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SUMMARY

In this paper, a multigrid algorithm is developed for the third-order accurate solution of Cauchy-
Riemann equations discretized in the cell-vertex finite-volume fashion: the solution values stored at
vertices and the residuals defined on triangular elements. On triangular grids, this results in a highly
overdetermined problem, and therefore we consider its solution that minimizes the residuals in the
least-squares norm. The standard second-order least-squares scheme is extended to third-order by
adding a high-order correction term in the residual. The resulting high-order method is shown to give
sufficiently accurate solutions on relatively coarse grids. Combined with a multigrid technique, the
method then becomes a highly accurate and efficient solver. We present some results to demonstrate
its accuracy and efficiency, including both structured and unstructured triangular grids. Copyright
c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

In this paper, we present a multigrid third-order accurate Cauchy-Riemann solver on triangular
grids. This work is motivated by the wish to develop a highly accurate and efficient algorithm
for solving the elliptic (Cauchy-Riemann type) subsystem of the two-dimensional Euler
equaitons. The decomposition approach, where a partial differential equation is split into
elliptic and hyperbolic equations, is an attractive strategy as we can apply a technique specially
tailored to the physics of each subproblem. Such a strategy has been shown to yield highly
accurate numerical solutions over the conventional finite-volume scheme [16, 6, 7, 8]. It has
also been shown that such decomposition can lead to optimal multigrid convergence of the
Euler equations on structured grids [14], employing suitable grid hierarchy for each part: full-
coarsening for elliptic part and semi-coarsening for hyperbolic part. This work contributes
toward the same optimal convergence of the Euler computation on unstructured grids.
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The least-squares method has been successfully used to solve the elliptic part of the Euler
equations [12], demonstrating its superior properties over the Lax-Wendroff type solver which
is known in particular to break the symmetry of the solution and not to attain a typical
multigrid convergence rate[16, 17]. The advantage of the least-squares method is not only
that it provides a symmetric stencil, but also that the spurious entropy generation can be
suppressed, in a natural way, in the form of a constrained minimization[16]. Also an adaptive
grid technique can be devised, again in the framework of minimization [15, 10]. Moreover it
can be upgraded to higher-order by a simple modification; the third-order scheme has already
been developed in [12] following the work by Caraeni and Fuchs[5].

This work focuses on the efficiency of the least-squares method, and demonstrate that the
method can achieve an optimal convergence when combined with a multigrid method. In
particular, we show that the required CPU time to obtain a converged solution is O(N) where
N is the number of unknowns. This means tremendous saving in CPU time over direct solvers
which require O(N3) especially for large scale problems. Similar work has been reported by
Borzi et al.[9]. Our method has three distinctive features. First, our method is third-order
accurate while their method is second-order. Second, our least-squares formulation is directly
applicable to unstructured grids while such extension is not clear for their method. Third,
we restrict the nodal residual to define the coarse grid problems while they restrict the cell-
residual. We propose also a simple fix to resolve the convergence difficulty with bad coarsening
ratio that may arise for unstructured grids.

2. Least-Squares Scheme

Consider the Cauchy-Riemann equations

∂xu+ ∂yv = 0, ∂xv − ∂yu = 0 (1)

where (u, v) is taken to be two velocity components. On the boundary, zero normal component
(un = 0) is enforced. To discretize the system, we triangulate the domain of interest into a set
of triangles {T}. Storing the solutions at the vertices, we define the residual on a triangular
element T as integrals of (1). Assuming piecewise linear variation of u and v within the element,
we obtain the 2nd-order version of the residuals.

ΘT =
1
2

∑
i∈{jT }

(ui∆yi + vi∆xi) , ΩT =
1
2

∑
i∈{jT }

(−vi∆yi + ui∆xi) (2)

where {jT } is the set of vertices forming the triangle T and ∆{}i denotes a difference taken
counterclockwise along the side opposite to j. On triangular grids, the number of triangles
is typically twice the number of vertices. This results a highly overdetermined problem, and
therefore residuals cannot be driven to zero everywhere. We then seek to find a solution that
minimizes the residuals in a least-squares norm in the form

F =
∑

T∈{T}

FT =
1
2

∑
T∈{T}

(
Θ2

T + Ω2
T

)
. (3)

We remark that by weighting FT with 1/ST , where ST is the area of the triangle T , we obtain
the standard Galerkin discretization of the associated Laplace equations for u and v. This
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discretization however loses its accuracy, yielding even less than first-order accuracy. Although
equivalent on uniform grids, the norm without such a weight as in (3) cures the problem, and
retain the formal accuracy of the method. See [10] for details.

To minimize the norm, we employ the steepest descent method,

un+1
j = un

j − cj
∂F
∂uj

= un
j − cj

2

∑
T∈{Tj}

(∆yT ΘT − ∆xT ΩT ) , (4)

similarly for v, where {Tj} is the set of triangles that share the vertex j, cj is a constant and
∆{}T denotes a difference taken counterclockwise along the side opposite to j on the triangle
T . This method is however very slow to converge. To improve on it, we use Newton’s method,
but with only diagonal elements of the Hessian matrix, which defines cj as

cj = ω/
∂2F
∂u2

j

= ω/
∂2F
∂v2

j

= ω/L2
j , L

2
j =

1
4

∑
T∈{Tj}

{
(∆xT )2 + (∆yT )2

}
(5)

where ω is a relaxation parameter. On the boundary where the tangency condition must be
imposed, we simply ignore the updates in the normal component of the solution.

To extend the method to third-order, we first recover the solution gradients at each vertex
by the Green-Gauss formula, interpolate the solutions at the midpoint of each edge (Hermite
interpolation), and then evaluate the residuals to the fourth-order accuracy. The results are

ΘH
T =ΘT − 1

12

∑
edges

(∆p∆y − ∆q∆x) , ΩH
T =ΩT − 1

12

∑
edges

(∆q∆y + ∆p∆x) (6)

where ∆ on the right hand side denotes the difference taken clockwise along the edge, and
pi and qi are the gradients evaluated at vertex i projected onto the edge. These residuals are
however third-order accurate in reality because the gradient estimate is at best second-order.
As clearly seen, the second terms on the right can be considered as a third-order correction to
the second-order residual. With this correction taken as a numerical correction, the solution
procedure remains identical to the second-order method except that we replace the second-
order residuals (ΘT ,ΩT ) by the third-order counterparts (ΘH

T ,Ω
H
T ) in the update formulas (4).

See [10] for more details.

3. Multigrid Algorithm

We now describe the multigrid algorithm that accelerates the convergence of the method to
reach the ultimate O(N) convergence. Coarse grids are generated by removing every other point
on a fine grid, resulting vertex-nested structure. Coarse grid problems are then independently
discretized on their grids. It is crucial at this point that the source term in the coarse grid
problem (i.e. the restricted nodal residual) must be properly scaled [2]. Defining the nodal
residual on a fine grid {Th} to be restricted onto a coarse grid {T 2h} by

Rh
j =

∑
T∈{T h

j }
(
∆yT ΘH

T − ∆xT ΩH
T

)
2 (Lh

j )4
+Rh/2|hj (7)
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where Rh/2|hj is the nodal residual restricted onto the node j on {Th} from the next finer grid
(which is zero if {Th} is the finest grid), we have the update formula for the solution on the
coarse grid, (

u2h
j

)n+1
=

(
u2h

j

)n − ω (L2h
j )2

[
R2h

j + αRh|2h
j

]
, (8)

similarly for the other variable. Note that the coarse grid problems can be badly scaled if the
coarsening ratio is locally too large. We may modify the coarse grids to fix this problem, but
instead we modify the algorithm. The parameter α has been introduced in (8) precisely for
this purpose and defined by

α =

{
1 (L2h

j /Lh
j )2 ≤ 4.0

4(Lh
j /L

2h
j )2 (L2h

j /Lh
j )2 > 4.0

(9)

which effectively limit the maximum ratio to 4.
As for intergrid transfer operators, following [4], we construct node-based intergrid transfer

operators as follows. Prolongation is based on injection and linear interpolation,

u2h|hj =

 u2h
j if j is a nested vertex∑

i∈{jT } u
2h
i wT

i otherwise
(10)

where u2h|hj denotes the value interpolated from a coarse grid {T 2h} to a fine grid {Th}, T is
a coarse-grid triangle enclosing a fine-grid node j and {wT } is a set of weights for the linear
interpolation over that triangle. Restriction is taken as the transpose of the prolongation

Rh|2h
j =

Rh
j +

∑
T∈{T 2h

j }
∑

{iT }R
h
i w

T
j

1 +
∑

T∈{T 2h
j }

∑
{iT } w

T
j

(11)

where {iT } is a set of fine-grid vertices in a coarse-grid triangle T . These operators are accurate
enough to satisfy the well-known necessary condition for the multigrid efficiency [2] for the
Cauchy-Riemann equations.

4. Results

For all the results here, we use W-cycle with two relaxation sweeps on each grid level after
both restriction and prolongation. The method is taken to be converged when the actual L2

errors of the solutions do not change more than 1% per cycle. CPU time was measured on
a PC with Pentium III 800MHz processor. As usual, work unit is defined as one relaxation
sweep on the finest grid (3.06 GHz for unstructured grid cases).

4.1. Structured Grids

The first test case is the classical flow whose complex potential is given by

W = φ+ i ψ = zn (12)

where i =
√
−1, φ is the velocity potential, ψ is the streamfunction, z = x + iy, and n is an

integer. In this work, we take n = 7. Taking u = φ and v = ψ, we solve the Cauchy-Riemann
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Figure 1. 4x4 uniform triangular grid.
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Figure 2. Error Convergence
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Figure 3. Convergence History
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Figure 4. CPU Time vs. Grid Size

equations in a square domain {(x, y)| 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}. On the boundary, we specify
the exact solution for both variables as boundary conditions, setting up a Dirichlet problem.
The grid is a uniform triangular grid as shown in Figure 1. The grids used are 16x16, 32x32,
64x64, 128x128, 256x256, and 512x512 with the coarsest grid is taken to be 2x2 in every
case, resulting 4, 5, 6, 7, 8, and 9 multigrid levels respectively. As a smoother, we employ the
weighted Jacobi iteration with ω = 4/5 for this problem.

Figure 2 shows that the method is indeed third-order accurate, where the solid line is the
line of slope 3 and the circles are the results obtained. Figure 3 shows the convergence history:
the history of the L2 norm of the nodal residual (scaled by the initial one) of u versus work
unit. The straight lines are the multigrid results. We see that the method converges for all the
grids well less than 100 work units, and also that the residuals had to be reduced further as
the grid gets finer to reach the level of discretization error as well known. The isolated flat
curve indicates the residual history for a single grid case for 64x64 grid, which took about 2200
work units to reach the same error level as that of the multigrid method for the same grid. In
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Figure 5. 80x40 O-grid around a cylinder.
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Figure 6. Error Convergence: Cylinder Case
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Figure 7. CPU Time vs. Grid Size: Cylinder Case.
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Figure 8. Cp: Cylinder: 80x40 grid.

terms of the number of W-cycles, the multigrid method took 7, 8, 8, 9, 10, and 11 cycles for
the grid sizes 16x16, 32x32, 64x64, 128x128, 256x256, and 512x512 respectively, yielding the
convergence rate of about 0.12 for all the cases. Figure 4 is the plot of the CPU time versus
the number of unknown. The data fits the straight line (y = (6.2766E-05)x), meaning that the
method achieves O(N) convergence in which sense the method is indeed optimal.

4.2. Unstructured Grids

The algorithm was first tested for flows around a cylinder (with circulation 2π) and a
Joukowsky airfoil at an angle of attack 10◦. In both cases, the grids are O-type 40x20,
80x40, and 160x80 grids with unit chord length, extending to 10-chord length to the outer
boundary (Figures 5 and 9). As boundary conditions, the exact solution is given and fixed
on the outer boundary. On the inner boundary which is a solid surface, we simply ignore the
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Figure 9. 80x40 O-grid around an airfoil.
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Figure 10. Error Convergence: Airfoil Case
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Figure 11. CPU Time vs. Grid Size: Airfoil Case.
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Figure 12. Cp: Airfoil: 80x40 grid.

solution updates in the normal direction. Or equivalently, we project the solution updates in
the direction tangent to the surface, so that there always exists no flow across the boundary. In
the airfoil case, we impose the Kutta-Joukowsky condition by setting v = 0 at the trailing edge.
Because the airfoil is symmetric and the trailing edge is cusped, u should not be set zero and so
it is computed by the method. For these problems, we employ the successive-over-relaxation
scheme with ω = 1.6.

Figures 6 and 10 show the error convergence. 3rd-order accuracy is observed for both cases,
where the solid line has the slope of 3. The method converged in about 12 W-cycles. The
average convergence rates are 0.35 for the cylinder case and 0.6 for the airfoil case, which are
very small compared with that of the single grid case for which the rate is about 0.996 for
both cases. Figures 7 and 11 shows that the method achieves O(N) convergence in both cases
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Figure 13. 80 nodes around an airfoil.
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Figure 14. Error Convergence: Airfoil Case
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Figure 15. CPU Time vs. Grid Size: Airfoil Case.
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Figure 16. Cp: Airfoil: 80 nodes on the airfoil.

as the data fit the line of slope 1, in which sense the method is optimal.
Another test case is the same flow around the same airfoil on unstructured grids. A grid

was generated by ”Delaundo” developed by Muller[17] with 61468 triangles and 320 nodes to
represent the airfoil. Coarse grids were generated by removing every other points, resulting 5
multigrid levels. To determine O(N) and error convergence, two other grids were used which
are simply the next two grids in the 5 levels: 3658 and 15116 triangles with 80 and 160 nodes
to represent the airfoil, and 3 and 4 multigrid levels respectively. The method converged in
about 15 W-cycles. The average convergence rate is 0.5. Again, O(N) convergence is observed
(Figure 15). Error convergence is plotted in Figure 14 where both results of the third-order
method and the second-order method are compared. The mesh size h is a simple average over
the triangles of an averaged-height of a triangle which is twice the area divided by a harmonic
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mean of three sides. The slopes are 1.4 for the second-order method, and 2.3 for the third-
order version (the slopes for the last two grids are 1.6 and 2.9), showing superior error level
and convergence of the third-order method.
Cp distributions around the bodies on the 80x40 grids are plotted in Figures 8-16 show

excellent agreement between the exact (solid curve) and computed values (circles). The actual
solution errors are below 1%. In particular, this shows that the method preserves the circulation
which is very important for accurate estimate of the lift force but is extremely difficult to
achieve in the 2nd-order version [10].

5. Concluding Remarks

A multigrid third-order least-squares method was developed for the Cauchy-Riemann
Equations for unstructured triangular grids. It is demonstrated that the method achieves
the optimal multigrid convergence rate and third-order accuracy for both structured and
unstructured grids. Also, a simple fix was proposed to resolve the convergence difficulty with
bad coarsening ratio that may often arises for unstructured grids.

The method can be used for solving the Laplace (or Poisson) equation by ignoring one of the
variables. This can serve also as a high-order compact discretization of the viscous operator of
the Navier-Stokes equations [13].

Future work includes the application of the method for the elliptic part of the
two-dimensional Euler equations. Combining the method with a hyperbolic solver with
semicoarsening multigrid method, we expect to obtain a highly accurate and optimaly efficient
2D Euler solver.
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