damping term
is introduced into the derived diffusion scheme. This key feature will be illustrated later by many examples. It
should be noted also that we have great flexibility in evaluating the gradient variable, pnj . Gradient reconstruction
often requires an extended stencil, but a compact diffusion scheme can be constructed by evaluating the gradient
with a compact stencil. Such examples will be shown later for a finite-volume method. Finally, we emphasize
that although we begin with a system scheme for the hyperbolic diffusion system, the derived diffusion scheme
is a scalar scheme for the diffusion equation. That is, the extra variable, p, is not stored; instead it is explicitly
evaluated by the approximate solution of u.
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3.2 Relaxation Time

To complete the construction of a diffusion scheme, it is necessary to define the relaxation time, Tr, which would
enter the right hand side of Equation (3.4). Recall that we first discretize the hyperbolic diffusion system by an
advection scheme. Hence, we define Tr such that the hyperbolic diffusion system remains strongly hyperbolic.
For explicit time-stepping schemes, it suffices to take Tr comparable to the maximum time step, so that the
hyperbolic behavior is well kept during every time step. The maximum time step is defined based on the CFL
condition:

∆t ≤ ∆x√
ν/Tr

, (3.5)

where ∆x is the minimum mesh spacing of a given grid. Then,

∆tmax ≡ ∆x√
ν/Tr

= αTr, (3.6)

where α is a positive constant of O(1) representing the ratio, ∆tmax/Tr. Solving Equation (3.6) for Tr, we
obtain

Tr =
∆x2

α2ν
. (3.7)

We typically set α = 1 for the physical reason mentioned above, but there are some other values having special
properties as we will show later. Substituting Equation (3.7) into the CFL condition (3.5), we find

∆t ≤ 1

α

∆x2

ν
. (3.8)

This is the CFL condition for the derived diffusion scheme. Observe that a typical mesh-dependence of the time
step for diffusion schemes has emerged: ∆t = O(∆x2).

3.3 Principle

A principle for constructing diffusion schemes can be stated as follows:

Discretize the hyperbolic diffusion system by an advection scheme, then ignore the discrete equation
for p, and instead approximate p = ux directly. The result is a time-accurate scheme for the diffusion
equation, having a damping term inherited from the dissipation term of the advection scheme.

As discussed earlier and will be shown by many examples, the diffusion scheme derived from the principle will
inherit the dissipation term of the advection scheme from which it is derived, which then acts as a high-frequency
damping term. The damping term, such as the edge-term in finite-volume methods or the penalty-term in
discontinuous-Galerkin methods, is then automatically incorporated into the diffusion scheme by an appropriate
choice of the advection scheme, e.g., the upwind scheme. This is a very useful feature. Simply following the
principle, we obtain a diffusion scheme with a term responsible for high-frequency damping automatically built
in. No special techniques nor extra considerations are necessary.

In the rest of the paper, we describe in details how the proposed principle can be applied to derive diffusion
schemes in node/cell-centered finite-volume, residual-distribution, discontinuous-Galerkin, and spectral-volume
methods. Each section is self-contained for a particular method, so that readers may skip sections dealing with
methods of no interest to them.

4 One Dimension

4.1 Finite-Volume Diffusion Schemes

4.1.1 Formulation

Consider a one-dimensional grid of N cells with uniform spacing, ∆x. The solution data are considered as
cell-averages and stored at the cell center denoted by xj , j = 1, 2, 3, . . . , N ; thus, the data are discontinuous
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across cells. Integrating the hyperbolic diffusion system (2.3) over a cell, Ij = [xj−1/2, xj+1/2], we obtain a
standard semi-discrete finite-volume discretization:

dUj

dt
= − 1

∆x

[
Fj+1/2 − Fj−1/2

]
+

1

∆x

∫
Ij

Q dx, (4.1)

where Uj = [uj , pj ]
t is the cell-averaged solution vector, and Fj+1/2 is the interface flux to be defined. Note

that the source term discretization is not important since it has a nonzero term only in the second equation
which we will ignore. For time integration, we employ the forward-Euler time-stepping scheme for all schemes
in this paper unless otherwise stated. The forward-Euler scheme is formally first-order accurate in time, but
it gives second-order accuracy in space because the time step is proportional to ∆x2 for diffusion schemes as
shown in Section 3.2. The interface flux, Fj+1/2, can be determined, from two states, UL and UR, extrapolated
from the left and right cells to the interface by any flux function suitable for the hyperbolic system. In this
paper, we employ the upwind flux:

Fj+1/2 =
1

2
[FR + FL]−

1

2
|A| (UR −UL) =

1

2
[FR + FL]−

1

2

√
ν

Tr
(UR −UL), (4.2)

which can be written by Equation (3.7) as

Fj+1/2 =
1

2
[FR + FL]−

να

2∆x
(UR −UL), (4.3)

where FL and FR denote the physical flux evaluated by the left and right states respectively.
The discretization of the hyperbolic diffusion system (2.3) is now completed. At this point, the resulting

finite-volume scheme (4.1) may not be time-accurate for the diffusion equation because pj may not be an accurate
approximation of ux. To derive a time-accurate diffusion scheme, we discard the second component (i.e., the
equation for dpj/dt) and instead directly reconstruct pj from uj . Then, we are left with the first component:

duj
dt

= − 1

∆x

[
fj+1/2 − fj−1/2

]
, (4.4)

where

fj+1/2 = −ν
2
[pR + pL]−

να

2∆x
(uR − uL). (4.5)

This is a time-accurate diffusion scheme. Note that the second term in the interface flux (4.5) is the damping
term which comes directly from the dissipation term of the upwind scheme for the hyperbolic diffusion system.
It is this term, as we will show later, that provides sufficient damping and can also improve the order of accuracy
of the diffusion scheme. On the other hand, the first term approximates the physical flux; it is thus called the
consistent term or part of the numerical flux. To complete the spatial discretization, we need to define the left
and right states: uL, uR, pL, and pR. In particular, we need to evaluate the gradient variables, pR and pL, by
using a set of discrete solutions of u (we thus do not store pj). In doing so, the consistent term should always be
retained and evaluated accurately as it is the term that makes the numerical flux consistent, thus resulting in a
consistent scheme for the diffusion equation (2.1). It should be noted also that the derived diffusion scheme is
implemented in the same way as the advection scheme: interface flux evaluated by two (possibly discontinuous)
states. Examples that follow differ only in the definition of the left and right states.

4.1.2 Piecewise Constant Data

This example is intended to emphasize the importance of the consistent term. Assuming that the solution is
piecewise constant, we immediately notice that the solution gradient is not available and thus the consistent
part of the flux cannot be evaluated. Nevertheless, there is one special case where the scheme can be made
consistent. We have at the interface,

pL = pR = 0, uL = uj , uR = uj+1. (4.6)

Inserting these into the interface flux (4.5), we obtain

fj+1/2 = − να

2∆x
(uj+1 − uj). (4.7)
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Figure 4.1: Discontinuous piecewise linear data in one dimension.

Note that this flux has only the damping term since the consistent part has vanished identically. But this flux
can be made to approximate the physical flux consistently, by setting

α = 2. (4.8)

Then, the resulting scheme is a standard three-point finite-difference scheme for diffusion:

duj
dt

=
ν

∆x2
(uj+1 − 2uj + uj−1). (4.9)

In this case, there are no other choices for α to make the scheme consistent. As we will see in the next section,
if we retain the consistent part of the flux, α will be a free parameter.

4.1.3 Reconstructed Piecewise Linear Data

We consider reconstructing the gradient in order to evaluate the consistent part of the flux function. Note
that this would be the most natural option in our construction since it is a standard way to upgrade a first-
order advection scheme to second-order [42]. Assuming that the solution is smooth for diffusion problems, we
reconstruct the solution gradient within each cell (not at the interface) simply by the central-difference formula:

pj =
uj+1 − uj−1

2∆x
, pj+1 =

uj+2 − uj
2∆x

. (4.10)

We now have a piecewise linear variation within each cell (see Figure 4.1), and the interface quantities can be
evaluated as follows:

uL = uj +
1
2 pj∆x, uR = uj+1 − 1

2 pj+1∆x,

pL = pj , pR = pj+1.
(4.11)

These values are used to compute the interface flux (4.5), and the diffusion scheme is completely defined. Note
that the resulting diffusion scheme is implemented in the same way as a second-order finite-volume advection
scheme: interface flux computed by two discontinuous interface values. If such an advection scheme is imple-
mented in a code already, it can be readily extended to an advection-diffusion scheme simply by adding the
diffusive flux to the advective flux.

To investigate the accuracy and the damping property of the derived diffusion scheme, substitute (4.11) into
the interface flux (4.5) to get

fj+1/2 = −ν
2
[pj + pj+1]−

να

2∆x

[
uj+1 − uj −

1

2
(pj + pj+1)∆x

]
. (4.12)

We point out in passing that the damping term (the second term) is a quantity ofO(∆x2) since uR−uL = O(∆x3)
for smooth solutions and it is the consistent term (the first term) that approximates the solution gradient at
the interface. Inserting this flux into Equation (4.4), we can write the derived diffusion scheme as

duj
dt

= ν
uj+2 − 2uj + uj−2

4∆x2
+

να

2∆x2

[
uj+1 − 2uj + uj−1 −

1

4
(uj+2 − 2uj + uj−2)

]
, (4.13)

where the gradient variables, pj and pj+1, have been replaced by the central-difference formula (4.10). Note
that this scheme has an extended five-point stencil (unless α = 2 which leads to the three-point scheme). The
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scheme is consistent, not just for one but for many choices of α. To see this, insert a smooth function into the
scheme and expand it to obtain

duj
dt

= νuxx + νuxxxx

(
1

3
− α

8

)
∆x2 +O(∆x4), (4.14)

This shows that the scheme is consistent as well as second-order accurate for arbitrary α. It also follows that a
particular choice,

α =
8

3
, (4.15)

makes the scheme fourth-order accurate. Now, insert a Fourier mode of phase angle β ∈ [0, π], u0 exp(iβx/∆x),
where u0 is a constant and i =

√
−1, into the scheme (4.13) to get

du0
dt

= λu0, (4.16)

where λ is the damping factor:

λ =
1

∆x2

(
−ν sin2 β − 2να sin4

β

2

)
. (4.17)

It follows that the highest frequency error mode, β = π, cannot be damped if α = 0, meaning that the consistent
part does not provide sufficient damping. This is a typical odd-even decoupling problem which can be observed
also in Equation (4.13). Then, the second term, which corresponds to the damping term, is the one that gives
damping for high frequency modes. Figure 4.2 shows a plot of the damping factor for α = 0, 1, 2, 8/3, and
5, compared with the damping factor of the exact diffusion operator. It confirms that the scheme with α = 0
has poor high-frequency damping, and that increasing α leads to larger damping. In terms of the h-ellipticity,
which is a measure of high-frequency damping representing the minimum damping factor over the high-frequency
domain, β = [π/2, π], (see Ref. [20] for details), the scheme with α = 0 has zero h-ellipticity (it is therefore not
h-elliptic), nonzero α makes the scheme h-elliptic, and increasing α improves the h-ellipticity of the scheme.

We remark that the derived diffusion scheme (4.13) is similar to a three-parameter family of five-point
diffusion schemes derived in Ref.[35]. No discussions on the h-ellipticity are given in Ref.[35]; the above discussion
on the choice of α may be helpful in choosing their parameters to single out h-elliptic schemes from the family.
Also, the existence of a fourth-order scheme is not mentioned in Ref.[35]; a set of parameters may be discovered
from α = 8/3 to reproduce the fourth-order accurate scheme given above. We point out also that the same
five-point scheme can be derived by applying the principle to the residual-distribution method. The derivation
is given in Ref.[43].

To estimate the maximum time step allowable for explicit time-stepping, we apply the forward-Euler time
integration to obtain the stability condition:∣∣∣∣1 + ∆t

∆x2

(
−ν sin2 β − 2να sin4

β

2

)∣∣∣∣ ≤ 1. (4.18)

This leads to the following time-step restriction:

∆t ≤


(2− α)

∆x2

ν
, 0 ≤ α < 1,

1

α

∆x2

ν
, α ≥ 1.

(4.19)

Another stability condition can be obtained in terms of positivity: the discrete solution at each data point
is a convex combination of neighbor values. It can be easily shown that the derived diffusion scheme (4.13)
positive if

0 ≤ α ≤ 2, ∆t ≤ 4

3α+ 2

∆x2

ν
. (4.20)

It follows that the fourth-order scheme (α = 8/3) is not positive. Note that the scheme is positive even for α = 0,
i.e., zero damping. Therefore, the positivity property does not guarantee the h-ellipticity. The positivity is not
even necessary for the h-ellipticity. The fourth-order scheme (α = 8/3) is not positive but strongly h-elliptic as
shown in Figure 4.2. A further discussion on positivity is beyond the scope of the present paper.
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Figure 4.2: Damping factor λ for the exact operator, νuxx and the finite-
volume scheme with α = 0, 1, 2, 8/3, and 5. ν = 1 and ∆x = 0.1.

4.1.4 Reconstructed Interfacial Linear Data

Yet another possibility is to reconstruct the gradient at the interface,

pj+1/2 =
uj+1 − uj

∆x
. (4.21)

Using this common gradient in both adjacent cells to construct piecewise linear data, we obtain the interface
quantities as

uL = uj +
1

2
pj+1/2∆x =

uj + uj+1

2
, uR = uj+1 −

1

2
pj+1/2∆x =

uj + uj+1

2
,

pL = pj+1/2, pR = pj+1/2,
(4.22)

i.e., the reconstructed data are continuous at the interface. Then, the interface flux (4.5) becomes

fj+1/2 =
uj+1 − uj

∆x
. (4.23)

Note that this flux consists of the consistent part only since the damping term has vanished identically. Using
this flux, we will obtain the three-point scheme (4.9) again. Although we arrive at the same result, this time, we
have consistency automatically (i.e., no need to specifically choose α = 2). This is because we have accurately
evaluated the consistent part of the flux. In effect, the above procedure corresponds to the lowest-order version
of the recovery method [29] where the diffusive flux is evaluated directly by a continuous reconstruction across
the interface. In higher dimensions, however, the damping term does not necessarily vanish even when a common
gradient is used between two cells. It can still provide damping and improve the h-ellipticity as we will show in
Section 5.3.3.

4.2 Discontinuous-Galerkin Diffusion Schemes

Discontinuous Galerkin (DG) method is based on a weak formulation with discontinuous basis functions [18].
Multiplying the hyperbolic diffusion system (2.3) by a test function, v, and integrating over a computational
cell, Ij = [xj−1/2, xj+1/2], we obtain∫

Ij

vUt dx+

∫
Ij

vFx dx =

∫
Ij

vQ dx. (4.24)

9
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Integration by parts gives∫
Ij

vUt dx = −
[
(vF)|j+1/2 − (vF)|j−1/2

]
+

∫
Ij

vxF dx+

∫
Ij

vQ dx. (4.25)

To represent the solution, U, discontinuous basis functions are employed that are defined independently within
each cell. It consequently creates a gap at cell interfaces; the flux at each interface will be determined from the
left and right values, UR and UL, by the upwind flux (4.3).

The P0 method corresponds to piecewise constant data; it has been considered in 4.1. Here, we consider the
P1 method which corresponds to piecewise linear data:

U(x) = Uj + (x− xj)
∆Uj

∆x
, (4.26)

where Uj = [uj , pj ]
t is the cell-averaged solution vector and ∆Uj = [∆uj ,∆pj ]

t is the undivided gradient
vector. Choosing the basis functions, 1 and (x − xj)/∆x, as test functions, we obtain the following evolution
equations for Uj and ∆Uj :

dUj

dt
= − 1

∆x

[
Fj+1/2 − Fj−1/2

]
+

1

∆x

∫
Ij

Q dx, (4.27)

d(∆Uj)

dt
= − 6

∆x

[
Fj+1/2 + Fj−1/2

]
+

12

∆x2

∫
Ij

F dx+
12

∆x2

∫
Ij

x− xj
∆x

Q dx, (4.28)

where the interface flux is given by Equation (4.3). The volume integrals involving Q are not important because
Q has a nonzero entry only in the second component which we will ignore. On the other hand, the volume
integral of the flux in the second equation is important. An efficient formula, which reuses the interface fluxes,
is ∫

Ij

F dx =
∆x

6

(
Fj+1/2 + 4Fj + Fj−1/2

)
, (4.29)

where Fj is evaluated directly by the solution at the cell-center. Now, discarding the equations for pj and ∆pj
from Equations (4.27) and (4.28), respectively, we obtain the following DG diffusion scheme:

duj
dt

= − 1

∆x

[
fj+1/2 − fj−1/2

]
, (4.30)

d(∆uj)

dt
= − 4

∆x

[
fj+1/2 − 2fj + fj−1/2

]
, (4.31)

where the interface flux is given by Equation (4.5). Note that the right hand side of Equation (4.31) is a
second-order accurate approximation of −fxx = −νuxxx. To evaluate the interface flux, e.g., at j+1/2, we take
the following values:

uL = uj +∆uj/2, uR = uj+1 −∆uj+1/2,

pL = ∆uj/∆x, pR = ∆uj+1/∆x.
(4.32)

We emphasize that at this point we have discarded both pj and ∆pj , and thus store only uj and ∆uj . Necessary
quantities such as pL and pR are explicitly evaluated by the approximate solution of u as in Equation (4.32).
The construction of a DG diffusion scheme is now completed. Note that the derived DG scheme is compact
since the numerical flux involves only the left and right cells, and no extra variables nor equations are required.
Some well-known DG diffusion schemes, e.g., the Bassi-Rebay scheme [34] or the Local DG (LDG) scheme [5],
are also based on a first-order system representation of the diffusion equation, but their system involves neither
time derivatives of auxiliary variables nor the relaxation time. Consequently, their system does not possess a
hyperbolic character; the discretization is not trivial [5]. On the other hand, our first-order system is hyperbolic
in time; the discretization is straightforward since well-established techniques for hyperbolic systems are directly
applicable. The DG diffusion scheme derived here is much similar to the interior-penalty schemes [23, 44–47].

10
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We can actually rediscover some well-known interior-penalty schemes as variants of the diffusion scheme derived
above [43]. Note that the parameter α in the derived scheme is not mesh-dependent: the scheme is stable and
second-order accurate with α = 1 or any positive constant for arbitrary grids, and can be fourth-order accurate
for a special value as shown below. It is of different nature from a kind of empiricism known for the classical
interior penalty schemes [23].

It is instructive, although not necessary for implementation, to write the derived diffusion scheme in an
expanded form. Inserting Equation (4.32), we can write the diffusive flux (4.5) as

fj+1/2 = − ν

2∆x

[
∆uj+1 +∆uj

]
− να

2∆x

[
uj+1 − uj −

1

2

(
∆uj+1 +∆uj

)]
, (4.33)

which is then substituted into Equations (4.30) and (4.31) to get

duj
dt

=
ν

∆x2

[
1

2

(
1− α

2

) (
∆uj+1 −∆uj−1

)
+
α

2
(uj+1 − 2uj + uj−1)

]
, (4.34)

d(∆uj)

dt
=

ν

∆x2

[
2
(
∆uj+1 − 2∆uj +∆uj−1

)
+ 4α

{
uj+1 − uj−1

2
− ∆uj+1 + 2∆uj +∆uj−1

4

}]
.(4.35)

It is interesting that the two variables decouple if α = 2, and the scheme reduces to the standard three-point
scheme for uj . To investigate stability and accuracy of the diffusion scheme, insert a Fourier mode,

exp(iβx/∆x)

(
u0

∆u0

)
(4.36)

into the scheme to get the evolution equation of the Fourier mode:

d

dt

(
u0

∆u0

)
=M(β)

(
u0

∆u0

)
, (4.37)

where

M(β) =
νe−iβ

∆x2

 α

2

α− 2

4

−2α 2− α

+
ν

∆x2

[ −α 0

0 −2(α+ 2)

]
+
νeiβ

∆x2

 α

2
−α− 2

4

2α 2− α

 . (4.38)

This matrix has the following eigenvalues:

λ1,2 =
ν

∆x2

[
α− 4

2
cosβ +

3α+ 4

2
± 1

2

√
(α− 4)2(cos2 β + 1) + 2(α+ 4)(3α− 4) cosβ + 8α2

]
, (4.39)

where λ1 and λ2 are associated with the negative and positive signs, respectively. When α = 0, they reduce to

λ1 = 0, λ2 =
4ν

∆x2
(cosβ − 1), (4.40)

Hence, the scheme has no damping for the error mode associated with λ1. Note also that the second eigenvalue
is not consistent:

λ2 = −2νβ2

∆x2
+O(β4), (4.41)

which differs from the exact operator, −νβ2/∆x2, by a factor of 2. This inconsistency problem is well known
[48]. An intuitive explanation for this failure would be that without the damping term, the diffusive flux (4.33)
completely vanishes for a piecewise constant solution for which ∆uj = 0; thus there is no way to remove a
piecewise constant error mode. For nonzero α, expanding the eigenvalues for small β, we obtain

λ1 = − νβ2

∆x2
+

6− α

24α

νβ4

∆x2
+O(β6), λ2 = − 4αν

∆x2
+
(α
2
− 1
) νβ2

∆x2
− (α− 2)(α− 3)

24α

νβ4

∆x2
+O(β6), (4.42)

11
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Figure 4.3: One-dimensional data for the second-order SV method.

The first mode approximates the exact diffusion operator with second-order accuracy. It can be fourth-order
accurate if

α = 6. (4.43)

Increasing α, we can expect a large damping effect from the second eigenvalue λ2, but it would impose a severe
restriction on the time step. For the forward-Euler time integration, we have the following stability conditions:

|1 + λ1∆t| ≤ 1 and |1 + λ2∆t| ≤ 1. (4.44)

It can be shown that these conditions lead to the following restriction on the time step:

∆t ≤


1

4

∆x2

ν
, 0 ≤ α < 2,

1

2α

∆x2

ν
, α ≥ 2.

(4.45)

Again, we take α = 1 for the same physical reason as before. We may take α = 6 if fourth-order accuracy is
desired; this however severely limits the time step.

Various other DG diffusion schemes can be derived in the same framework, e.g., by different interface fluxes
or quadrature formulas. Examples can be found in Ref.[43], including the well-known (σ, µ)-schemes [24, 49]
which includes the so-called symmetric scheme [23] (σ = 1) and the Baumann scheme [44, 45] (σ = −1). Also,
a scheme that is consistent even with α = 0 can be derived by a different quadrature formula [43].

4.3 Spectral-Volume Diffusion Scheme

In the spectral-volume method [19, 50], a cell, Ij = [xj−1/2, xj+1/2], is systematically subdivided into a set of
control volumes, {Cj,i}, i = 1, 2, . . . ,m, where m depends on the accuracy sought. The cell thus divided is
called the spectral volume (SV). The solution value is stored within each control volume as a volume-averaged
value, Uj,i = [uj,i, pj,i]

t. Given the volume-averaged solutions, a higher-order polynomial of order m− 1 is then
constructed within each spectral volume such that its volume average over a control volume is equal to Uj,i.
For second-order accuracy, a cell is divided into two control volumes (m = 2) defined by Cj,1 = [xj−1/2, xj ] and
Cj,2 = [xj , xj+1/2] (see Figure 4.3), and the solution values are defined by

Uj,1 =
1

∆x/2

∫ xj

xj−1/2

U dx, Uj,2 =
1

∆x/2

∫ xj+1/2

xj

U dx. (4.46)

We can then construct a polynomial of degree 1:

Uj(x) = Uj,1L1(x) +Uj,2L2(x), (4.47)

12
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where

L1(x) = −x− xj,2
∆x/2

, L2(x) =
x− xj,1
∆x/2

. (4.48)

The coordinates, xj,1 = xj −∆x/4 and xj,2 = xj +∆x/4, are the center coordinates of the control volumes. It
can be shown by straightforward integration that the polynomial (4.47) satisfies

1

∆x/2

∫
Cj,i

Uj(x) dx = Uj,i, i = 1, 2. (4.49)

To derive a diffusion scheme, we follow the principle and begin by discretizing the hyperbolic diffusion system
(2.3). Evolution equation for the volume-averaged values are obtained by integrating the system (2.3) over the
control volumes:

dUj,1

dt
= − 1

∆x/2

[
Fj − Fj−1/2

]
+

1

∆x/2

∫
Cj,1

Q dx, (4.50)

dUj,2

dt
= − 1

∆x/2

[
Fj+1/2 − Fj

]
+

1

∆x/2

∫
Cj,2

Q dx, (4.51)

where Fj+1/2 and Fj−1/2 are the SV-interface fluxes, and Fj is the interior flux to be suitably defined. At the
SV-interface where two independently defined polynomials meet, the solution can be discontinuous, and thus
we employ the upwind flux:

Fj+1/2 =
1

2
[FR + FL]−

να

∆x
(UR −UL), (4.52)

where the subscripts L and R denote the interior state and the neighboring state. Note that the dissipation
coefficient of the above flux differs from that of the upwind flux (4.3) by factor 2 because each control volume
here has a measure ∆x/2, not ∆x. On the other hand, the solution is continuous over the spectral volume, and
therefore the interior flux is given by the physical flux at xj : Fj = AUj(xj). Now, we derive a diffusion scheme
by discarding the second component in each equation:

duj,1
dt

= − 1

∆x/2

[
fj − fj−1/2

]
,

duj,2
dt

= − 1

∆x/2

[
fj+1/2 − fj

]
, (4.53)

where

fj+1/2 = −ν
2
[pR + pL]−

να

∆x
(uR − uL), fj = −ν duj(x)

dx
. (4.54)

We complete the derivation by defining the left and right states:

uL = uj(xj+1/2), uR = uj+1(xj+1/2),

pL =
duj(x)

dx
, pR =

duj+1(x)

dx
.

(4.55)

Again, we set α = 1 but there is a special value that makes the scheme fourth-order accurate as shown below.
Note that we have discarded both pj,1 and pj,2, and thus store only uj,1 and uj,2. Necessary quantities, such as
pL and pR, are evaluated by differentiating the polynomial representation of the solution in the corresponding
spectral volume. The derived SV diffusion scheme is compact: it involves the neighboring spectral-volumes only.
The scheme is very similar to the penalty scheme considered in Ref. [19].

To examine accuracy and stability of the derived SV diffusion scheme, insert into the system (4.53) a Fourier
mode,

exp(iβx/∆x)

(
u0,1

u0,2

)
, (4.56)

where u0,1 and u0,2 are constant amplitudes, to get

d

dt

(
u0,1

u0,2

)
=Msv(β)

(
u0,1

u0,2

)
. (4.57)
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The matrix, Msv(β), is given by

Msv(β) =
νe−iβ

∆x2

[
2− α 3α− 2

0 0

]
+

ν

∆x2

[
−(3α+ 2) α+ 2

α+ 2 −(3α+ 2)

]
+
νeiβ

∆x2

[
0 0

3α− 2 2− α

]
. (4.58)

This matrix has the following eigenvalues:

λ1,2 =
ν

∆x2

[
(2− α) cosβ − (3α+ 2)±

√
(α− 2)2 cos2 β + 2(3α− 2)(α+ 2) cosβ + (3α+ 2)2 − 16α

]
, (4.59)

where λ1 and λ2 are associated with the positive and negative signs, respectively. When α = 0, they reduce to

0,
4ν

∆x2
(cosβ − 1). (4.60)

These are exactly the same as those of the DG scheme with α = 0, and thus the scheme is inconsistent. For
nonzero α, we can expand them for small β to get

λ1 = − νβ2

∆x2
+

3− α

24α

νβ4

∆x2
+O(β6), (4.61)

λ2 = − 8αν

∆x2
+

(α− 1) νβ2

∆x2
− (α− 1)(2α− 3)

24α

νβ4

∆x2
+O(β6). (4.62)

It follows that the scheme is stable and second-order accurate for any non-negative α except for α = 3 which
makes the scheme fourth-order accurate. Note, as pointed out in Ref. [50], that the predicted accuracy is obtained
in uj(x), not necessarily in the control-volume averages, uj,1 and uj,2, individually. Numerical experiments show
that the control-volume averages are generally second-order accurate but only third-order accurate for α = 3.
For the forward-Euler time-stepping scheme, we obtain the following stability condition:

∆t ≤


1

4

∆x2

ν
, 0 ≤ α < 1,

1

4α

∆x2

ν
, α ≥ 1.

(4.63)

This condition is essentially the same as the condition (4.45) for the DG scheme if the factor 2 in the control
volume is taken into account. The same is true, in fact, for the eigenvalues. Note, however, that the discrete
equations are different, and thus the numerical solutions will be different. See Ref. [50] for more details on the
similarities and differences of the SV and DG methods.

5 Two Dimensions

5.1 First-Order Hyperbolic Diffusion System

We consider constructing numerical schemes for the diffusion equation in two dimensions:

ut = ν (uxx + uyy). (5.1)

The first-order hyperbolic diffusion system is given by

ut = ν (px + qy),

pt = (ux − p)/Tr,

qt = (uy − q)/Tr,

(5.2)

where p and q are the gradient variables which relax to the solution derivatives, ux and uy, respectively. Write
the system in the vector form,

Ut + Fx +Gy = Q, (5.3)

14
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where

U =


u

p

q

 , F =


−νp

−u/Tr

0

 , G =


−νq

0

−u/Tr

 , Q =


0

−p/Tr

−q/Tr

 . (5.4)

The flux Jacobians are given by

A =
∂F

∂U
=


0 −ν 0

−1/Tr 0 0

0 0 0

 , B =
∂G

∂U
=


0 0 −ν

0 0 0

−1/Tr 0 0

 . (5.5)

Consider a projected Jacobian along an arbitrary vector, n = (nx, ny):

An = Anx +Bny. (5.6)

The projected Jacobian has the following eigenvalues:

λ1 = −
√

ν

Tr
, λ2 =

√
ν

Tr
, λ3 = 0. (5.7)

The first two eigenvalues are identical to those in one dimension. Note also that these eigenvalues are independent
of n, and therefore the system describes a wave propagating isotropically. The third eigenvalue corresponds
to the inconsistency damping mode [33], acting on the components of p and q such that qx − py ̸= 0; it is
irrelevant in the present framework. The absolute Jacobian, |An|, which is needed to define the upwind flux, is
constructed by the right-eigenvector matrix, Rn, and the diagonal eigenvalue-matrix, Λn,

Rn =

 √
νTr −

√
νTr 0

nx nx −ny
ny ny nx

 , Λn =

 −
√
ν/Tr 0 0

0
√
ν/Tr 0

0 0 0

 , (5.8)

as follows:

|An| = Rn|Λn|R−1
n =

√
ν

Tr

 1 0 0

0 n2x nxny

0 nxny n2y

 . (5.9)

It is the first row that is relevant to diffusion schemes.

5.2 Relaxation Time

The relaxation time, Tr, can be derived as in Section 3.2 based on the maximum explicit time-step. The precise
form of Tr may depend on the mesh type and/or the discretization method, but it can be expressed generally
in the form,

Tr =
L2
r

α2ν
, (5.10)

where Lr is a length scale that must be suitably defined for a given discretization, and α is again a positive
constant representing the ratio of the maximum explicit time step to the relaxation time. As in one dimension,
we typically set α = 1 to keep the system strongly hyperbolic over every time step. It is important to note in
two dimensions, however, that a length scale arising in the CFL condition is typically not a mesh size, h, but
h/2. This is well known to be the case for donor-cell-type schemes, i.e., those involving only the face-adjacent
neighbors in the stencil [38,41]. For example, if we apply the upwind difference scheme defined in each coordinate
direction on a uniform mesh with spacing h, the time step is restricted by

∆t ≤ h/2√
ν/Tr

. (5.11)
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Then, requiring the maximum time-step to be comparable to the relaxation time as in Section 3.2, we obtain

Tr =
h2

4α2ν
, (5.12)

which corresponds to the formula (5.10) with

Lr =
h

2
. (5.13)

Based on this observation and for simplicity, we define Lr as half a typical mesh spacing for two-dimensional
schemes considered in this paper. In three dimensions, for similar reasons, Lr may be defined as the third of a
typical mesh spacing.

It should be noted also that the length scale should be defined in the direction relevant to the wave prop-
agation. For example, in finite-volume methods, Lr is taken to be a length measured in the direction of the
face normal along which a Riemann problem is considered. As will be shown, this definition brings a signif-
icant distinction of two-dimensional (as well as three-dimensional) schemes from one-dimensional schemes. It
introduces a measure of grid-skewness into the damping coefficient in such a way that it increases damping for
highly-skewed grids, enabling robust and accurate computations on typical viscous grids.

5.3 Node-Centered Finite-Volume Diffusion Schemes

5.3.1 Formulation

We begin by dividing a domain of interest into a set of elements, {E}, including both triangles and quadrilaterals
(see Figure 5.1). We denote the associated set of nodes by {J}. In node-centered schemes, we store the solution
values at nodes, and approximate the integral of the hyperbolic diffusion system over a dual control volume,
Ωj , around a node j ∈ {J}:

dUj

dt
=

1

Vj

∫
Ωj

(−Fx −Gy +Q) dV = − 1

Vj

∮
∂Ωj

H dA+

∫
Ωj

Q dV, (5.14)

where Vj denotes the volume of the dual control volume, dV denotes the infinitesimal volume, ∂Ωj denotes the
boundary of the dual control volume, dA is the infinitesimal area of the boundary, and H is the flux projected
along the unit outward normal vector of the boundary, n̂:

H = [F,G] · n̂. (5.15)

Focusing on the boundary integral in Equation (5.14), we consider two different discretization methods: edge-
based method and node-centered compact method.

5.3.2 Edge-Based Diffusion Scheme

A common edge-based finite-volume scheme is based on the following edge-based quadrature formula, approxi-
mating Equation (5.14):

dUj

dt
= − 1

Vj

∑
k∈{Kj}

ΦjkAjk +
1

Vj

∫
Ωj

Q dV, (5.16)

where {Kj} is a set of neighbors of j, Φjk is a numerical flux along the directed area vector (see Figure 5.1),

njk = nℓ
jk + nr

jk, (5.17)

and Ajk is the magnitude of the directed area vector, i.e., Ajk = |njk|. We remark that this edge-based
quadrature formula is exact for linear fluxes only for triangles or parallelograms; there may be errors committed
along an edge shared by a triangle and a quadrilateral [21,43,51]; yet another care must be taken along boundary
edges [43, 52]. See Ref. [43] for a comprehensive list of quadrature formulas that are exact for linear fluxes in
both two and three dimensions. For the numerical flux, we employ the upwind flux:

Φjk =
1

2
[Hjk (UR) +Hjk (UL)]−

1

2
|An| (UR −UL) , (5.18)
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Figure 5.1: Dual control volume for node-centered finite-volume schemes with unit nor-
mals associated with an edge, {j, k}.

where UR and UL are extrapolated solution vectors at the midpoint of the edge, {j, k}, the absolute Jacobian,
|An|, is defined based on the directed area vector, and Hjk is the physical flux projected along the directed area
vector:

Hjk = [F,G] · n̂jk, n̂jk =
njk

Ajk
. (5.19)

The semi-discrete equation (5.16) is then integrated in time by the forward-Euler time-stepping scheme. The
global time step, ∆t, is defined as the minimum of the local time step, ∆tj , restricted by the local CFL condition:

∆tj ≤
2Vj∑

k∈{Kj}

√
ν

Tr
Ajk

. (5.20)

Having completed the discretization of the hyperbolic diffusion system, we now ignore the second and third
equations in Equation (5.16) and obtain the following edge-based diffusion scheme:

duj
dt

= − 1

Vj

∑
k∈{Kj}

ϕjkAjk, (5.21)

where

ϕjk = −ν
2
[(p, q)R + (p, q)L] · n̂jk − 1

2

√
ν

Tr
(uR − uL) . (5.22)

Note that the second term is the damping term inherited from the dissipation term of the upwind scheme. The
relaxation time, Tr, is defined as in Equation (5.10), thus giving

ϕjk = −ν
2
[(p, q)R + (p, q)L] · n̂jk − να

2Lr
(uR − uL) , (5.23)

where, again, we set α = 1, but there are special values as will be discussed later. For unstructured grids,
the length scale Lr must be defined at each edge, so that the same interface flux is used per edge and the
conservation is not violated. Based on the fact that Lr defines the wave speed of the hyperbolic diffusion system
in a Riemann problem in the direction n̂jk, it would be reasonable to take the edge length projected along n̂jk:

Lr =
1

2
|∆ljk · n̂jk|, (5.24)

where ∆ljk = (xk − xj , yk − yj). To evaluate the interface flux, the left and right states must be defined. One
way is to reconstruct the solution gradient at every node and extrapolate the solution to the interface from
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j

k

êjk

n̂jk

Figure 5.2: Example of skewed grids. êjk · n̂jk → 0 as the vertical spacing decreases.

each end node, just like a reconstruction-based advection scheme. The gradient at a node j, denoted by (∇u)j ,
can be computed by the Green-Gauss formula or by a least-squares reconstruction method. Once the solution
gradients are made available at all nodes, the interface values can be obtained as follows:

uL = uj +
1

2
(∇u)j ·∆ljk, uR = uk − 1

2
(∇u)k ·∆ljk,

(p, q)L = (∇u)j , (p, q)R = (∇u)k.
(5.25)

The diffusion scheme is now completely defined. We point out that the derived diffusion scheme, Equation (5.21)
with the flux (5.23), is a general edge-based diffusion scheme directly applicable to arbitrary grids. Extension to
three dimensions is straightforward. We remark also that this edge-based diffusion scheme can be implemented
in the same framework of advection schemes: reconstruction, extrapolation, and interface flux evaluation. If
such mechanisms are already in place, the diffusion scheme can be directly implemented simply by adding the
interface flux. For solving advection-diffusion type equations, this will make the code very simple and efficient.
Note also that the scheme reduces to a standard five-point finite-difference formula on a uniform quadrilateral
mesh. In that case, the scheme is essentially equivalent to the one-dimensional scheme derived in Section 4.1.3
in each coordinate direction, and thus can be made fourth-order accurate by α = 4/3 as shown Section 4.1.3
(not α = 8/3 because of the difference in the factor 1/2 in the definition of Lr). As will be shown later, even
on irregular grids, the scheme with α = 4/3 produces, although not fourth-order accurate, much more accurate
solutions than other node-centered schemes.

To gain more insight, we insert the left and right states into the diffusive flux (5.23) to get

ϕjk = −ν
2
[(∇u)k + (∇u)j ] · n̂jk − να

|êjk · n̂jk|

[
uk − uj
∆ljk

− 1

2
{(∇u)k + (∇u)j} · êjk

]
, (5.26)

where ∆ljk = |∆ljk| and êjk = ∆ljk/|∆ljk|. Note that as in one dimension, it is the consistent part (the
first term) that approximates the solution gradient at the interface; the damping term (the second term) is a
quantity of O(hm) for m-th order accurate gradients. Now, there is a special choice for α:

α = (êjk · n̂jk)|êjk · n̂jk|. (5.27)

The diffusive flux (5.26) then becomes

ϕjk = −ν
[
uk − uj
∆ljk

êjk +∇u−
(
∇u · êjk

)
êjk

]
· n̂jk, (5.28)

where

∇u =
1

2
[(∇u)k + (∇u)j ] . (5.29)

This flux corresponds to one of the widely-used average-least-squares schemes [12,26,53], often called the edge-
normal average-least-squares (Avg-LSQ-EN) scheme. The Avg-LSQ-EN scheme is constructed based on the
common approach such that the gradient in the diffusive flux (the term in the square bracket in Equation (5.28))
recovers the edge-term along êjk and the average-least-squares gradient, ∇u, along the direction normal to êjk
(see Ref.[43]). Note that the edge-term,

uk−uj

∆ljk
, which is considered as important for high-frequency damping,

is therefore deliberately incorporated to improve the h-ellipticity. In contrast, in the derived diffusion scheme
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(5.26), the edge-term has been incorporated into the scheme automatically by going through the advection
scheme. There is another special choice [54]:

α =
|êjk · n̂jk|
êjk · n̂jk

. (5.30)

This results in the so-called face-tangent average-least-squares (Avg-LSQ-FT) scheme [55]. The Avg-LSQ-
FT scheme is constructed such that the gradient in the diffusive flux recovers the edge-term along êjk and
the average-least-squares gradient along the direction tangential to the face (see Refs. [43, 55]). Comparing
these schemes in the form (5.26), we see that the damping coefficient generally depends on the inner-product,
êjk ·n̂jk, which may be considered as a skewness measure. For the Avg-LSQ-EN scheme, the damping coefficient
is proportional to êjk · n̂jk. For the Avg-LSQ-FT scheme and the derived scheme (5.26) with any positive real
value of α, it is inversely proportional to êjk · n̂jk. Consequently, the Avg-LSQ-EN scheme will suffer from a lack
of damping for highly-skewed grids (typical viscous grids such as shown in Figure 5.2) for which êjk · n̂jk → 0.
On the other hand, the Avg-LSQ-FT scheme and the derived scheme will gain a large damping effect. On such
grids, the Avg-LSQ-FT scheme is in fact very similar to the derived scheme with α = 1; they differ only in the
sign of the damping coefficient. If the skewness angle exceeds 90◦, the damping coefficient of the Avg-LSQ-FT
scheme goes negative (damping turns into amplifying), while that of the derived diffusion scheme with positive
α remains positive. For a grid with no skewness (êjk · n̂jk = 1), such as a structured quadrilateral grid, both
average-least-squares schemes will become identical to the derived scheme with α = 1, and all reduce to a
standard five-point finite-difference scheme. As mentioned earlier, then, the derived scheme can be made to be
fourth-order accurate by taking α = 4

3 .

5.3.3 Node-Centered Compact Diffusion Scheme

Reconstruction methods typically result in an extended stencil with not just neighbors but neighbors in the
next level. Compact stencil may be desired for an exact linearization in implicit formulations and/or ease with
parallelization. To devise a compact diffusion scheme involving only the nearest neighbors, we must evaluate the
gradient within a compact stencil. The following is a good example for illustrating a flexibility of the proposed
principle in designing a diffusion scheme.

We now redesign the previous edge-based scheme into a compact scheme by replacing the nodal gradients
by a common gradient reconstructed for each edge using immediate neighbors only. Note that it is thus only
the definition of the left and right states that will be modified. The interface flux to be evaluated is the same
as before, i.e., the flux (5.23). In Figure 5.1, for the edge {j, k}, we reconstruct a linear solution centered at the
edge-midpoint by a least-squares method involving five nodes: j, k, kℓ, kr, and krr. The least-squares problem
is to find the solution value, ũjk, and the gradient (two components), ∇ũjk, at the edge-midpoint: 5 equations
for 3 unknowns, which can be solved straightforwardly. For our purpose, the solution value is not needed; only
the gradient is used to define the left and right states in Equation (5.25). Alternatively, we may employ the
Green-Gauss gradient computed over the two elements that share the edge {j, k}. Using the reconstructed
gradient at both end nodes of the edge, we thus define the left and right states as

uL = uj +
1

2
∇ũjk ·∆ljk, uR = uk − 1

2
∇ũjk ·∆ljk,

(p, q)L = ∇ũjk, (p, q)R = ∇ũjk.
(5.31)

Using these values to evaluate the diffusive flux (5.23), we obtain a compact finite-volume diffusion scheme.
Note that we have uL ̸= uR in general, unless the reconstructed linear solution happens to pass through the
solutions at j and k. Therefore, the damping term is nonzero and plays its role. We emphasize that although
the gradient is reconstructed at the edge-midpoint, it is not used here to compute the physical diffusive flux
directly as commonly done. The gradient is used here to define the left and right states, i.e., to extrapolate the
solution value from the left and right nodes to the edge-midpoint as above, and then compute the numerical
flux (5.23).

For triangular grids, if we employ the Green-Gauss gradient over the two elements sharing the edge, the
damping term will vanish identically since the Green-Gauss gradient projected along the edge reduces to the
edge-derivative. The resulting scheme corresponds to the one proposed in Ref. [56] by Braaten and Connell for
tetrahedral grids (see Ref.[43] for more details).
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It may be instructive, although not necessary for implementation, to derive the diffusive flux resulted from
inserting the left and right states defined above into Equation (5.23):

ϕjk = −ν∇ũjk · n̂jk − να

|êjk · n̂jk|

[
uk − uj
∆ljk

−∇ũjk · êjk
]
. (5.32)

The second term is the damping term. Clearly, it will vanish if the reconstructed gradient projected along
the edge matches the edge derivative. Note that if one takes the common approach and uses the least-squares
gradient to evaluate the diffusive flux directly as −ν∇ũjk · n̂jk, then the resulting scheme corresponds to the
above scheme with α = 0, i.e., without the damping term. It can suffer from oscillations as will be shown later.
Braaten and Connell [56] take the common approach as well, but their scheme does not suffer. Their success
appears due to the use of the Green-Gauss gradient (instead of the least-squares gradient) which cancels the
damping term even if formulated so as to ensure high-frequency damping as above. It must be noted, however,
that the Braaten-Connell scheme may suffer from checkerboard errors if naively extended to quadrilateral or
mixed grids since the Green-Gauss gradient is, then, not guaranteed to match the edge-derivative. In that case,
a damping term must be incorporated somehow. In contrast, following the proposed principle, we derived a
general (more flexible) formula (5.32) that works with both the least-squares and Green-Gauss gradients on
arbitrary grids.

Element-based compact schemes, which utilize the gradient constructed over an element, can also be con-
structed by following the principle. For triangular grids, it leads to the Galerkin scheme while for quadrilateral
grids, it leads to the Green-Gauss-type scheme [12, 53] with a built-in damping term that damps the spurious
checkerboard error modes associated with quadrilateral elements. See Ref. [43] for details.

5.4 Residual-Distribution Diffusion Scheme

The residual-distribution method is a good example for illustrating the general applicability of the proposed
principle. This example shows that we are not merely proposing a new diffusive flux.

We consider constructing a residual-distribution scheme for diffusion on unstructured triangular grids. Fol-
lowing the principle, we begin by discretizing the hyperbolic diffusion system. In the residual-distribution
method, we first define the cell-residual over a cell T (see Figure 5.3):

ΦT =

∫
T

(−AUx −BUy +Q) dV. (5.33)

Assuming a piecewise linear variation of U over the cell, we obtain

ΦT = −
3∑

i=1

KiUi +QTVT , (5.34)

where

Ki =
1

2
(A,B) · ni, QT =

Q1 +Q2 +Q3

3
, (5.35)

ni = (nix , niy ) is the scaled inward normal (see Figure 5.4), and VT is the cell area. The derivatives, Ux and
Uy, have been evaluated by the Green-Gauss integration over the cell which is exact for linear functions. The
source term has been discretized to be also exact for linear functions, but it is not important since we will ignore
it. The cell-residual is now distributed to the nodes of the cell by a distribution matrix, Bj . In choosing the
distribution matrix, we must remember that the system being discretized is hyperbolic. Hence, we employ an
upwind distribution matrix. The LDA scheme [57] is a widely-used upwind residual-distribution scheme, which
is defined by the following distribution matrix:

BT
i = K+

i

(
3∑

i=1

K+
i

)−1

, (5.36)
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mined by multiplying the cell-residual by the distri-
bution matrix, BT

i , where i ∈ {iT }.

j

Vj

n
T
j

T

Figure 5.4: Median dual cell around a node j over the
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scale) associated with a triangle T ∈ {Tj}.

where

K+
i =

1

2
A+

ni
=

1

2
RniΛ

+
ni
R−1

ni
=
αν

Lr

|ni|
4


1 −Lr

α
n̂xi −Lr

α
n̂yi

− α

Lr
n̂xi n̂2xi

n̂xi n̂yi

− α

Lr
n̂yi n̂xi n̂yi n̂2yi


, (5.37)

n̂i = (n̂xi , n̂yi) is the unit inward normal vector, Rni is the right-eigenvector matrix of Ani , and Λ+
ni

is
the corresponding diagonal matrix with positive eigenvalues only. This distribution matrix is often computed
numerically, but it can be obtained analytically for the hyperbolic diffusion system:

BT
i =


βT
i

Lr

α
Dxi −Lr

α
Dyi

− αnxi

nTLr
−n̂xiDxi n̂xiDyi

− αnyi

nTLr
−n̂yiDxi n̂yiDyi


, (5.38)

where

βT
i =

|ni|
nT

, nT = |n1|+ |n2|+ |n3|, (5.39)

Dxi =
n̂yk

− n̂yj

n̂x1(n̂y2 − n̂y3) + n̂x2(n̂y3 − n̂y1) + n̂x3(n̂y1 − n̂y2)
, (5.40)

Dyi =
n̂xk

− n̂xj

n̂x1(n̂y2 − n̂y3) + n̂x2(n̂y3 − n̂y1) + n̂x3(n̂y1 − n̂y2)
, (5.41)

and (i, j, k) = (1, 2, 3), (2, 3, 1), or (3, 1, 2). After performing the distribution step all over the cells, we have the
following semi-discrete equation at each node:

dUj

dt
=

1

Vj

∑
T∈{Tj}

BT
j Φ

T , (5.42)
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where {Tj} denotes a set of triangles that share the node j and Vj is the median dual cell area (see Figure 5.4).
Note that the distribution matrix sums up to the identity matrix over a cell, so that the sum of the distributed
partial cell-residuals reduces to the total cell-residual:

3∑
i=1

BT
i Φ

T = ΦT . (5.43)

This ensures a discrete conservation: a global sum of the solution changes are solely due to events on the
domain boundary. We must point out here that the above semi-discrete formulation may not be time-accurate
because the right hand side may be inconsistent by a constant factor with the spatial part of the time-dependent
hyperbolic diffusion system (5.3). This is not important for steady computations, but it is crucial for unsteady
computations. A consistent semi-discrete form is given by

dUj

dt
=

 ∑
T∈{Tj}

BT
j VT

−1 ∑
T∈{Tj}

BT
j Φ

T . (5.44)

This is a semi-discrete form at least first-order accurate in time. See Refs. [58–60] for more sophisticated
discussions on time-accurate residual-distribution schemes. Time-accurate computation is now possible by
integrating Equation (5.44) by the forward-Euler time-stepping. The time step may be chosen as the minimum
of the local time step, ∆tj , defined at each node by

∆tj ≤
Vj∑

T∈{Tj}

1

2

√
ν

Tr
|nT

j |
, (5.45)

where nT
j is the scaled inward normal of the edge opposite to the node j. Having completed the discretization of

the hyperbolic diffusion system, we now derive a diffusion scheme by discarding the second and third components:

duj
dt

=
1∑

T∈{Tj} β
T
j VT

∑
T∈{Tj}

[
βT
j ϕ

T − ανVT
Lr

{
∇uT − (pT , qT )

}
· (Dxj ,−Dyj )

]
, (5.46)

where we take α = 1 as before, and ϕT is the cell-residual for the diffusion equation,

ϕT = ν
[
(px)

T + (qy)
T
]
VT . (5.47)

Here, (px)
T and (qy)

T are the Green-Gauss gradients of p and q over the cell computed with nodal gradients
reconstructed, for example, by the Green-Gauss formula. The gradient reconstruction is necessary because we
have lost the update equations for the gradient variables, and the gradient variables are not stored any more

at nodes as unknowns. Note that we have retained only the first diagonal entry of
(∑

T∈{Tj} B
T
j VT

)−1

. The

scheme is still time-consistent because only the term proportional to the cell-residual, ϕT , is responsible for
the consistency. The second term vanishes when summed over the cell, and thus does not contribute the total
cell-residual. This implies that it does not affect the conservation and the consistency of the scheme. In fact, the
second term acts as damping. Without this term (e.g., if α = 0), the scheme will fail to damp out high-frequency
errors. As will be demonstrated by numerical experiments, a lack of damping leads to large solution errors. The
failure of an isotropic scheme (βT

j = 1/3) without any damping term has already been pointed out in Ref. [22]:
insufficient high-frequency damping and extremely slow convergence to a steady state.

The time step for the derived diffusion scheme may be chosen as in Equation (5.45) with the relaxation time,
Tr, is defined as in Equation (5.10). The length scale Lr may be taken simply a half of the minimum height of
the triangle:

Lr =
1

2
hmin =

VT
max(|n1|, |n2|, |n3|)

. (5.48)

An alternative definition can be found in Ref.[43], which is derived from a cell-wise CFL condition. For numerical
experiments in this paper, we use the above formula.

The derived diffusion scheme, which is a new scheme to author’s knowledge, may be called the LDA diffusion
scheme. Other diffusion schemes can be derived by other advection schemes. For example, a diffusion scheme
can be derived from the Lax-Wendroff scheme as shown in Ref.[43].

22



Preprint: Computers and Fluids, Volume 49, Issue 1, Pages 62-86, 2011

5.5 Cell-Centered Finite-Volume Diffusion Scheme

We consider constructing cell-centered diffusion schemes. Without loss of generality, we consider only triangular
grids. Resulting diffusion schemes can be easily applied to other types of grids.

A domain of interest is divided into a set of non-overlapping triangular cells. The solution values are stored
at centroids of triangular cells and considered as cell-averaged values. Evolution of a cell-averaged value, Uj , is
determined by approximating the integral of the hyperbolic diffusion system over the corresponding triangular
cell, Tj :

dUj

dt
=

1

Vj

∫
Tj

(−Fx −Gy +Q) dV = − 1

Vj

∮
∂Tj

H dA+

∫
Tj

Q dV, (5.49)

where Vj here denotes the volume of the cell Tj , ∂Tj denotes the cell boundary, dA is the infinitesimal area of the
boundary, and H is the flux dotted with the unit outward normal vector of the boundary, n̂. We evaluate the
flux integral by the midpoint rule over each face of the triangle; a face is associated with a pair of adjacent data
points, j and k (see Figure 5.5). Replacing H by a numerical flux, we thus obtain the following semi-discrete
form:

dUj

dt
= − 1

Vj

∑
k∈{Kj}

ΦjkAjk +
1

Vj

∫
Tj

Q dV, (5.50)

where {Kj} is a set of faces surrounding the data point j, and Ajk is the face area. The numerical flux Φjk is
the upwind flux which is essentially the same as the one employed in the node-centered scheme:

Φjk =
1

2
[Hjk (UR) +Hjk (UL)]−

1

2
|An| (UR −UL) , (5.51)

where Hjk is the physical flux projected along the outward face-normal direction,

Hjk = [F,G] · n̂jk, (5.52)

Note that n̂jk is the unit face-normal vector. For second-order accuracy, the solution gradients are reconstructed
in each cell, and the left and right states, UL and UR, are extrapolated from each cell to the face midpoint
(see Figure 5.5). Time integration is performed by the forward-Euler time-stepping scheme with a time step
restricted by a CFL condition similar to the node-centered finite-volume scheme discussed in Section 5.3.2.

Having completed the discretization of the hyperbolic diffusion system, we now discard the second and third
components and obtain a diffusion scheme:

duj
dt

= − 1

Vj

∑
k∈{Kj}

ϕjkAjk, (5.53)

where

ϕjk = −ν
2
[(p, q)R + (p, q)L] · n̂jk − 1

2

√
ν

Tr
(uR − uL) . (5.54)

The dissipation term of the upwind flux has now entered into the diffusive flux as a damping term. It has
been automatically introduced with no specific technique to incorporate it, and its coefficient is determined
unambiguously. The relaxation time, Tr, is defined as in Equation (5.10), thus yielding

ϕjk = −ν
2
[(p, q)R + (p, q)L] · n̂jk − να

2Lr
(uR − uL) . (5.55)

The length scale, Lr, is defined based on the distance between the two data points across the face projected
along the face-normal direction:

Lr =
1

2
|∆ljk · n̂jk|, (5.56)

where ∆ljk = (xk−xj , yk−yj). As in the edge-based schemes in Section 5.3.2, the above definition of Lr brings
the skewness measure in the denominator of the damping coefficient. For the parameter α, we again set α = 1,
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Figure 5.5: Stencil for cell-centered schemes.

but also consider using α = 4/3 which makes the scheme fourth-order accurate on structured quadrilateral
grids. To define the left and right states, we evaluate the gradient variables by reconstructed solution gradients
in cells, ∇uk and ∇uj . Then, linearly extrapolating the solution to the face-midpoint, we obtain

uL = uj +∇uj ·∆xjm, uR = uk +∇uk ·∆xkm,

(p, q)L = ∇uj , (p, q)R = ∇uk.
(5.57)

The diffusion scheme has thus been completely defined. Note that there is no need to store p and q as they are
explicitly evaluated as above. To reconstruct the gradient in each cell, a least-squares gradient reconstruction
method can be employed. It should be noted again that the derived cell-centered diffusion scheme can be
implemented in the same framework of advection schemes: reconstruction, extrapolation, and interface flux
evaluation.

Finally, we point out that the above scheme is different from widely-used cell-centered diffusion schemes,
Avg-LSQ-EN and Avg-LSQ-FT schemes, [25, 26, 55]. As discussed in Ref.[43], widely-used schemes correspond
to evaluating the interface flux halfway between the two adjacent data points, i.e., potentially off the control
volume boundary, with α defined similarly to those discussed for the node-centered schemes. In particular,
the damping coefficient can get vanishingly small or even go negative for widely-used schemes, especially on
agglomerated (arbitrary polygonal) grids typically used in multigrid methods [55, 61–63], while the derived
diffusion scheme has a positive damping coefficient for any positive real value of α. See Ref.[43] for details.

5.6 Discontinuous-Galerkin Diffusion Scheme

We consider constructing a P1 DG diffusion scheme on triangular grids. Following the principle, we begin by
discretizing the first-order hyperbolic diffusion system. Within a cell, Tj , we express the solution as a polynomial
of degree 1 centered at the centroid xc = (xj , yj):

U(x, y) = ψ0Uj + ψ1∂xUj + ψ2∂yUj , (5.58)
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Figure 5.6: Stencil for discontinuous-Galerkin schemes. Quadrature points are shown for the k-th face.

where Uj is a vector of the cell-averaged solutions, and ∂xUj and ∂yUj are vectors of the x- and y-derivatives,
respectively:

Uj =


uj

pj

qj

 , ∂xUj =


∂xuj

∂xpj

∂xqj

 , ∂yUj =


∂yuj

∂ypj

∂yqj

 . (5.59)

It should be noted that the degrees of freedom for p and q have been introduced here just for the sake of
convenience; they will be abandoned once the discretization of the hyperbolic diffusion system is completed.
The functions, ψm, m = 0, 1, 2, are the basis functions,

ψ0 = 1, ψ1 = x− xj , ψ2 = y − yj , (5.60)

specifically chosen such that ψ0 is orthogonal to the other two:∫
Tj

ψ0ψm dV = 0, m = 1, 2. (5.61)

Evolution equations for the unknowns, Uj , ∂xUj , and ∂yUj , are derived from the weak formulation involving
a test function v:∫

Tj

v
∂U

∂t
dV =

∫
Tj

v (−Fx −Gy +Q) dV = −
∑

k∈{Kj}

∫
∂Tk

j

vH dAk +

∫
Tj

∇v · (F,G) dV +

∫
Tj

vQ dV, (5.62)

where ∂T k
j denotes the boundary corresponding to the k-th face, and H is the flux normal to the boundary.

Setting v = ψ0, we obtain a decoupled evolution equation for the cell-average:

Vj
dUj

dt
= −

∑
k∈{Kj}

∫
∂Tk

j

H dAk +

∫
Tj

Q dV. (5.63)

On the other hand, by setting v = ψ1 and v = ψ2, we obtain a coupled system for the gradients:
d
(
∂xUj

)
dt

d
(
∂yUj

)
dt

 = M−1
j


−

∑
k∈{Kj}

∫
∂Tk

j

ψ1 H dAk +

∫
Tj

∇ψ1 · (F,G) dV +

∫
Tj

ψ1 Q dV

−
∑

k∈{Kj}

∫
∂Tk

j

ψ2 H dAk +

∫
Tj

∇ψ2 · (F,G) dV +

∫
Tj

ψ2 Q dV

 . (5.64)
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The mass matrix, Mj , which has been formally inverted above to decouple the time derivatives, is given by

Mj =


∫
Tj

ψ2
1 dV

∫
Tj

ψ1ψ2 dV∫
Tj

ψ2ψ1 dV

∫
Tj

ψ2
2 dV

 =
Vj
12

3∑
i=1

 (xi − xj)
2 (xi − xj)(yi − yj)

(xi − xj)(yi − yj) (yi − yj)
2

 , (5.65)

where (xi, yi), i = 1, 2, 3, are the vertex coordinates of the triangle. This matrix depends only on the geometry
of the grid. Therefore, it can be precomputed and inverted just once, and reused during computations. For the
integral that appears on the right hand side of each evolution equation, it is required that the boundary and
volume integrals be exact for polynomials of degree three and of degree two (i.e., fourth-order and third-order
accurate), respectively [64]. Following Ref. [64], we evaluate the boundary integral with two quadrature points
per face (see Figure 5.6):∫

∂Tk
j

ψs(x)H dAk =

2∑
n=1

wknψs(xkn)Φkn(xkn)Ak, k ∈ {Kj}, s = 0, 1, 2, (5.66)

where the normal flux has been replaced by the upwind numerical flux in the face normal direction:

Φkn(xkn) =
1

2

[
H
(
U+

kn

)
+H

(
U−

kn

)]
− 1

2
|An|

(
U+

kn
−U−

kn

)
. (5.67)

at each quadrature point, where U−
kn

and U+
kn

denote the interface states in the internal element and the
neighboring element, respectively. The quadrature parameters are given by

wk1 = wk2 =
1

2
, (5.68)

xk1 =
1

2

(
1 +

1√
3

)
xℓ +

1

2

(
1− 1√

3

)
xr, xk2 =

1

2

(
1− 1√

3

)
xℓ +

1

2

(
1 +

1√
3

)
xr. (5.69)

Now, we discard the second and third components from the evolution equations, and obtain the following
diffusion scheme:

Vj
duj
dt

= −
∑

k∈{Kj}

2∑
n=1

wkn ϕkn(xkn)Ak, (5.70)


d
(
∂xuj

)
dt

d
(
∂yuj

)
dt

 = M−1
j


−

∑
k∈{Kj}

2∑
n=1

wknψ1(xkn)ϕkn(xkn)Ak +

∫
Tj

∇ψ1 · (f, g) dV,

−
∑

k∈{Kj}

2∑
n=1

wknψ2(xkn)ϕkn(xkn)Ak +

∫
Tj

∇ψ2 · (f, g) dV

 , (5.71)

where ϕkn(xkn) is the first component of the upwind flux, Φkn(xkn),

ϕkn(xkn) = −ν
2

[
(p, q)+kn

+ (p, q)−kn

]
· n̂jk − 1

2

√
ν

Tr

(
u+kn

− u−kn

)
. (5.72)

The vector n̂jk is the unit outward normal of the face k. Note that the dissipation term of the upwind
flux has entered into the diffusive flux as a damping (or penalty) term, and that its coefficient is determined
unambiguously. The relaxation time is defined as in Equation (5.10) based on the distance between the centroids
of the two adjacent cells (via a quadrature point) projected along the face-normal vector as in Equation (5.56):

Lr =
1

2
|∆lik · n̂ik|, (5.73)

where ∆ljk = (xk − xj , yk − yj). For the parameter α, we take α = 1 or α = 3; the latter corresponds
to the fourth-order scheme in one dimension. To evaluate the diffusive flux, we need to define the interface
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states. In doing so, we need to evaluate the gradient variables, p and q, whose degrees of freedom have been
discarded. In the DG method, these gradients may be evaluated simply by differentiating the approximation of
the solution. For the P1 element considered here, it leads to the constant gradients, ∇uj =

(
∂xuj , ∂yuj

)
in Tj ,

and ∇uk =
(
∂xuk, ∂yuk

)
in Tk. The interface states at the quadrature point, xkn , are then given by

u−kn
= uj +∇uj · (xkn − xj), u+kn

= uk +∇uk · (xkn − xk),

(p, q)−kn
= ∇uj , (p, q)+kn

= ∇uk.
(5.74)

The volume integral can be evaluated by integration by parts (see Ref.[43] for a method without using
integration by parts). The physical flux being the gradient of the solution, i.e., (f, g) = −ν∇u, we can perform
integration by parts to get∫

Tj

∇ψ1 · (f, g) dV = −ν
∮
∂Tj

u∇ψ1 · n̂kdAk −
∫
Tj

u∇2ψ1 dV, (5.75)

∫
Tj

∇ψ2 · (f, g) dV = −ν
∮
∂Tj

u∇ψ2 · n̂kdAk −
∫
Tj

u∇2ψ2 dV. (5.76)

For the P1 DG method, the second terms vanish, and we are left with the boundary integrals only. Since they
are now boundary integrals, we can use the same two-point quadrature formula as before with the solution
values (the internal state) already prepared for evaluating the interface flux:∫

Tj

∇ψ1 · (f, g) dV = −ν
∑

k∈{Kj}

2∑
n=1

wknu(xkn)∇ψ1(xkn) · n̂kAk, (5.77)

∫
Tj

∇ψ2 · (f, g) dV = −ν
∑

k∈{Kj}

2∑
n=1

wknu(xkn)∇ψ2(xkn) · n̂kAk. (5.78)

This procedure is genuinely third-order accurate, thus satisfying the accuracy requirement for the volume
integral. We remark that here, integration by parts was applied to the volume integral with a solid objective:
to evaluate the volume integral with a required accuracy.

The diffusion scheme thus constructed is compact, involving only the immediate neighbors. No gradient
reconstruction is necessary since we carry the solution gradient in each cell. Also, unlike other DG schemes
utilizing auxiliary variables, such as the Bassi-Rebay scheme [34] and the LDG scheme [5], the derived diffusion
scheme requires no extra variables and careful discretizations of their equations [65]. Numerical experiments
show that the derived diffusion scheme are, despite being remarkably simpler, comparably or more accurate than
these well-known DG schemes (see Section 6.2). As in one dimension, the derived diffusion scheme is similar
to the interior-penalty schemes [23,44–47]; but it has distinguished features that it involves no mesh-dependent
parameters and even more importantly it involves the skewness measure in the denominator of the damping
coefficient through Lr. The latter has an effect of increasing the damping on highly-skewed grids, enabling
robust computations on such grids. Again, it should be noted that the derived diffusion scheme has the same
implementation structure as a corresponding advection scheme: interface flux evaluated by two discontinuous
states meeting at a quadrature point.

5.7 Spectral-Volume Diffusion Scheme

Here, we consider constructing a spectral-volume diffusion scheme on unstructured triangular grids [66]. Simi-
larly to the one-dimensional case, a triangular cell, T , is subdivided systematically into a set of control volumes,
{CT }, and the solution values are stored within the control volumes as volume-averaged values:

Ui =
1

Vi

∫
Ci

U dV, i ∈ {CT }, (5.79)

where Ci denotes the i-th control volume and Vi is the volume of Ci. The triangular cell thus partitioned is
called the spectral volume. Given volume-averaged solutions, we construct a polynomial, UT , of degree m:

UT (x, y) =
∑

i∈{CT }

UiLi(x, y), (5.80)
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iiT = 3

iT = 1

iT = 2

k

Figure 5.7: Stencil for spectral-volume schemes. Dots indicate the data points defined by the averaged coordi-
nates of the control volumes.

where Li(x, y) is a shape function that satisfies

1

Vi

∫
Ci

UT dV = Ui, i ∈ {CT }. (5.81)

The number of control volumes, N , within a spectral volume is determined by the polynomial degree [66]:
N = (m+1)(m+2)/2. Evolution equation for the volume-averaged value is obtained by integrating the system
over the control volume:

dUi

dt
=

1

Vi

∫
Ci

(−Fx −Gy +Q) dV = − 1

Vi

∑
k∈{Ki}

∫
∂Ck

i

H dA+
1

Vi

∫
Ci

Q dV, (5.82)

where {Ki} is a set of faces of Ci. The boundary integral over each face is discretized by an (m + 1)th order
accurate quadrature:

∫
∂Ck

i

H dA =

Np∑
n=1

wnΦik(xn)Ak, (5.83)

where Np is the number of quadrature points, wn is the weight at the n-th point, xn, and Ak is the area of the
k-th face. Note also that the boundary flux, H, has been replaced by the upwind numerical flux (5.67) at each
quadrature point. Now, by ignoring the second and third components, we derive a diffusion scheme:

dui
dt

= − 1

Vi

∑
k∈{Ki}

Np∑
n=1

wnϕik(xn)Ak, (5.84)

where ϕik is a diffusive flux of the form (5.72). The interface states for the numerical flux are evaluated at the
quadrature point directly by the polynomial representation of the solution over the spectral volume,

uT (x, y) =
∑

i∈{CT }

uiLi(x, y), (5.85)

and the neighbors. Note that we now store only the solution values for u. The gradient variables at the interface,
which are needed to compute the consistent part of the numerical flux, are evaluated by differentiating the
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corresponding polynomial representations at each quadrature point. The two states are continuous over the
faces inside the spectral volume and discontinuous over the SV faces. This means that the damping term of the
numerical flux vanishes at quadrature points on the interior face, and plays its role at quadrature points on the
SV faces. The length scale, Lr, in the numerical flux is determined similarly to the cell-centered schemes:

Lr =
1

2
|∆lik · n̂ik|, (5.86)

where ∆lik = (xk − xi, yk − yi) and n̂ik is the unit outward normal vector of the k-th face. Again, it should
be noted that the derived diffusion scheme has exactly the same implementation structure as a corresponding
advection scheme: interface flux evaluated by two states meeting at a quadrature point.

For second-order accuracy, we divide a triangular cell into three control volumes (N = 3) by connecting the
face midpoints and the centroid (see Figure 5.7). Given three volume-averaged solutions, we can construct a
polynomial of degree one (m = 1) in the form (5.85) over the spectral volume, T . Let {iT } denote a set of
vertices of T . The shape function, Li(x, y), can be expressed in terms of the area-coordinates of T [67]:

Li(x, y) =
36

5
ZiT (x, y)−

7

5
, (5.87)

where iT ∈ {iT } denotes the vertex of T belonging to the control volume i, and ZiT (x, y) is the area-coordinate
representing the area of a triangle defined by an arbitrary point (x, y) and the two vertices of T other than iT ,
divided by the area of the triangle T . For example, iT = 1 for the control volume i in Figure 5.7, and thus

Z1(x, y) =
x(y2 − y3) + x2(y3 − y) + x3(y − y2)

x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)
, (5.88)

where (x1, y1), (x2, y2), (x3, y3) are the vertex coordinates of T . It can be verified by direct integration that the
polynomial thus defined satisfies the condition (5.81).

As in the discontinuous-Galerkin method, the damping term is crucial in the spectral-volume method also.
That is, diffusion schemes may not be consistent without the damping term. The inconsistency problem has
been pointed out in Ref. [19] for the one-dimensional diffusion equation.

6 Numerical Results

6.1 One-Dimensional Problem

We consider the following time-dependent diffusion problem:

ut = ν uxx, x ∈ (0, 1), (6.1)

where ν = 1, with the initial solution,

u(x, 0) = sin(14πx), (6.2)

and the boundary conditions, u(0, t) = 0 and u(1, t) = 0. The exact solution is given by

u(x, t) = exp(−196π2νt) sin(14πx). (6.3)

We compute the solution at time t = 0.001 on a series of uniform meshes: 32, 64, 128, and 256 cells. The initial
solution was assigned in each cell by the exact cell-averaged value of Equation (6.2). The error at the finial
time is defined as a difference between the numerical solution and the exact cell-averaged value of Equation
(6.3). For the SV schemes, the error is defined for the SV-averaged solution in each SV, not the CV-averaged
solutions. The boundary conditions are specified by setting the solution in a ghost cell to be the negative of
the solution in the adjacent interior cell, and enforcing equal gradients over the ghost and the adjacent interior
cells. For all diffusion schemes, the time step is defined by

∆t = 0.01∆x2. (6.4)

Hence, all schemes take the same number of time steps to reach the final time: 104 steps for 32 cells, 411
steps for 64 cells, 1640 steps for 128 cells, and 6555 steps for 256 cells. For second-order schemes, we employ
the forward-Euler time-stepping scheme to integrate them in time. For fourth-order schemes, we employ the
classical fourth-order Runge-Kutta time integration scheme.
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(b) Numerical solutions (32 cells).

Figure 6.1: Numerical results for one-dimensional FV schemes.
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Table 6.1: Maximum explicit time step for the one-dimensional FV, DG, and SV diffusion schemes.

In Figure 6.1, the L1 error convergence results and the solution plots (32 cells) are shown for the one-
dimensional finite-volume (FV) diffusion schemes. The mesh size h in Figure 1(a) is a cell volume. As predicted,
the FV diffusion scheme is second-order accurate with α = 1, and fourth-order accurate with α = 8/3. The FV
scheme with α = 0 is also second-order accurate, but slightly less accurate than the scheme with α = 1. This is
considered due to the lack of damping, which can be clearly seen in the solution plot. The scheme with α = 2
corresponds to the standard three-point finite-difference scheme (the Galerkin scheme). The corresponding
solution plot is not shown for clarity, but it lies between those of α = 1 and α = 8/3, as can be expected. The
three-point scheme produces more accurate solutions than the other second-order schemes, but its maximum
allowable time step is as small as the one for the fourth-order scheme (α = 8/3).

In Figure 6.2, results are shown for the DG schemes constructed in Section 4.2. The mesh size h here is
defined as half a cell volume to take into account the fact that the DG schemes carry two degrees of freedom
per cell. The DG diffusion scheme is confirmed to be second-order accurate with α = 1, fourth-order accurate
with α = 6, and inconsistent with α = 0. As can be seen from the solution plot, the inconsistent scheme is
highly inaccurate. It never approaches the exact solution in the grid refinement.

In Figure 6.3, results are shown for the SV schemes. Figure 3(a) confirms that the SV scheme is second-order
accurate with α = 1, fourth-order accurate with α = 3, and inconsistent with α = 0. Note that similarly to
the DG case, the mesh size h is defined as half the cell volume. Again, we see that the inconsistent scheme
gives highly inaccurate solution, and it does not converge to the exact solution with grid refinement. We note
also that the SV scheme (α = 1) gives more accurate solutions than the FV and DG schemes with α = 1. We
observed also from experiments that the SV scheme produced very similar second-order results for various other
values of α such as 0.6, 1.5, 10, 100, etc.
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(b) Numerical solutions (32 cells).

Figure 6.2: Numerical results for one-dimensional DG schemes.

Finally, the maximum allowable explicit (forward-Euler) time-steps are compared in Table 6.1, which are
derived based on the Fourier analysis in Section 4. It shows that the FV schemes generally allow larger time
steps than the DG and SV schemes considered here. Also, it can be seen that the fourth-order FV scheme
allows as a large time step as the Galerkin scheme does, which is almost five times larger than the maximum
time step for the fourth-order DG and SV schemes.

6.2 Two-Dimensional Problem: Anisotropic Irregular Grids

We consider the following diffusion problem:

ut = ν(uxx + uyy), (x, y) ∈ (0, 1)× (0, 0.005), (6.5)

where ν = 1, with the strongly anisotropic initial solution,

u(x, y, 0) = 5 sin(πx) sin(4000πy), (6.6)

and the boundary condition, u = 0 on the boundary. The exact solution to this problem is given by

u(x, y, t) = 5 exp(−16000001π2νt) sin(πx) sin(4000πy). (6.7)

We compute the solution at time t = 10−8 on a series of 15 irregular triangular grids. The irregular grids were
generated by random diagonal splittings and nodal perturbations from uniform Cartesian grids of n× n nodes,
where n = 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, resulting in the cell aspect-ratio of nearly
200 (see Figure 6.4). These grids are highly-skewed (possibly adapted) viscous-type grids. The L1-norm of the
skewness measure, êjk · n̂jk, is 0.1 for all grids with the minimum value of around 0.007. Diffusion schemes
should be able to produce accurate results on such grids to be successfully applied to viscous simulations.

For gradient reconstruction, we employ the Green-Gauss formula [43] for node-based finite-volume and
residual-distribution schemes, except for the compact edge-based finite-volume scheme for which we employ the
least-squares gradient as discussed in Section 5.3.3. For cell-centered finite-volume schemes, we apply the same
least-squares method as above to cell-averages.
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(b) Numerical solutions (32 cells).

Figure 6.3: Numerical results for one-dimensional SV schemes.

x
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0 1
0

0.125

Figure 6.4: A typical high aspect-ratio irregular triangular grid (9x9 grid). The y-axis is stretched by a factor
of 25 to show the details of the grid. Interior nodes are randomly perturbed in both coordinate directions.

In comparing the error convergence, we define the mesh size h as the square root of a control volume, except
that it is defined as the square root of the 1/3 of the control volume for DG and SV schemes to take into
account the fact that they carry three degrees of freedom per control volume. Boundary conditions are specified
at the boundary nodes for node-based schemes, and at the cells having boundary faces for cell-based schemes
(at control volumes for the SV schemes). To reach the final time, all schemes are integrated in time by the
forward-Euler time-stepping scheme with a common global time step:

∆t = 0.003h2. (6.8)

All schemes, therefore, take exactly the same number of time steps to reach the final time. For all schemes, the
error is computed based on the difference between the exact solution and the numerical solution at data points:
nodes for node-based schemes, centroids of triangles for cell-based schemes including DG and SV schemes.

Figure 6.5 shows the error convergence for the node-centered finite-volume schemes derived in Section 5.3.2
and the Galerkin scheme. It is observed that the edge-based finite-volume (EBFV) and node-centered compact
finite-volume (NCFV-Cmp) schemes with α = 1 or α = 4/3 produce much more accurate solutions than the
Galerkin scheme. The edge-based scheme gives the most accurate solutions when α = 4/3. The Avg-LSQ-EN
scheme, as expected, lacks damping for these highly-skewed grids, and resulted in significantly large errors.
Observe that the Avg-LSQ-EN scheme and the EBFV scheme with α = 0 give very similar results, clearly
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Figure 6.5: L1 error convergence for NCFV schemes.
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Figure 6.6: L1 error convergence for RD schemes.

confirming the lack of damping. We remark also that the NCFV-Cmp scheme with the Green-Gauss gradients
(the Braaten-Connell scheme) gives very similar results to those obtained by using the least-squares gradients
with α = 1 (therefore, not shown).

Figure 6.6 shows the error convergence for the residual-distribution (RD) schemes. Observe that the LDA
(RD-LDA) diffusion scheme with α = 1 yields significantly most accurate solutions with a slightly higher
convergence than second-order. The LDA diffusion scheme is second-order accurate with α = 0, but significantly
less accurate due to the lack of damping.

Figure 6.7 shows the error convergence for the cell-centered finite-volume (CCFV) schemes and the widely-
used cell-centered AvgLSQ-EN scheme [25,26,55]. As can be seen in Figure 6.7, the CCFV-AvgLSQ-EN scheme
is significantly inaccurate, and gets unstable for fine grids. The lack of damping is evident by a similar behavior
of the derived CCFV with α = 0. On the other hand, the derived CCFV scheme is second-order accurate with
α = 1 and α = 4/3; the latter gives significantly more accurate solutions.

Figure 6.8 shows the error convergence for the DG schemes. All schemes are nearly second-order accurate.
The Bassi-Rebay, LDG, and DG(α = 1) schemes are equally accurate. The DG (α = 3) scheme produces
significantly more accurate solutions. Observe that the DG (α = 0) scheme is inconsistent and unstable.

Figure 6.9 shows the results for the SV schemes: Bassi-Rebay and LDG methods applied to SV schemes, and
the derived SV scheme. Again, all schemes show nearly second-order behavior, and give comparably accurate
solutions. The derived SV scheme with α = 3/2 yields similar solutions to those with α = 1 (therefore, not
shown).

Figures 6.16-6.37 show section plots of the numerical solutions at y = 0.078125 for various schemes on the
137x137 grid. The dash-dot curve is the section plot of the exact solution. Note that the plot of the exact
solution is not perfectly smooth. This is because the section plot was created from the exact solution projected
onto the computational grid that is irregular. Figure 6.16 shows that the Galerkin scheme produces highly
oscillatory solution. This failure is considered due to the lack of positivity of the Galerkin scheme on grids that
are not Delaunay [68]. A popular technique of ignoring all negative contributions does not help: the solution
is still oscillatory [43]), and moreover the Galerkin scheme loses consistency with the positivity enforcement
[43]. Accurate solution is obtained by the RD-LDA scheme as in Figure 6.17. For comparison, the solution
by the RD-LDA with α = 0 is shown in Figure 6.18. Without the damping (α = 0), the RD-LDA scheme
gives highly oscillatory and inaccurate solution. Figures 6.19 and 6.20 show the results for the EBFV-AvgLSQ-
EN scheme and the EBFV scheme with no damping (α = 0). Their solutions are similarly oscillatory and
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Figure 6.7: L1 error convergence for CCFV schemes.

inaccurate, which demonstrates the lack of damping of the EBFV-AvgLSQ-EN scheme on highly-skewed grids.
Very accurate solutions are obtained by the EBFV schemes as shown in Figures 6.21 and 6.22; the EBFV scheme
with α = 4/3 gives the best solution among all node-based schemes. Results for the NCFV-Cmp schemes are
shown in Figures 6.23-6.26. As can be seen, the NCFV-Cmp schemes with the least-squares and Green-Gauss
gradients, and with α = 1 and α = 4/3 give very similar results. These results indicate that the NCFV-Cmp
scheme is relatively insensitive to the gradient reconstruction methods as well as the choice of α. But the
NCFV-Cmp scheme with no damping (α = 0) yields a highly oscillatory solution (see Figure 6.26).

The rest of the results are for cell-based schemes. To create section plots, we first compute nodal solutions
by averaging the solution values extrapolated to the nodes from the surrounding triangles (using the gradients
reconstructed or computed as unknowns in each cell), and then plot the solution in the same way as those of
the node-based schemes. Figures 6.27 and 6.28 show the results for the CCFV-Avg-LSQ-EN scheme and the
derived CCFV scheme with no damping (α = 0). Both solutions are oscillatory and inaccurate as expected,
again, demonstrating the lack of damping of the CCFV-Avg-LSQ-EN scheme on highly-skewed grids. On
the other hand, the CCFV schemes with the least-squares gradients are much more accurate, especially with
α = 4/3, as shown in Figures 6.29 and 6.30.

Shown in Figures 6.31-6.35 are the results for DG schemes. The Bassi-Rebay scheme and the LDG schemes
give somewhat oscillatory solutions but not too far from the exact solution as shown in Figures 6.31 and 6.32.
The solution obtained by the derived DG scheme with α = 1 is slightly more oscillatory (see Figures 6.33), but
gives a much more accurate solution with α = 3 (see Figures 6.34). Again, the derived DG scheme with α = 0
(i.e., no damping) gives a catastrophically inaccurate solution as seen in Figure 6.35.

For SV schemes, the SV-Bassi-Rebay scheme produces a slightly irregular solution although accurate on
average as shown in Figures 6.36 while the SV-LDG scheme produces a much smoother solution to this problem
as shown in Figure 6.37. The derived SV scheme with α = 1 gives slightly oscillatory but, on average, accurate
solutions, as shown in Figure 6.38. Finally, the derived SV scheme with α = 0 lead to, due to the lack of
damping, extremely inaccurate solutions as shown in Figure 6.39.
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Figure 6.8: L1 error convergence for DG schemes.
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Figure 6.9: L1 error convergence for SV schemes.

7 Concluding Remarks

7.1 General Remarks

In this paper, we have introduced a general principle for constructing diffusion schemes: discretize the first-order
hyperbolic diffusion system by an advection scheme and then derive a diffusion scheme from it by discarding extra
equations and explicitly evaluating the solution gradient. We have demonstrated the principle by deriving a one-
parameter-family of second-order diffusion schemes for node/cell-centered finite-volume, residual-distribution,
discontinuous-Galerkin, and spectral-volume methods for uniform grids in one dimension and for unstructured
grids in two dimensions. It has been shown that a damping term, which is important for high-frequency error
damping, is automatically incorporated into the derived diffusion scheme through the dissipation term of the
generating advection scheme for all methods considered. A parameter α, which represents the ratio of the
maximum explicit time step to the relaxation time of the hyperbolic diffusion system, has been shown to play a
role of controlling the damping effect of the derived diffusion scheme. Special values of α have been discovered for
one-dimensional schemes that make them fourth-order accurate, and they have been shown to give significantly
accurate solutions even in two dimensions. For two-dimensional schemes, a skewness parameter has been shown
to be incorporated naturally into the damping coefficient, enabling robust and accurate computations on highly-
skewed grids. Numerical results have been shown to demonstrate the design accuracy of the derived diffusion
schemes and the importance of the damping term (i.e., a lack of damping leads to unstable and/or inconsistent
results). Comparison with widely-used schemes have been made to demonstrate that these derived diffusion
schemes give comparable or more accurate solutions for time-dependent diffusion problems on a uniform grid
in one dimension, and on highly-skewed anisotropic irregular triangular grids in two dimensions.

7.2 Derived Diffusion Schemes

Diffusion schemes derived from the proposed principle are summarized below.

1. Finite-Volume Schemes

(a) In one dimension, a one-parameter family of second-order diffusion schemes has been derived. It
becomes fourth-order accurate with α = 8/3.

(b) Edge-based and compact two-dimensional node-centered diffusion schemes have been constructed.
The edge-based scheme has been shown to produce significantly accurate solutions with α = 4/3.
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Figure 6.16: Galerkin scheme.
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Figure 6.17: RD-LDA scheme (α = 1).

(c) Two-dimensional cell-centered diffusion schemes have been constructed. The choice α = 4/3 gives
significantly accurate solutions on highly-skewed grids.

(d) A widely-used edge-normal average-least-squares scheme has been shown to break down for highly-
skewed grids due to a lack of damping, while the derived diffusion schemes produce very accurate
results on such grids due to the damping term that is automatically amplified on such grids.

2. Residual-Distribution Schemes

(a) A two-dimensional diffusion scheme has been constructed from the LDA scheme. The form of a
damping term is identified.

(b) The derived scheme has been shown to produce very accurate solutions on highly-skewed grids.

3. Discontinuous Galerkin Schemes

(a) A one-parameter family of one-dimensional second-order diffusion schemes has been derived, which
has been shown to be fourth-order accurate with α = 6.

(b) A two-dimensional diffusive flux has been constructed from the upwind flux. It has been shown to
give comparably or more accurate results than the Bassi-Rebay and LDG schemes. The choice α = 3
gives more accurate results than α = 1 in two dimensions.

4. Spectral-Volume Schemes

(a) A one-parameter family of one-dimensional second-order diffusion schemes has been derived, which
has been shown to be fourth-order accurate with α = 3.

(b) A two-dimensional diffusion scheme has been constructed from the upwind flux. The derived scheme
has been shown to give comparably accurate results with those with the Bassi-Rebay and LDG
schemes. The derived scheme is insensitive to the value of α. The choice α = 3/2, which corresponds
to the value that achieves fourth-order accuracy in one dimension, gives similar results for α = 1.

7.3 Future Work

Future work includes extensions to yet other discretization methods. The principle introduced in this paper is
independent of the discretization method, and it should be easily applied to other methods. Extensions to three
dimensions are straightforward. Many diffusion schemes derived in this paper are directly applicable to three-
dimensional grids. If not, a diffusion scheme can always be derived, provided an appropriate three-dimensional
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Figure 6.18: RD-LDA scheme (α = 0).
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Figure 6.19: Avg-LSQ-EN scheme.
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Figure 6.20: EBFV scheme (α = 0).
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Figure 6.21: EBFV scheme (α = 1).

advection scheme is available For practical applications, implicit formulations of the schemes derived in this
paper should be explored. The positivity of the damping coefficient is expected to improve diagonal dominance
of the resulting linear system for highly-skewed grids. The performance of the diffusion schemes for steady state
computations should be studied, not just for accuracy but also for convergence to the steady state, perhaps in
multigrid methods where high-frequency damping is essential for grid-independent convergence.

Among various future work, we first focus on the application of the proposed principle and derived schemes
to nonlinear systems. In a subsequent paper, we discuss strategies for extending the proposed approach to the
compressible Navier-Stokes equations.
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Figure 6.28: CCFV scheme (α = 0).
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Figure 6.31: Bassi-Rebay scheme.
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Figure 6.32: LDG scheme.
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Figure 6.34: DG scheme (α = 3).
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Figure 6.35: DG scheme (α = 0).
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Figure 6.36: SV-Bassi-Rebay scheme.
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