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Abstract

In this paper, we embark on a new strategy for computing the steady state solution of the diffusion
equation. The new strategy is to solve an equivalent first-order hyperbolic system instead of the second-order
diffusion equation, introducing solution gradients as additional unknowns. We show that schemes developed
for the first-order system allow O(h) time step instead of O(h2) and converge very rapidly toward the steady
state. Moreover, this extremely fast convergence comes with the solution gradients (viscous stresses/heat
fluxes for the Navier-Stokes equations) simultaneously computed with the same order of accuracy as the main
variable. The proposed schemes are formulated as residual-distribution schemes (but can also be identified
as finite-volume schemes), directly on unstructured grids. We present numerical results to demonstrate the
tremendous gains offered by the new diffusion schemes, driving the rise of explicit schemes in the steady
state computation for diffusion problems.

Key words: diffusion first-order system fast convergence large time step residual distribution unstruc-
tured grids

1 Introduction

In this paper, we embark on a new strategy for computing the steady state solution to the diffusion equation,

ut = ν(uxx + uyy), (1.1)

where ν is a positive diffusion coefficient. The new strategy is based on the following first-order system:

ut = ν (px + qy),
pt = (ux − p)/Tr,
qt = (uy − q)/Tr,

(1.2)

where Tr may be called a relaxation time. This is in fact a relaxation system, often called the hyperbolic heat
equations, asymptotically equivalent to the original diffusion equation as Tr → 0 [1, 2, 3]. There have been
many attempts to develop numerical methods for such relaxation systems [1, 4, 5, 6], with a particular focus
on the stiffness problem: an explicit time step, ∆t = O(Tr) → 0, is prohibitively restricted due to an extremely
small relaxation time; an implicit treatment of the stiff source term could degrade the solution accuracy [7].
Although based on the same equations, a new strategy is radically different from these relaxation methods. The
key is to realize the fact that the first-order system is equivalent to the diffusion equation at the steady state
(ut = pt = qt = 0) for any Tr:

0 = ν (px + qy),
0 = (ux − p)/Tr,
0 = (uy − q)/Tr,

→
0 = ν (px + qy),
p = ux,
q = uy,

→ 0 = ν (uxx + uyy). (1.3)
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Then, as far as the steady state computation is concerned, the relaxation time Tr is a free parameter, and the
stiffness is no longer an issue. In short, we gain the freedom to choose Tr to avoid the stiffness by giving up the
time accuracy. This is the key idea of the new strategy. And we will see in due course that this simple idea paves
the way for the rise of explicit schemes in the steady state computation for diffusion problems, and also brings
a dramatic change in the way an advection scheme and a diffusion scheme are combined for advection-diffusion
problems.

In developing numerical schemes for the first-order diffusion system (1.2), we focus on the residual-distribution
(or fluctuation-splitting) method. This is partly because the present study was originally motivated by the need
to develop diffusion schemes in the framework of the residual-distribution method, and also because this method
has superior features especially for unstructured grids. This is a method based on nodal degrees of freedom
and cell-residuals in the same spirit of the cell-vertex schemes [8], but its development has been almost exclu-
sively for triangular unstructured grids. It has been developed extensively for problems dominated by advection
and wave propagation because of the ability to reflect multidimensional physics of the governing equations
[9, 10, 11, 12, 13, 14]. But on the other hand, its application to diffusion problems had long been almost
untouched, apparently because diffusion is an isotropic process and does not benefit particularly from such
a multidimensional capability. In fact, it has been a standard practice to discretize the viscous term by the
Galerkin method and simply add to the existing residual-distribution Euler code to construct a Navier-Stokes
code [15, 16, 17]. It was pointed out in [18] however that such a strategy deteriorated the formal accuracy
of the scheme due to an incompatibility of the two discretizations, especially in regions where advection and
diffusion effects are equally important. Then, in [18], a first-order system approach was introduced as a basis for
developing uniformly accurate schemes for the advection-diffusion problems. But without the time derivatives
and the relaxation time, it only discusses the spatial discretization and no details on the method to compute the
steady state solution is given. In this paper, we introduce the time derivatives and the relaxation time to write
the first-order system as a set of evolution equations as in (1.2), and develop a class of residual-distribution
schemes for computing the steady state solution. In so doing, we take full advantage of having an arbitrary
relaxation time. We will show in particular that we can develop a class of schemes that allow an O(h) time
step, where h is a mesh size, instead of the conventional O(h2) time step. This is a tremendous gain, and
shows a great potential for promoting the use of explicit methods for steady state computations in diffusion
problems for which O(h2) time step has always been the major obstacle for using explicit methods (even for
steady calculations) and the motivation for resorting to other methods such as implicit methods. Moreover, this
rapid convergence comes with solution gradients computed with the equal order of accuracy as the solution u.
This not only eliminates the need of post-processing to compute the physical quantity of interest such as viscous
stresses or heat fluxes, but also provides such quantities with excellent accuracy whereas the post-processed
quantities often lose the order of accuracy by at least one. We also pay a particular attention to the relation
with the Galerkin discretization. The Galerkin discretization does not precisely fit in the framework of residual-
distribution (although can be arranged as if it is), but rather surprisingly it is shown to emerge as a special
case of the proposed schemes. Although this paper is largely concerned with the residual-distribution method,
finite-difference or finite-volume schemes can also be developed based on the same first-order system. We believe
that it can be done straightforwardly and the description of the one-dimensional residual-distribution schemes
in this paper will provide a guide for developing these schemes.

The first-order system, although in a slightly different form, has often been utilized for developing diffusion
schemes in finite-element methods: the mixed finite-element method [19] or the least-squares finite-element
method [20]. But the focus there is rather on accuracy, and the method to obtain the steady state solution
is not paid a particular attention, which makes it hard to compare the present approach with. Also, in the
discontinuous Galerkin method, the first-order system is utilized for a proper discretization of diffusion terms
[21]. The same approach was taken also in the spectral finite-volume method [22]. In these methods, because
of the discontinuous nature of the numerical solution, the gradient variables are explicitly solved locally and
eliminated by direct substitution back into the diffusion term. Therefore, the first-order system disappears at
the end of the discretization. In the case of the residual-distribution method, this is not possible because the
solution data is continuous, and therefore we end up with a globally coupled system of equations. In effect, we
will be solving this global system iteratively by marching in time until convergence. This however should not be
taken as a disadvantage because this is how the residual-distribution schemes achieve second-order accuracy at
the steady state without reconstruction. Also this makes it possible to achieve a rapid convergence to the steady
state with O(h) time step in the first-order system approach with the gradient variables directly available on
boundary nodes where such information is particularly valuable (e.g., skin friction/heating rate).

We set out in Section 2 the residual-distribution method in relation to diffusion problems. Describing the
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Figure 1: Continuous piecewise linear data repre-
sentation.
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Figure 2: Distribution of cell-residuals and the dual con-
trol volume.

difficulties with the diffusion equation, we finally arrive at the first-order system approach. We then begin
to develop a class of residual-distribution schemes for the first-order system. In Section 3 we describe the
development and the analysis of the new schemes in one dimension. It is then extended to two dimensions in
Section 4. In Section 5, we show that the first-order system approach can be used to derive dissipation terms
for scalar diffusion schemes. In Section 6, we present numerical results to demonstrate the accuracy and the
convergence properties of the new schemes for both one-dimensional and two-dimensional problems.

2 Residual-Distribution Method and Diffusion Equation

2.1 Residual-Distribution Method in One Dimension

We call methods residual-distribution if they can be factored into the two steps, residual evaluation and distri-
bution. Consider computing the steady state solution of the one-dimensional conservation law,

ut + fx = q. (2.1)

To discretize, we generate a set of nodes {J} with coordinates xj distributed arbitrarily over the domain of
interest, and store the solution at each node (uj , pj), j ∈ {J} assuming the piecewise linear variation over each
cell (see Figure 1). This defines a set of cells {C} of size ∆xC = xj+1 − xj . Then, for each cell, we evaluate the
cell-residual (or fluctuation) φC as an integral value of the steady part of the equation,

φC = −
∫

C

(fx − q) dx = − (fj+1 − fj) +
qj+1 + qj

2
(xj+1 − xj) , (2.2)

where the source term has been evaluated by the trapezoidal rule. Note that the source term approximation
has been deliberately chosen to be exact for linear q, in order to be compatible with the accuracy of the other
term. This defines a measure of the error in satisfying the steady equation over the cell. If this does not vanish,
we must change the nodal solutions to reduce the error. This brings the second step, i.e., distribution. We
determine fractions of φC to be distributed to the nodes on the left and the right, φC

j and φC
j+1 by

φC
j = βC

j φC , φC
j+1 = βC

j+1φ
C , (2.3)

where βC
j and βC

j+1 are distribution coefficients that satisfy

βC
j + βC

j+1 = 1 (2.4)

for conservation. Having done this for all cells, we have the following semi-discrete equation, with L and R
indicating the left and right cells of node j,

duj

dt
=

1
hj

[
φL

j + φR
j

]
=

1
hj

[
βL

j φL + βR
j φR

]
, (2.5)

where hj = (xj+1 − xj−1)/2, which we integrate until we reach the steady state. The key to construct a
successful scheme is, of course, the choice of the distribution coefficient βC

j . This is where the physics of the
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equation plays an important role. For example, for hyperbolic equations, an upwind scheme is constructed by
the following distribution coefficients:

βC
j =

1
2

(
1 − aC

|aC |

)
, βC

j+1 =
1
2

(
1 +

aC

|aC |

)
, (2.6)

where aC = (∂f/∂u)C which may be evaluated using the Roe linearization, fj+1 − fj = aC(uj+1 − uj) [23]. In
fact, with these coefficients, the semi-discrete equation (2.5) can be written as

duj

dt
= − 1

hj

[
Fj+ 1

2
− Fj− 1

2

]
+ q̂j , (2.7)

where

Fj+ 1
2

=
1
2

(fj+1 + fj) +
|aC |
2

(uj+1 − uj) (2.8)

q̂j =
1
hj

[
βL

j

qj + qj−1

2
∆xL + βR

j

qj+1 + qj

2
∆xR

]
. (2.9)

This can be interpreted as a finite-volume scheme with a rather complicated source term discretization which
would be simply q̂j = qj in the finite-volume method. Hence, the residual distribution scheme and the finite-
volume scheme are identical except for the source term discretization. Note that the scheme is second-order
accurate at a steady state. This is true for any bounded distribution coefficients on general non-uniform grids.
This is because the nodal residual is a weighted average of cell-residuals that vanish individually for exact linear
solutions of the conservation law. This property is called residual property and one of the reasons for the
superior accuracy of the residual-distribution schemes on irregular grids. This is particularly advantageous over
the finite-difference and the finite-volume schemes for advection-diffusion problems where nonuniform grids are
desirable to efficiently resolve narrow transition regions such as boundary layers.

If implemented as a finite-volume scheme with q̂j = qj , the scheme will be only first-order accurate at a
steady state due to the lack of the residual property. To recover the second-order accuracy, the source term
must be discretized in such a way that the steady equation

fx = q (2.10)

is satisfied with second-order accuracy at a steady state. This can be done by using the residual distribution
formulation which gives a proper discretization such as (2.9), or by using other techniques specific to the finite-
volume method (see [24] and references therein). In particular, a method in [25] is capable of producing a
finite-volume scheme in the form (2.8) with (2.9).

2.2 Residual-Distribution Method in Two Dimensions

Now, in two dimensions, consider again solving the conservation law,

ut + fx + gy = q. (2.11)

We begin by dividing the domain of interest into a set of triangles {T}, with a set of nodes {J}, and store the
solution values at nodes. We then proceed as in one dimension, first to evaluate the cell-residual. For each
triangular cell T ∈ {T} with vertices {iT } = {1, 2, 3}, we evaluate a local cell-residual, φT ,

φT = −
∫∫

T

(fx + gy − q) dxdy, (2.12)

which becomes, for a piecewise linear approximation of f , g, and q,

φT = −(fT
x + gT

y )ST +
q1 + q2 + q3

3
ST = −

∑
i∈{iT }

1
2

(fi, gi) · ni +
q1 + q2 + q3

3
ST , (2.13)

where fT
x and gT

y denote constant derivatives over the triangle, ST is the area of the triangle, {iT } denotes a set
of nodes that form the triangle, and ni is the scaled inward normal vector of the edge opposite to node i (see
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Figure 3: Distribution of a non-zero cell-residual
to the set of vertices {iT } = {1, 2, 3}.
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Figure 4: Median dual cell around node j in the
set of triangles sharing that node {Tj}.

Figure 4). Note that the source term approximation has been deliberately chosen, as in one dimension, to be
compatible with the accuracy of the other term. We now move on to distribute the cell-residual to the nodes.
We determine a fraction φT

i of φT to be distributed to node i of triangle T by

φT
i = βT

i φT i ∈ {iT }, (2.14)

(see Figure 3) where βT
j is a distribution coefficient with the property∑

i∈{iT }

βT
i = 1 (2.15)

for conservation. Again, it is the distribution coefficient that reflects the physics of the governing equations.
There has been extensive research work on the distribution coefficients almost exclusively for hyperbolic prob-
lems, and today various upwind schemes are available (see [9, 26] for example). Note that the upwind scheme
in two dimensions is not unique even for a linear problem, and that residual-distribution schemes cannot always
be rephrased as a finite-volume scheme. This means that the residual-distribution schemes are fundamentally
different from the finite-volume schemes, and the connection between the two methods begins to blur in higher
dimensions.

It is important to note that the cell-residual (2.13) vanishes for exact linear solutions, nothing will be
distributed then, and the solution is preserved as a result. So, we have the residual property, and it is independent
of the shape of the cell. This is a great advantage especially for unstructured grids. And as in one dimension,
the scheme is therefore second-order accurate at the steady state for bounded distribution coefficients [11].
Note that this is no longer true if we evaluate the source term separately by a point value as is done in the
finite-volume schemes, and the scheme will then be only first-order accurate. In this study, we do not consider
this option.

Finally, accumulating the partial residuals distributed at node j, we arrive at the following semi-discrete
form:

duj

dt
=

1
Sj

∑
T∈{Tj}

φT
j , (2.16)

where Sj is the median dual cell area around node j, and {Tj} denotes a set of triangles sharing the node (see
Figure 4). We then integrate this in time to reach the steady state.

2.3 Galerkin Discretization of Diffusion Equation

In applying the residual-distribution method to the diffusion equation which involves second-order derivatives,
we immediately notice that a cell-residual cannot be defined over a cell because it vanishes identically for
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piecewise linear solutions. One way to overcome this difficulty is to discretize the diffusion term directly at a
node by the Galerkin method, and then write the result as a sum of the contributions from the nearby cells as
if it is residual-distribution. Consider the one-dimensional diffusion equation,

ut = νuxx. (2.17)

We assume a uniform grid h = xj+1−xj , and apply the Galerkin method: multiply the equation by the piecewise
linear basis function that takes 1 at node j, and 0 at nodes j − 1 , and j + 1, and then integrate by parts from
x = xj−1 to x = xj+1. Then, lumping the left hand side, we obtain the following semi-discrete equation:

h
duj

dt
=

ν

h
(uj+1 − 2uj + uj−1) , (2.18)

which can be written as

duj

dt
=

1
h

[
φR

j + φL
j

]
=

1
h

[
ν (uj+1 − uj)

h
− ν (uj − uj−1)

h

]
, (2.19)

so that we find that the contributions to the nodes within cell C are defined as

φC
j =

ν(uj+1 − uj)
h

, φC
j+1 = −ν(uj+1 − uj)

h
. (2.20)

In this form, the scheme can be implemented in the residual-distribution framework. However, it is clear that
the contributions within a cell sum up to zero: φC = φC

j +φC
j+1 = 0. Hence the cell-residual does not exist, and

in this sense the Galerkin scheme is not residual-distribution.
Similarly, the two-dimensional diffusion equation (1.1) can be easily discretized by the Galerkin method. Or

equivalently, we can directly integrate the diffusion term over a set of triangles {Tj}: first convert the integral
to the line integral around {Tj} by the divergence theorem, and then evaluate it with the constant gradient over
each triangular cell. In either way, we arrive at the following discretization:

Sj
duj

dt
= −ν

2

∑
T∈{Tj}

∇uT · nT
j , (2.21)

where nT
j is the scaled inward normal vector of the edge opposite to node j of triangle T (see Figure 4). Then,

we find from this that the contribution to node i within cell T is defined as

φT
i = −ν

2
∇uT · nT

j , (2.22)

which however again sums up to zero over the cell because nT
1 +nT

2 +nT
3 = 0, and therefore no cell-residual exists.

This might seem a natural consequence because the diffusion term identically vanishes over the cell for piecewise
linear solutions, but in fact, it has been shown that this is true for any basis functions [27]. Cell-residuals are
necessary for a scheme to be residual-distribution and even vital for the advection-diffusion schemes in which
cell-residuals for the entire equation are sought. It seems hopeless to have cell-residuals for the Galerkin scheme,
but we will discover later that cell-residuals for the Galerkin scheme do exist; they emerge, rather surprisingly
and paradoxically in a way, out of the residual-distribution schemes that we propose in this paper.

2.4 Residual-Distribution for Diffusion Equation

It is possible to evaluate a cell-residual for the diffusion term if the solution gradient is available at nodes. In
one dimension, we may reconstruct the gradient at node j, (ux)j , by a simple finite-difference approximation,

(ux)j =
uj+1 − uj−1

2h
, (2.23)

and evaluate the cell-residual as

φC =
∫

C

νuxx dx = ν [(ux)j+1 − (ux)j ] . (2.24)

6
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This does not vanish identically and therefore can drive the change of the nodal solutions. Similarly in two
dimensions, we can reconstruct the gradients at nodes, and then evaluate cell-residuals for the diffusion term.
This type of scheme was studied in [12, 27, 28] and in [13] for quadrilateral grids. To distribute the cell-residual,
in [13, 18, 27], equal weights are proposed to reflect the isotropic nature of diffusion, and in [12, 28] where the
advection-diffusion problems are considered, upwind coefficients are used for the entire cell-residual.

The resulting scheme is genuinely residual-distribution: it has the residual property and can be naturally
combined with an advection scheme for the advection-diffusion problems. But the scheme is no longer compact
because the stencil has been extended by way of reconstruction. For example, in order for the scheme to be
second-order accurate, the cell-residual must be evaluated with second-order accuracy. This requires at least
a quadratic reconstruction, thus demanding a very large stencil especially in two dimensions. Even worse, it
is pointed out in [13] that these schemes (with bounded distribution coefficients) always suffer from a lack of
dissipation for high-frequency error modes for both triangular and quadrilateral grids. Certainly, these schemes
need some form of dissipation, but deriving a dissipation term for the scalar diffusion scheme turns out to be
a nontrivial task. But we will discover a form of dissipation from the new diffusion schemes we develop in this
paper. We will discuss this in more details in Section 5.

2.5 First-Order System Approach

We now propose a new strategy: we carry the gradient p as unknown and solve the first-order system instead,

ut = ν px,
pt = (ux − p)/Tr,

(2.25)

where Tr is a free parameter. This is then equivalent to the diffusion equation, ut = ν uxx, at the steady state
where exactly we seek the solution. With the first-order system, since there appear only first-order derivatives,
the cell-residuals can be evaluated straightforwardly with second-order accuracy without reconstruction as we
store all variables (u, p) at nodes. In short, we can now develop compact schemes. And this is true not only
for the residual-distribution schemes but also for finite-difference or finite-volume schemes, simply because we
no longer need to discretize the second-order derivative which generally requires an extended stencil. This is
one of the advantages of solving the first-order system instead of the second-order diffusion equation. In fact,
in general, there are a number of advantages for solving first-order systems in place of equations with higher
derivatives: compact stencils, stiffness made local, ease of functional decomposition, and so on. An extensive
discussion on the use of first-order systems in computational fluid dynamics is given by Van Leer [29]. Here, we
focus on the aspects particular to the first-order diffusion system.

The first-order system (2.25) is identical to the hyperbolic heat equations: asymptotically equivalent to the
original diffusion equation as Tr = O(ν) → 0; correctly modeling the short time behavior of heat flows (a solution
to the paradox of the infinite heat propagation) [1, 2, 3]. Difficulties in solving this system lies in the stiff source
term, − p

Tr
, on the right hand side of the second equation. Because Tr is typically an extremely small quantity,

an explicit time step, ∆t = O(Tr) → 0, is prohibitively restrictive. But an implicit treatment of the stiff source
term could degrade the solution accuracy unless it is strongly coupled with the flux computation [7, 30, 31]. The
same difficulties are shared with other physical models of interest, such as rarefied gas dynamics or radiation
hydrodynamics. Hence, numerical methods for solving these relaxation systems have been extensively studied
[1, 4, 5, 6], with a particular focus on the same stiffness problems. But the stiffness is not an issue in our case
because the system is equivalent to the diffusion equation for any Tr at the steady state, and the steady state
solution is exactly what we are interested in. This makes the development of numerical schemes a lot easier
than the relaxation methods.

It is interesting to note that the removal of the stiffness comes at the expense of correct transient behavior.
This is similar to the local preconditioning technique [32, 33, 34, 35]. In this technique, by altering the transient
property of the time-dependent system (losing time accuracy), one attempts to optimize the condition number
(the ratio of the maximum to the minimum wave speeds) in order to maximize the effect of error propagation
thereby accelerating the convergence toward the steady state. The stiffness here is caused by a large condition
number, and this is made to close to 1 as much as possible by multiplying the spatial part of the time-dependent
system by a preconditioning matrix. In fact, the first-order system (2.25) can be interpreted as a preconditioned
system of the hyperbolic heat equations. Suppose we have the hyperbolic heat equations with the relaxation
time ε ¿ 1, (

u
p

)
t

=
(

0 ν
1/ε 0

)(
u
p

)
x

−
(

0
p/ε

)
. (2.26)

7
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This is a physically correct time-dependent system. Now, it is easy to see that multiplying the right hand side
by the following preconditioning matrix: (

1 0
0 ε/Tr

)
, (2.27)

where Tr is a free parameter, we obtain the first-order system (2.25). In effect, the preconditioning matrix
replaces the relaxation time ε by a free parameter Tr. The system no longer describes a physically correct
evolution of heat flows, but it is not stiff any more and still yields a correct solution at the steady state.
Although the meaning of stiffness is slightly different, in both cases, the key idea is that we remove ‘stiffness’
by discarding correct time-dependent behavior.

It is important to note that although analytically the steady state solution does not depend on ν, the transient
solution depends on it. But numerically, the dependency on ν can be eliminated by a suitable definition of the
time step. In fact, for scalar schemes directly solving the diffusion equation, such as the Galerkin scheme and
the distribution scheme based on the gradient reconstruction, a time integration with time step ∆t ∝ 1

ν will
cancel the effect of ν, and the convergence toward the steady state will be independent of ν. Or simply but
equivalently, it is always possible in the diffusion equation to eliminate ν by a suitable time scaling. This is a
natural and desirable property for steady state computations. In the case of the first-order system, the same
can be true if the entire right hand side is proportional to ν. This is possible by setting Tr ∝ 1

ν , and therefore
we set

Tr =
L2

r

ν
, (2.28)

where the length scale Lr has been introduced for the sake of dimensional consistency. Then, in view of the
relaxation approach [1], the solution to the first-order system tends to stay in the frozen limit, i.e., obey the
hyperbolic system rather than the diffusion equation for small ν. For large ν, the relaxation time Tr becomes
small, but in this case the solution should reach the steady state quickly anyway. This seems to indicate that the
relaxation time is adjusted so as to keep the system strongly hyperbolic toward the steady state for arbitrary ν.

As for the value of Lr, we may simply take Lr = 1 so that the system becomes symmetric:(
u
p

)
t

=
(

0 ν
ν 0

)(
u
p

)
x

−
(

0
νp

)
. (2.29)

This is a good choice, but certainly may not be the best. We shall see later that the best value of Lr depends
on the type of the scheme and also on the purpose for which the scheme is employed.

Note that the equations we are trying to solve should now be completely hyperbolic. But we expect that
the solution is smooth because it will satisfy the diffusion equation eventually at the steady state. This can be
a great advantage because all techniques developed for hyperbolic problems can be applied without any special
mechanisms to capture discontinuities (of course such a mechanism may help when an initial solution contains
some irregularity). In other words, we can only focus on the accuracy rather than other qualitative properties
such as monotonicity. It may seem, by the way, that the isotropic nature of diffusion seems to have disappeared,
but as we shall see later it remains in the disguise of a set of waves traveling isotropically.

We are now ready to develop numerical schemes for the first-order diffusion system. We continue to focus
on the residual-distribution method in the rest of the paper, but the first-order system approach can equally
apply to other methods. In one dimension, this can be clearly seen in the finite-difference formula arising from
the new diffusion schemes we present in the next section.

3 New Diffusion Schemes in One Dimension

In this section, we design a class of residual-distribution schemes for one-dimensional diffusion problems based
on the equivalent first-order system. In the first subsection, we define the one-dimensional first-order diffusion
system and discuss the property of the system. In the second subsection, we develop a class of residual-
distribution schemes for the first-order system. In particular, we will discover that the Galerkin scheme turns
out to be a special case of the proposed scheme. In the third subsection, we show that some of the schemes allow
O(h) time step for explicit time integration toward the steady state. In the fourth subsection, Fourier analysis
follows where Lr is defined to minimize the damping factor of the scheme, and this completes the design of the
new schemes. Then, in the following subsection, we show from a truncation error analysis that the scheme is
second-order accurate for all variables.

8
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3.1 First-Order Diffusion System

We consider the one-dimensional diffusion problem:

ut = ν uxx in Ω = [0, 1], (3.1)

where ν > 0, and both u(0) and u(1) are given as boundary conditions. Our interest is to obtain the steady
state solution to this problem. We then consider solving the following first-order system:

ut = ν px,
pt = (ux − p)/Tr,

(3.2)

or written in the vector form,

Ut + AUx = Q, (3.3)

where

U = [u, p]t, A =
[

0 −ν
−1/Tr 0

]
, Q = [0,−p/Tr]t, (3.4)

with Tr = Lr
2

ν . It should be remembered that this system is equivalent to the original equation only in the
steady state. In fact, the solution behaves very differently in the transient phase. In particular, we find that
the eigenvalues of the matrix A are ±

√
ν/Tr which are real (and called ‘frozen speed’ in the relaxation system

[1]), and therefore we see that the first-order system has an advective character that is not at all present in the
original diffusion problem. Indeed, the matrix A is diagonalizable with the matrix of the right eigenvectors R,

R =
[

−Lr Lr

1 1

]
(3.5)

as

R−1AR = Λ =
[ √

ν/Tr 0
0 −

√
ν/Tr

]
. (3.6)

The view has now been totally switched from diffusion to advection, and hence the type of schemes we need are
advection schemes rather than central-difference schemes that are generally considered suitable for diffusion.
But this does not mean that the isotropic nature of the diffusion equation is totally lost. It manifests itself as
a pair of two waves traveling in the opposite directions at the same speed, which is isotropic as a whole.

3.2 Discretization

For simplicity, but without loss of generality, we consider a uniform grid over a domain of interest with the mesh
size h = xj+1 − xj , ∀j ∈ {J}. We store the solution as well as the gradient at each node (uj , pj), j ∈ {J},
and then, with two boundary conditions available for u only, the task is to compute the steady state solution
{uj} at the interior nodes and {pj} at all nodes. Note that the number of unknowns is now exactly equal to
the number of cell-residuals. If there are Nc cells, we have 2Nc cell-residuals, and 2(Nc + 1) unknowns. But
because of the two boundary conditions (whether Dirichlet or Neumann), the actual number of unknowns is
2(Nc + 1)− 2 = 2Nc, i.e., the same as the number of cell-residuals. This means that all the cell-residuals can be
driven to zero exactly at the steady state, implying the existence of a unique solution for linear problems. This
is not possible for scalar schemes which distribute a single cell-residual for νuxx evaluated with reconstructed
nodal gradients. This is because in that case we have Nc cell-residuals for (Nc + 1) − 2 = Nc − 1 degrees of
freedom, i.e., always overdetermined.

We begin by evaluating the cell-residual, which is now a vector quantity, over cell C = [xj , xj+1] as

ΦC =
∫ xj+1

xj

(−AUx + Q) dx. (3.7)

Assuming the piecewise linear variation of U over the cell, we obtain

ΦC = −A∆UC + QCh, (3.8)

9
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where ∆UC = Uj+1 − Uj and QC = (Qj+1 + Qj)/2. We then distribute this to the nodes, by a distribution
coefficient which is now a matrix BC

j giving a fraction of ΦC distributed to node j,

ΦC
j = BC

j ΦC , ΦC
j+1 = BC

j+1Φ
C , (3.9)

where for conservation we must have

BC
j + BC

j+1 = I, I =
[

1 0
0 1

]
. (3.10)

The precise form of BC
j is left open for a moment. Having done the distribution for all cells, we have the

following semi-discrete equation at each node:

dUj

dt
=

1
hj

[
ΦL

j + ΦR
j

]
=

1
hj

[
BL

j ΦL + BR
j ΦR

]
, (3.11)

where L and R denote the cells on the left and right of node j respectively, and hj is the measure of the dual
control volume centered at xj which is identical to the mesh size h for uniform grids. We then integrate this in
time until we reach the steady state. Note that we can use this scheme directly on non-uniform grids, simply by
replacing the mesh size h by the variable mesh size hC in the definition of the distribution matrices and setting
hj = (hL + hR)/2.

We now define the distribution matrix BC
j . The distribution matrix must be defined to reflect the physics

of the governing equation: isotropic for diffusion or upwind for advection. In our case, the equations we are
solving is not the diffusion equation anymore, but the equivalent first-order system which is hyperbolic with the
wave speeds ±

√
ν/Tr. We expect also that the solution is smooth because it finally becomes the solution of

the diffusion equation, and therefore there is no need to incorporate discontinuity-capturing mechanisms in the
scheme. Then, for simplicity, we employ the Lax-Wendroff distribution scheme, also known as Ni’s scheme in
the context of residual-distribution [36], which is second-order accurate for smooth solutions. The scheme can
be derived as follows. Consider the time expansion of the solution

Un+1
j ≈ Un

j + ∆tUt +
1
2
∆t2Utt = Un

j + ∆t

(
1 +

∆t

2
∂t

)
Ut. (3.12)

By using the equation itself, but partially ignoring the effect of the source term for simplicity, we can write

Un+1
j ≈ Un

j + ∆t

(
1 − ∆t

2
A∂x

)
(−AUx + Q) , (3.13)

which is approximated as

Un+1
j ≈ Un

j + ∆t

[
1
2

(
ΦL

j

h
+

ΦR
j

h

)
− ∆t

2
A

(
ΦR

j /h − ΦL
j /h

h

)]
(3.14)

= Un
j +

∆t

h

[(
1
2

+
∆t

2h
A

)
ΦL

j +
(

1
2
− ∆t

2h
A

)
ΦR

j

]
. (3.15)

This implies that the distribution matrix is defined as

BC
j =

1
2

I − τ

2h
A, BC

j+1 =
1
2

I +
τ

2h
A, (3.16)

where ∆t has been replaced by a time-like parameter τ which does not have to be equal to the actual time step
because we are only interested in the steady state. Even if we take τ to be the actual time step, the scheme will
not be time accurate because we have ignored the effect of the source term in the above derivation. Moreover,
it is even pointless to develop time accurate schemes for the first-order system because it is not equivalent to
the diffusion equation for time dependent problems unless Tr → 0.

We point out that the scheme can be interpreted as a sum of the central distribution and a least-squares
minimization term. The dissipation term can be derived by minimizing the residual in the least-squares norm,
e.g. following the least-squares finite-element method [20] or based on a discrete minimization formulation [37].
In [26], this type of approach was used to derive a stabilization term in the residual-distribution schemes.

10
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The parameter τ can be thought of as a cell time step, and the scheme will be conservative as long as it is
constant over the cell. The simplest choice would then be the ratio of the mesh size h to the wave speed

√
ν/Tr,

giving

τ = kC
h√
ν/Tr

, (3.17)

where kC is a cell CFL number which is taken to be 1 to maximize the effect of error propagation over the cell.
We remark also that in the previous work [18, 27], it is argued that diffusion is an isotropic process and

therefore it is natural to distribute the residual with equal weights,

BC
j = BC

j+1 =
[

1/2 0
0 1/2

]
. (3.18)

But in practice this scheme is not dissipative enough to damp high frequency errors, and in particular the
highest frequency error cannot be damped at all [13]. The proposed scheme overcomes this problem by having a
dissipation term added to the isotropic distribution coefficient. Note however that this is not by design but rather
a natural consequence of solving the first-order system instead of the diffusion equation. The isotropic nature of
diffusion is automatically incorporated by way of applying a suitable advection scheme, which typically comes
with some form of dissipation, for the first-order system that is hyperbolic and whose waves travel isotropically.
In fact, the proposed scheme can be shown to be an upwind scheme. To see this, consider the distribution
matrices (3.16) with τ = h√

ν/Tr

,

BC
j =

1
2

I − 1
2
√

ν/Tr

A, BC
j+1 =

1
2

I +
1

2
√

ν/Tr

A. (3.19)

Since A can be diagonalized, we have

BC
j =

1
2

I − 1
2
√

ν/Tr

R
[ √

ν/Tr 0
0 −

√
ν/Tr

]
R−1 = R

[
0 0
0 1

]
R−1, (3.20)

BC
j+1 =

1
2

I +
1

2
√

ν/Tr

R
[ √

ν/Tr 0
0 −

√
ν/Tr

]
R−1 = R

[
1 0
0 0

]
R−1, (3.21)

which shows that the solution mode with the negative wave speed is distributed to the left; the mode associated
with the positive wave speed is distributed to the right. This is nothing but upwinding. An interesting obser-
vation is that the choice τ = h√

ν/Tr

makes the distribution matrix singular, creating a nullspace that implies

one-sided distribution, i.e., upwind. This interpretation applies also in higher dimensions and may be used to
check if a given scheme has an upwinding character.

It should be noted however that this is a rather special case where the Lax-Wendroff scheme and the upwind
scheme coincide to each other. This is because the eigenvalues of the matrix A are of the equal magnitude with
opposite signs, i.e., equal modulus. In general, an upwind scheme for a system is constructed by defining τ as
a matrix such as

τ = h |A|−1
. (3.22)

If all eigenvalues are equal in magnitude, this reduces to a scalar. This is exactly the case for the first-order
diffusion system.

We now show that the new residual-distribution scheme is closely related to the Galerkin scheme. Expand
the right hand side of the semi-discrete equation (3.11) with (3.16) for arbitrary τ to get

duj

dt
=

1
2h

(ν∆pL + ν∆pR) +
τν

2h2Tr
[∆uR − pRh − (∆uL − pLh)]

= ν

[(
1 − τ

2Tr

)
pj+1 − pj−1

2h
+

τ

2Tr

uj+1 − 2uj + uj−1

h2

]
, (3.23)

dpj

dt
=

1
2hTr

[(∆uL − pLh) + (∆uR − pRh)] +
τ

2h2Tr
[ν∆pR − ν∆pL]

=
1
Tr

[
1
2h

(uj+1 − uj−1) −
1
2
(pL + pR)

]
+

τν

2Tr

pj+1 − 2pj + pj−1

h2
, (3.24)
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where ∆pL = pj − pj−1, ∆pR = pj+1 − pj , pL = (pj + pj−1)/2, and pR = (pj+1 + pj)/2; similarly for u. It is
then immediate that the choice

τ = 2Tr (3.25)

decouples the variables and yields the Galerkin scheme for uj . Hence, the Galerkin scheme emerges as a special
case of our residual distribution scheme. The cell-residual for the Galerkin scheme turns out to be associated
not with the original diffusion equation but with the first-order system. Therefore, implemented this way, the
Galerkin scheme has the residual property: if the cell-residual ΦT for the first-order system vanishes, no updates
will be sent to the nodes. Because of the decoupling, it is possible to solve for uj first, and then compute pj ,
which means that this scheme is simply the Galerkin scheme for uj combined with implicit reconstruction or
compact differentiation.

Also note from (3.23) and (3.24) that the proposed scheme can be implemented as a three-point finite-
difference scheme or even a finite-volume scheme whose interface flux can easily be identified. But as mentioned
in Section 2.1, in one dimension, the finite-volume schemes and the residual-distribution schemes are identical
except for the treatment of source terms: the finite-volume scheme typically evaluates the source term directly by
the cell average while the residual-distribution scheme evaluates the source term by the trapezoidal rule on each
cell and weights them by the distribution coefficients. Then, the residual-distribution scheme has the residual
property whereas the finite-volume scheme does not. This limits the accuracy of the finite-volume scheme to
first-order. To improve the accuracy, methods to ensure the residual property for finite-volume schemes [24, 25]
must be employed. In the case of the first-order diffusion system, the source term is inevitable, and therefore the
finite-volume scheme will be first-order accurate unless the source term is discretized so as to have the residual
property. The scheme above is certainly one of those having this property.

In the rest of the paper, we focus on two choices of τ : h√
ν/Tr

and 2Tr. The latter implements the Galerkin

scheme as a residual-distribution scheme, and may be preferred in some cases. But we will show next that the
former has a great advantage over the latter particularly for steady calculations.

3.3 O(h) Time Step

To reach the steady state, we integrate the semi-discrete equation (3.11) in time until the solution stops changing.
Any time integration scheme can be employed for this purpose. In any case, the time step is restricted by the
maximum modulus of the eigenvalues of the coefficient matrix Cj of the scheme written in the following form:

dUj

dt
= Cj−1Uj−1 + CjUj + Cj+1Uj+1. (3.26)

By expanding the right hand side of (3.11) with (3.16), we find

Cj =

 − τν

h2Tr
0

0 −τν/h2 + 1/2
Tr

 . (3.27)

Clearly, the maximum modulus of the eigenvalues is τν/h2+1/2
Tr

. Then, for example, in the case of the forward
Euler time integration, the time step ∆t is restricted by

∆t ≤ Tr

τν/h2 + 1/2
. (3.28)

For the purpose of converging to the steady state, we simply take it as an equality to maximize the time step.
For small h, this is approximately

∆t ≤ h2Tr

τν
, (3.29)

and for τ = 2Tr, this will give the well-known severe stability limit for the Galerkin scheme,

∆t ≤ h2

2ν
. (3.30)

12
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On the other hand, for the choice τ = h√
ν/Tr

with Tr = Lr
2

ν , we obtain

∆t ≤ h√
ν/Tr

=
hLr

ν
. (3.31)

This is remarkable. The time step is proportional to h instead of h2. This means that the number of time
steps required to reach the steady state increase linearly with the mesh size. This is a great advantage over the
conventional schemes. Of course, this is true only if Lr = O(1). But we will see later that there is a case where
Lr can be defined as such.

Finally, we point out that the condition (3.31) is nothing but the CFL condition for an advection equation
with the advection speed

√
ν/Tr. As a matter of fact, O(h) time step is typical for advection schemes. This

means that O(h) time step is not something special to the residual-distribution schemes but rather special
to the first-order system approach, and therefore we certainly can have it also for the finite-difference or the
finite-volume schemes.

3.4 Fourier Analysis

Consider a Fourier mode of phase angle (or nondimensional wave number) β ∈ [0, π],

Uβ = eiβx/hU0, (3.32)

where Uβ = (uβ , pβ) and U0 = (u0, p0). Inserting this into the original diffusion equation (3.1), we obtain

duβ

dt
= λdu

β , (3.33)

where

λd = − ν

h2
β2. (3.34)

On the other hand, for the first-order system (3.2), we obtain

dUβ

dt
= MfosU

β , (3.35)

where

Mfos =

 0 ν
iβ

h
iβ

hTr
− 1

Tr

 . (3.36)

The eigenvalues of this matrix are

λfos = − 1
2Tr

[
1 ±

√
1 − 4νTr

h2
β2

]
. (3.37)

For small β, we find

λfos =


− ν

h2
β2

(
1 +

νTr

h2
β2

)
+ O(β6),

− 1
Tr

+
ν

h2
β2 +

ν2Tr

h4
β4 + O(β6),

(3.38)

in which the first eigenvalue accurately represents the diffusion operator with second-order accuracy. This shows
that the difference between the first-order system and the diffusion equation is of O(β2) for small β. Note that
the eigenvalues can be complex. This happens when

β > βcr, βcr =
h

2
√

νTr

, (3.39)
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and the Fourier mode with β > βcr begins to propagate. Recall that we take Tr = L2
r

ν , then we have

βcr =
h

2Lr
, (3.40)

and so it is independent of ν.
For the Lax-Wendroff scheme, (3.11) with (3.16), we obtain the following equation:

dUβ

dt
= MUβ , (3.41)

where

M =

 − τν

h2Tr
(1 − cos β) − iν

2hTr
(τ − 2Tr) sinβ

i sinβ

hTr
− τν

h2Tr
(1 − cos β) − 1

2Tr
(1 + cos β)

 . (3.42)

The eigenvalues are

λ = − 2τν

h2Tr
sin2 β

2
− 1

2Tr
cos2

β

2
± 1

2Tr

√
cos4

β

2
+

2ν

h2
(τ − 2Tr) sin2 β. (3.43)

For small β, we find

λ =


− ν

h2
β2 +

ν

12h4Tr

[
h2Tr − 3ν(τ − 2Tr)2

]
β4 + O(β6),

− 1
Tr

+
1
Tr

[
1
4
− ν(τ − Tr)

h2

]
β2 + O(β4).

(3.44)

which, compared with (3.38), confirms itself that the scheme is indeed second-order accurate for the first-order
system, and consequently second-order accurate for the diffusion equation as well.

First we consider the case τ = 2Tr. In this case, the eigenvalues simplify to

λ = −4ν

h2
sin2 β

2
, −4ν

h2
sin2 β

2
− 1

Tr
cos2

β

2
, (3.45)

which are always real and thus the errors are purely damped. The damping property of the scheme depends on
the choice of Lr. Suppose that we employ the forward Euler time integration. Then, the eigenvalues g1 and g2

of the amplification matrix of the fully discrete equation G = I + ∆tM∆ where ∆t = Tr

τν/h2+1/2 are given by

g1 = 1 − 8
4 + (h/Lr)

2 sin2 β

2
, g2 =

4 − (h/Lr)
2

4 + (h/Lr)
2 cos2

β

2
. (3.46)

If we compare this with the point Jacobi iteration applied to solving uxx = 0

un+1
j = un

j +
ω

2
(
un

j+1 − 2un
j + un

j−1

)
, (3.47)

where ω is a relaxation factor 0 ≤ ω ≤ 1, whose amplification factor is given by [38]

1 − 2ω sin2 β

2
, (3.48)

we immediately find

ω =
1

1 + 1
4 (h/Lr)

2 , (3.49)

which we write, introducing Lr = h
2k ,

ω =
1

1 + k2
. (3.50)
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It is well known that ω = 2
3 gives the optimal damping for high frequency errors (π/2 ≤ β ≤ π) and makes the

scheme an effective smoother for multigrid [38]. This is achieved in our scheme by taking k = 1/
√

2, giving

Lr =
h√
2
. (3.51)

In this case, |g1| ≤ 1
3 is guaranteed for π/2 ≤ β ≤ π, and it is clear from (3.46) that we have also |g2| ≤ 1

3 for
the entire frequency. Therefore, the scheme is a good smoother not only for uj but also for the other variable.
However, if the scheme is used simply to iterate toward the steady state, this is not optimal. We should use the
largest possible relaxation factor which corresponds to k → 0. Practically, we may take any small number such
as k = 0.01. But as we shall see later, if k is too small, we encounter an accuracy problem: the scheme reduces
to first-order accurate for pj . Experimentally, we found that k = 0.2 would not suffer from this problem:

Lr =
h

0.4
. (3.52)

This means that this scheme is not well suited for iterating toward the steady state.
Now, we consider the case τ = h√

ν/Tr

. In this case, the eigenvalues can be complex, and it is better to

be complex. If complex, the eigenvalues are complex conjugates, thus having the same damping factor and
propagation speed. There is no possibility that either uj or pj will converge much quicker than the other. Also,
the damping is much more effective in the complex branch than the real branch that approximates the diffusion
operator for low frequency modes. This can be seen in Figure 5 in which the real part of the eigenvalues are
plotted against the phase angle. For all schemes and the equations, the eigenvalues are real for low frequency
modes and make a second-order contact with the eigenvalue of the exact diffusion operator. This part, being
closer to 0 than the complex branch in general, is a reason for slow convergence and we wish to avoid it. We
will therefore choose Lr such that the eigenvalues are complex for all discrete error modes (β ≥ πh). For
τ = h√

ν/Tr

= hLr

ν , the expression inside the square root in (3.43) is quadratic in Lr. It is easy to show that this

is negative if

Lr ≥ h

4

(
1 +

1
sin πh

2

)
, (3.53)

where we have set β = πh to ensure that we have complex eigenvalues for all possible discrete error modes. In
fact, in Figure 5, the lowest discrete mode (β = πh) is indicated by the vertical line, and we see that it passes
through the branch point as designed. Note that this Lr is not O(h) but O(1) because

Lr ≥ h

4

(
1 +

1
sin πh

2

)
≈ 1

2π
+

h

4
+ O(h2), (3.54)

and so, as we claimed earlier, O(h) time step is guaranteed for Lr that satisfies the condition (3.53). An optimal
value of Lr can be derived by minimizing the amplification factor for the fastest convergence. For the forward
Euler time integration, the eigenvalues of the amplification matrix of the fully discrete equation are complex
conjugates whose magnitude |g| is given by

|g|2 =
[2(Lr/h) + cos β] [2(Lr/h) − 1]

[2(Lr/h) + 1]2
. (3.55)

Let Lr = h
4

(
1 + 1

sin πh
2

)
K and K ≥ 1, then we find for small h,

|g| = 1 − π

K
(3 − cos β)h + O(h2). (3.56)

It is then obvious that K = 1 gives the minimum and therefore we set

Lr =
h

4

(
1 +

1
sin πh

2

)
, (3.57)

15



Preprint accepted for publication in Journal of Computational Physics, 2007-07

0  1  2  3  

−5

−4

−3

−2

−1

0 

Exact First−Order System 

τ = 0

τ = h / ( ν / Tr )1/2 

τ = 2 Tr

 Exact  ν u
xx

 β = π h β

R
e(

λ)

Figure 5: Re(λ) for h = 0.2 and ν = 0.05. Tr = Lr
2

ν

with, for a comparison purpose, Lr = h
4

(
1 + 1

sin πh
2

)
for all. Re(λ) for τ = 0 eventually becomes 0 at β = π.

−2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Im
(λ

)

Re(λ)

Figure 6: Polar plots of the eigenvalues for τ = 0
(stars) and for τ = h√

ν/Tr

with the optimal Lr (cir-

cles). The eigenvalues were sampled from the range
πh ≤ β ≤ π with h = 0.2 and ν = 0.05.

or we can use the following simple approximation:

Lr =
1
6

+
h

4
, (3.58)

which satisfies the condition (3.53) for h < 1
3 .

Taking advantage of the propagation as an additional means to remove the error, this scheme takes a full
advantage of the hyperbolic character of the first-order diffusion system, and it is therefore well suited for
iterating toward the steady state. The polar plot of the eigenvalues of this scheme and the purely isotropic
scheme is shown in Figure 6. Both schemes allow the error modes to propagate, but the one with nonzero τ
(the upwind scheme) has much better damping.

3.5 Truncation Error

Expand smooth functions u and p around node j, and substitute into (3.11) with (3.16) to obtain

dUj

dt
=

[
I − τ

2
A∂x

]
r + O(h2), (3.59)

where

r = [νpx, (ux − p)/Tr]t, (3.60)

or component-wise

duj

dt
= ν px +

τν

2Tr
(ux − p)x + O(h2), (3.61)

dpj

dt
= (ux − p)/Tr +

τν

2Tr
(px)x + O(h2). (3.62)

We remark that the scheme has the residual vector r as a factor in the truncation error, which vanishes at the
steady state and second-order accuracy is obtained. This is a property shared with the residual-based compact
scheme [39]. In a way, residual-distribution is an alternative form of implementing the compact schemes.
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To get more insight, suppose that the smooth solutions are exact solutions to the discrete equations in the
steady state ( duj

dt = dpj

dt = 0). Then, they satisfy

0 = ν px +
τν

2Tr
(ux − p)x + O(h2), (3.63)

0 = (ux − p)/Tr +
τν

2Tr
(px)x + O(h2). (3.64)

For τ = 2Tr, we obtain

0 = νuxx + O(h2), (3.65)
0 = (ux − p)/Tr + ν (px)x + O(h2), (3.66)

which clearly shows that the solution u converges to the solution of the original diffusion equation with second-
order accuracy. We write the second equation by expanding Tr = L2

r

ν with Lr = h
2k ,

0 =
4νk2

h2
(ux − p) + ν (px)x + O(h2). (3.67)

For k = O(1), this shows that the numerical solution converges to the solution of ux − p = 0 with second-order
accuracy. But if k = O(h), the scheme is not consistent, solving a wrong equation. Also, as k → 0, it converges
to the solution of

0 = ν (px)x + O(h2). (3.68)

This shows that the scheme is not consistent, not solving ux − p = 0 nor even νpx = 0. But fortunately in one
dimension, the scheme is in fact consistent but only first-order accurate. This is because for one-dimensional
problems, not only the nodal residuals but also the cell-residuals which approximate νpx vanish at the steady
state. This ensures at a node that px = O(h), thus the scheme is consistent and first-order accurate. This is
the accuracy problem mentioned in the previous subsection.

On the other hand, for τ = h√
ν/Tr

= hLr

ν , we obtain

0 = ν px +
νh

2Lr
(ux − p)x + O(h2), (3.69)

0 =
ν

L2
r

(ux − p) +
νh

2Lr
(px)x + O(h2). (3.70)

For Lr = O(1) which is the case of (3.57), this shows clearly that the numerical solution converges to the solution
of the first-order system (3.2) as h → 0. By eliminating the first-order terms using the equations themselves,
we find

0 = νpx − νh2

4
(px)x + O(h2), (3.71)

0 = (ux − p) − h2

4
(ux − p)x + O(h2), (3.72)

which shows that the solution converges with second-order accuracy. Finally, we point out that by setting
Lr = h

2 we recover the Galerkin scheme which corresponds to τ = 2Tr with Lr = h
2 , i.e., the two choices of τ

are not independent of each other.

3.6 Boundary Conditions

As mentioned earlier, with two boundary conditions, the number of unknowns exactly matches the number of
cell-residuals, and thus for a linear problem there exists a unique solution. The boundary conditions can be
either the Dirichlet type where uj is specified or the Neumann type where pj is specified. In any case, only
one value is specified on each boundary. This can be interpreted also as a characteristic condition. Since the
first-order system is hyperbolic with two characteristics running to the left and the right, there is always one
characteristic coming into the domain from through the boundary, and therefore we need to specify one value
on the boundary.
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4 New Diffusion Schemes in Two Dimensions

We now consider two-dimensional problems, and develop again a class of residual-distribution schemes for the
two-dimensional first-order diffusion system. We shall see that the two-dimensional schemes share many of
the remarkable properties of the one-dimensional schemes. But there is also a striking difference. Unlike the
one-dimensional problem, all cell-residuals cannot be made to vanish in two dimensions because of a counting
problem: the number of elements is not equal to the number of nodes. This brings a consistency problem in the
case Lr → ∞.

We remark that only triangular unstructured grids will be considered here. For structured grids, the one-
dimensional scheme can be applied as a finite-difference scheme or a finite-volume scheme by decomposing
the two-dimensional equation into dimension by dimension one-dimensional equations. This can be done in
a straightforward manner (see [36, 40] for example). We point out also that a finite-volume scheme can be
developed in a similar manner for unstructured grids by applying a one-dimensional flux function normal to the
cell face. Again, it should be remembered that these schemes will be only first-order accurate unless the source
term in the first-order system is discretized to guarantee the residual property.

4.1 First-Order Diffusion System

We consider the two-dimensional scalar diffusion problem,

ut = ν (uxx + uyy) in Ω, (4.1)

where ν > 0 and u = g(x, y) is given as a boundary condition on ∂Ω . Our interest is again to obtain the
steady state solution of this problem. As in one dimension, we consider solving the equivalent first-order system
instead,

ut = ν (px + qy),
pt = (ux − p)/Tr,
qt = (uy − q)/Tr,

(4.2)

where Tr = Lr
2

ν , or written in the vector form,

Ut + AUx + BUy = Q, (4.3)

where

U = [u, p, q]t , Q = [0,−p/Tr,−q/Tr]t, (4.4)

A =

 0 −ν 0
−1/Tr 0 0

0 0 0

 , B =

 0 0 −ν
0 0 0

−1/Tr 0 0

 . (4.5)

Again, this system is equivalent to the diffusion equation only in the steady state. In converging to the steady
state, this system behaves like a hyperbolic system. In fact, the matrix An = Anx + Bny is diagonalizable for
any chosen normal vector n = (nx, ny) with the following matrix of right eigenvectors R:

R =

 −Lr Lr 0
nx nx −ny

ny ny nx

 , (4.6)

as

R−1AnR = Λ =

 √
ν/Tr 0 0
0 −

√
ν/Tr 0

0 0 0

 . (4.7)

The eigenvalues of the matrix An are ±
√

ν/Tr and 0. The vanishing eigenvalue is associated with the consistency
constraint,

qx − py = 0, (4.8)
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under which the system (4.2) needs to be solved. This states that an inconsistent mode, represented as a
‘vorticity’ of the gradient vector (p, q), must vanish at a steady state. It is easy to show that this satisfies

(qx − py)t = − 1
Tr

(qx − py). (4.9)

This is an ordinary differential equation, showing that the inconsistency is purely damped out at the time scale
of Tr. This is what the stationary mode is responsible for: it damps out any inconsistency contained in an
initial solution. For this reason, this may be called the inconsistency damping mode.

The other two eigenvalues represent a wave traveling isotropically (a wave speed independent of n implies
a circular wave), giving an alternative description of isotropic diffusion. Hence, as in one dimension, we will
consider advection schemes for the first-order diffusion system (4.3).

4.2 Discretization

To discretize the system, we divide the domain into a set of triangles {T} and a set of vertices {V }, and store
the solution at each vertex (uj , pj), j ∈ {V }. Now, the task is to compute the steady state solution {uj} at the
interior nodes, and {pj , qj} at all nodes except for the boundary nodes on which they can be computed from u
given on the boundary. Note that this time the number of unknowns is much less than (typically a half of) the
number of cell-residuals. Therefore, all cell-residuals cannot be driven to zero at the steady state. Only nodal
residuals, which are weighted averages of cell-residuals, can be driven to zero, and these weights are determined
by the distribution matrices.

We begin by defining the cell-residual over cell T ,

ΦT =
∫

T

(−AUx − BUy + Q) dxdy. (4.10)

Assuming a piecewise linear variation of U over the cell, we obtain

ΦT = −
3∑

i=1

KiUi + QT ST , (4.11)

where

Ki =
1
2

(A,B) · ni, QT =
Q1 + Q2 + Q3

3
, (4.12)

and ni is the inward scaled normal (see 4). We then distribute this to the nodes by a distribution matrix BT
i

ΦT
i = BT

i ΦT , (4.13)

where

ΦT =
3∑

i=1

ΦT
i ,

3∑
i=1

BT
i = I, (4.14)

and as a result we have the following semi-discrete equation at each node:

dUj

dt
=

1
Sj

∑
T∈{Tj}

BT
j ΦT , (4.15)

where Sj is the medial dual cell area (see 4). This is then integrated in time to reach the steady state.
To distribute the cell-residual, we employ the Lax-Wendroff distribution. Consider the time expansion of

the solution

Un+1
j ≈ Un

j + ∆tUt +
1
2
∆t2Utt = Un

j + ∆t

(
I +

∆t

2
∂t

)
Ut. (4.16)

By using the equation itself, but partially ignoring the effect of the source term, we obtain

Un+1
j ≈ Un

j + ∆t

[
I − ∆t

2
(A∂x + B∂y)

]
(−AUx − BUy + Q) , (4.17)
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which can be integrated over the median dual control volume around j as was done in deriving the Galerkin
scheme in Section 2.3, resulting

SjUn+1
j ≈ SjUn

j + ∆t
∑

T∈{Tj}

[
1
3
I +

∆t

4ST
(A,B) · nT

j

]
ΦT . (4.18)

This implies that the distribution matrix is defined as

BT
i =

1
3
I +

τ

2ST
Ki, (4.19)

which is again the sum of the central distribution and the least-squares dissipation. Here, as in one dimension,
∆t has been replaced by τ and it is taken as a free parameter. Taking it as a time-like parameter in particular,
we define τ by

τ = kT
hT√
ν/Tr

hT =
2ST

maxi∈{iT }|ni|
, (4.20)

where we set kT = 1 to maximize the effect of error propagation. Note that the distribution matrices sum up
to the identity matrix over the triangle T as long as τ is constant over the triangle (dissipation terms sum up
to zero), and so the scheme is conservative.

In one dimension, the scheme derived this way happens to be upwind. But this is not the case in two
dimensions. Recall that the upwind distribution matrix must be singular, implying the existence of a nullspace.
It is easy to show that the matrix (4.19) is singular only if

τ =
4
3

ST

|ni|

√
Tr

ν
. (4.21)

This shows that τ should not be constant but depend on the node for the scheme to be upwind. Therefore, the
scheme with τ as in (4.20) can be made to be upwind by taking kT = 4

3 , but this is true only for one particular
node associated with the maximum height. In general, this scheme distributes the residual to all nodes. A full
upwind scheme can be obtained by defining τ as a matrix defined by

τ =
2ST

3
|Ki|−1

, (4.22)

with which the distribution matrix (4.19) becomes

BT
i =

1
3
I +

1
3
|Ki|−1 Ki =

1
3

Ri

(
I + |Λi|−1 Λi

)
R−1

i =
1
3

Ri [I + sign (Λi)]R−1
i (4.23)

where sign (λi) may be set to be zero for the null eigenvalue mode, so that the distribution becomes isotropic
for that mode, exactly as is done by the Lax-Wendroff scheme (4.19). For the first-order diffusion system, this
upwind matrix can be analytically obtained as follows,

BT
i =

1
3


1 −Lrn

x
i −Lrn

y
i

−nx
i /Lr 1 0

−ny
i /Lr 0 1

 (4.24)

where ni = (nx
i , ny

i ). It follows immediately from this that

3∑
i=1

BT
i = I (4.25)

because
3∑

i=1

ni = 0, and therefore the scheme is conservative. Note that the upwind scheme is not unique in

two dimensions. This is just one example of upwind distribution schemes, and other upwind schemes can also
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Figure 7: Normals for triangle T ∈ {Tj}.

be applied such as the matrix LDA scheme [41]. It should be noted however that the solution is smooth for
diffusion problems and therefore the focus should rather be on the accuracy. Therefore, the scheme does not
need to be upwind and the Lax-Wendroff distribution scheme is more than adequate in this case. For this
reason, we here stick to the simple Lax-Wendroff scheme and do not explore other possibilities. We will have to
discuss other possibilities when we consider the advection-diffusion problems for which upwinding can be very
important.

We now show that the Galerkin discretization is obtained by taking τ = 2Tr exactly as in one dimension.
Expand the first component of (4.15) with (4.19),

Sj
duj

dt
=

∑
T∈{Tj}

[
ν

3
(pT

x + qT
y )ST − τν

4Tr

{
∇uT − (pT , qT )

}
· nT

j

]
. (4.26)

Using the following identities:

(pT
x + qT

y )ST =
1
2

3∑
i=1

(pi, qi) · nT
i , (4.27)

(pT , qT ) · nT
j =

1
3

3∑
i=1

(pi, qi) · nT
j , (4.28)

where we identify i = 1 as j, we obtain

Sj
duj

dt
= − τν

4Tr

∑
T∈{Tj}

∇uT · nT
j +

ν

6

∑
T∈{Tj}

3∑
i=1

(pi, qi) ·
(
nT

i +
τ

2Tr
nT

j

)
. (4.29)

The first term is nothing but the Galerkin discretization, and the second term is a coupling term with p and q
which can be simplified for τ = 2Tr as

3∑
i=1

(pi, qi) ·
(
nT

i + nT
j

)
= 2 (pj , qj) · nT

j − (p2, q2) · nT
3 − (p3, q3) · nT

2 . (4.30)

This all vanishes when summed over a set of triangles {Tj} unless node j is on the boundary (see Figure 7),
and therefore we are left with the Galerkin part,

Sj
duj

dt
= −ν

2

∑
T∈{Tj}

∇uT · nT
j . (4.31)

So, again, the Galerkin discretization arises as a special case of a residual-distribution scheme. It is a residual-
distribution scheme with the residual defined for the first-order diffusion system. We remark that this is similar
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to the situation that a least-squares residual-distribution scheme developed in [37] for the Cauchy-Riemann
system turned out to be the Galerkin scheme for the associated Laplace’s equations. In both cases, the Galerkin
scheme arises from a residual-distribution scheme for the associated first-order system. Moreover, note that
in both cases the Galerkin discretization comes from the least-squares minimization (the least-squares scheme
itself or the least-squares dissipation term in the Lax-Wendroff scheme). In fact, the connection between the
least-squares method for the first-order system and the Galerkin discretization for the associated second-order
equation has already been pointed out by Jiang [20].

4.3 O(h) Time Step

For time integration, we find a stability condition based on the eigenvalues of the coefficient matrix Cj for Uj

of the scheme written in the following form:

dUj

dt
=

∑
i∈{ij}

CiUi, (4.32)

where the sum is over the nodes in the compact stencil: the node j and its immediate neighbors, denoted by
{ij}. By expanding the right hand side of (4.15) with (4.19), we find the coefficient matrix for Uj as

Cj =
1

SjTr



−
∑

T∈{Tj}

τν

8ST
|nT

j |2 0 0

0 −
∑

T∈{Tj}

(
ST

9
+

τν

8ST
(nx

j )2
)

−
∑

T∈{Tj}

τν

8ST
nx

j ny
j

0 −
∑

T∈{Tj}

τν

8ST
nx

j ny
j −

∑
T∈{Tj}

(
ST

9
+

τν

8ST
(ny

j )2
)


. (4.33)

The maximum modulus of the eigenvalues, which is relevant to the stability, is given by

|λ| =
1

SjTr

 ∑
T∈{Tj}

[
ST

9
+

τν

8ST
|nT

j |2
]

+
τν

16

√√√√√ ∑
T∈{Tj}

(nx
j )2 − (ny

j )2

ST

2

+ 4

 ∑
T∈{Tj}

nx
j ny

j

ST

2
 , (4.34)

where nT
j = (nx

j , ny
j ). The time step ∆t is then restricted locally by

∆t ≤ Sj

|λ|
, (4.35)

whose minimum over all nodes will give a global time step condition. For the purpose of converging to the
steady state, we simply take it as an equality to maximize the time step,

∆t =
Sj

|λ|
. (4.36)

For a practical purpose, the maximum modulus |λ| in (4.34) can be simplified by the Cauchy-Schwarz inequality, ∑
T∈{Tj}

aT bT

2

≤

 ∑
T∈{Tj}

(aT )2

  ∑
T∈{Tj}

(bT )2

 , (4.37)

with aT = (nx
j + ny

j )/
√

ST and bT = (nx
j − ny

j )/
√

ST , to

|λ|∗ =
1

SjTr

∑
T∈{Tj}

[
ST

9
+

3τν

16ST
|nT

j |2
]
≥ |λ|. (4.38)

Then, we may take

∆t =
Sj

|λ|∗
≤ Sj

|λ|
. (4.39)
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Figure 8: A regular triangular grid.

This is a more severe restriction but simpler to implement.
For a regular triangular grid (see Figure 8), the condition (4.35) simplifies to

∆t ≤ 3Tr

1 +
6τν

h2

, (4.40)

which is approximately, for small h,

∆t ≤ h2Tr

2τν
(4.41)

and therefore, for τ = 2Tr, this gives the two-dimensional version of the well-known severe stability limit for
the Galerkin scheme,

∆t ≤ h2

4ν
. (4.42)

On the other hand, τ = hT√
ν/Tr

and Tr = Lr
2

ν gives (note that hT = h for these regular triangles by definition;

see (4.20)),

∆t ≤ hLr

2ν
. (4.43)

Hence, again, the time step is proportional to h instead of h2, for Lr = O(1). The remarkable property of the
one-dimensional scheme carries over to two dimensions.

4.4 Fourier Analysis

Consider again a regular triangular grid (see Figure 8), and define a Fourier mode of phase angle β = (βx, βy)
with βx, βy ∈ [0, π],

Uβ = ei(βxx/h+βyy/h)U0. (4.44)

Inserting this into the original diffusion equation (4.1), we get

duβ

dt
= λdu

β , (4.45)

where

λd = − ν

h2
β2, (4.46)
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which is identical to the one-dimensional counterpart. In the case of the first-order system (4.2), we obtain

dUβ

dt
= MfosU

β , (4.47)

where

Mfos =


0 ν

iβx

h
ν

iβy

h
iβx

hTr
− 1

Tr
0

iβy

hTr
0 − 1

Tr

 . (4.48)

The eigenvalues are

λfos =


− 1

2Tr

(
1 ±

√
1 − 4νTr

h2
β2

)
,

− 1
Tr

,

(4.49)

where the first two are exactly the same as those in one dimension and therefore we have exactly the same
condition as in one dimension for these eigenvalues to be complex,

β > βcr, βcr =
h

2
√

νTr

=
h

2Lr
. (4.50)

The third eigenvalue corresponds to the inconsistency damping mode.
On the other hand, for the Lax-Wendroff scheme, i.e., (4.15) with (4.19), we find

dUβ

dt
= MUβ , (4.51)

where

M =
1
Tr


−τν(cx + cy)

h2

−iν(τ − 2Tr)Sxy

6h

−iν(τ − 2Tr)Syx

6h

iSxy

3h
−1

3
− τνcx

h2
− 2

9
Cp

τνCm

2h2

iSyx

3h

τνCm

2h2
−1

3
− τνcy

h2
− 2

9
Cp

 , (4.52)

where

cx = 1 − cos(βx),
cy = 1 − cos(βy),

Sxy = sin(βx + βy) + 2 sin(βx) − sin(βy),
Syx = sin(βx + βy) + 2 sin(βy) − sin(βx),
Cp = cos(βx + βy) + cos(βy) + cos(βx),
Cm = cos(βx + βy) − cos(βy) − cos(βx) + 1.

First we consider the case τ = 2Tr. In this case, the eigenvalue associated with the Galerkin discretization
can be trivially found and is given by

λ1 = −4ν

h2

(
sin2 βx

2
+ sin2 βy

2

)
. (4.53)

For the forward Euler time stepping, the amplification factor g1 = 1 + ∆tλ1 with ∆t defined in (4.40) is given
by

g1 = 1 − 1
1 + 1

12 (h/Lr)2

(
sin2 βx

2
+ sin2 βy

2

)
. (4.54)

24



Preprint accepted for publication in Journal of Computational Physics, 2007-07

Comparing this with the amplification factor of the point Jacobi iteration [38],

g = 1 − ω

(
sin2 βx

2
+ sin2 βy

2

)
, (4.55)

we find

ω =
1

1 + 1
3k2

, (4.56)

where we have set Lr = h
2k . It is well known that ω = 4

5 gives the optimal smoothing factor for high frequency
modes (π

2 ≤ βx ≤ π or π
2 ≤ βy ≤ π) [38]. This is achieved in our scheme by taking k =

√
3

2 , i.e.,

Lr =
h√
3
. (4.57)

In this case, |g1| ≤ 0.6 is guaranteed for high-frequency modes. Unfortunately, unlike the one-dimensional
scheme, the amplification factors associated with the other two eigenvalues exceed 0.6 and hence the scheme is
not entirely optimal. But the variables are completely decoupled in this case anyway, i.e., the gradient variables
can be computed separately as a compact differentiation, and therefore here we do not even attempt to optimize
the scheme for all solution modes. On the other hand, for the fastest convergence toward the steady state, we
wish to take ω = 1, which is possible by taking

k → 0. (4.58)

However, this causes a serious problem: the scheme will not be consistent for pj and qj . We discuss this problem
in the next subsection. Here, we only say that this is not a suitable explicit scheme for the purpose of iterating
toward the steady state. Therefore, we will not discuss this scheme further.

Next, we consider the case τ = hT√
ν/Tr

. In this case, in principle, the eigenvalues can be found since they

are the roots of a cubic equation, but they are too complicated to analyze. We therefore focus on the persistent
modes, i.e., low frequency modes, and derive an estimate for Lr for fast convergence toward the steady state.
For small βx and βy, the amplification matrix (4.52) simplifies to

M∆ ≈ 1
Tr


−

τν(β2
x + β2

y)
2h2

−iν(τ − 2Tr)βx

2h

−iν(τ − 2Tr)βy

2h

iβx

h
−1 − τνβ2

x

2h2

τνβxβy

2h2

iβy

h

τνβxβy

2h2
−1 −

τνβ2
y

2h2


. (4.59)

It is pleasing that the eigenvalues of this simplified matrix are particularly simple,

λ1,2 = − 1
2Tr

(
τν

h2
β2 + 1 ±

√
1 +

2ν(τ − 2Tr)
h2

β2

)
, (4.60)

λ3 = − 1
Tr

. (4.61)

Note that because the characteristic equation is cubic there is always one real root. This is given by λ3 for small
βx and βy. This eigenvalue represents the inconsistency damping mode.

Turning attention to λ1,2, we require, as in one dimension, these eigenvalues to be complex conjugates which
leads to

Lr ≥ h

4

(
1 +

√
1 +

4
β2

)
, (4.62)

and, in order to ensure it for all possible discrete error modes (although only approximately this time), we set
β = πh and define

Lr =
h

4

(
1 +

√
1 +

4
π2h2

)
≈ 1

2π
+

h

4
+ O(h2). (4.63)
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2

ν with, for a comparison purpose, Lr =
h
4

(
1 +

√
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π2h2
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Figure 10: Polar plots of the eigenvalues for
the scheme with τ = hT√

ν/Tr

and Lr =

h
4

(
1 +

√
1 + 4

π2h2

)
, for πh ≤ β ≤ π. h = 0.2 and

ν = 0.05.

This agrees with the one-dimensional version (3.57) up to O(h2), and so we could use the same approximation
as in (3.58).

The real part of the eigenvalue is plotted for βy = 0 in Figure 9. They are very similar to the one-dimensional
counterparts. However, this time, there is a real eigenvalue common to all schemes. This corresponds to the
inconsistency damping mode, i.e., the wave that does not propagate. Fortunately, the damping factor is always
less than 1, so that all modes will be damped out. It is also noted that there is a bifurcation point for the
scheme with τ = hT√

ν/Tr

near βx = π, beyond which the eigenvalues turn to real. This is because the Lr in

(4.63) guarantees complex eigenvalues only approximately for small β, and so the eigenvalues could be real for
high-frequency modes. In fact, if we look at the polar plot of the eigenvalues of this scheme as given in Figure
10, in which the three eigenvalues are distinguished by different symbols, we see that there are indeed error
modes that are purely damped (apart from the common real eigenvalue indicated by stars).

4.5 Truncation Error

Expand smooth functions u, p, and q over a regular triangular grid (see Figure 8), and substitute them into the
semi-discrete equation (4.15) with (4.19) to get

dUj

dt
=

[
I − τ

2
(A∂x + B∂y)

]
r + O(h2), (4.64)

where

r = [ν(px + qy), (ux − p)/Tr, (uy − q)/Tr]t, (4.65)

or component-wise

duj

dt
= ν (px + qy) +

τν

2Tr
[(ux − p)x + (uy − q)y] + O(h2), (4.66)

dpj

dt
= (ux − p)/Tr +

τν

2Tr
(px + qy)x + O(h2), (4.67)

dqj

dt
= (uy − q)/Tr +

τν

2Tr
(px + qy)y + O(h2). (4.68)
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Note again as in one dimension that the scheme has the residual vector r as a factor in the truncation error,
which vanishes at the steady state and second-order accuracy is obtained. The residual-distribution scheme can
be thought of as a generalization of the residual-based compact scheme [39] for unstructured triangular grids.

Suppose now that the smooth solutions are exact solutions to the discrete equations in the steady state (
duj

dt = dpj

dt = dqj

dt = 0), the numerical solutions satisfy

0 = ν (px + qy) +
τν

2Tr
[(ux − p)x + (uy − q)y] + O(h2), (4.69)

0 = (ux − p)/Tr +
τν

2Tr
(px + qy)x + O(h2), (4.70)

0 = (uy − q)/Tr +
τν

2Tr
(px + qy)y + O(h2). (4.71)

For τ = 2Tr, we obtain

0 = ν (uxx + uyy) + O(h2), (4.72)
0 = (ux − p)/Tr + ν (px + qy)x + O(h2), (4.73)
0 = (uy − q)/Tr + ν (px + qy)y + O(h2), (4.74)

and so uj converges to the solution of the diffusion equation. We write the other two equations with Tr = Lr
2

ν

and Lr = h
2k ,

0 =
4νk2

h2
(ux − p) + ν (px + qy)x + O(h2), (4.75)

0 =
4νk2

h2
(uy − q) + ν (px + qy)y + O(h2). (4.76)

The situation is similar to that in one dimension. For k = O(1), this shows that the scheme gives second-order
accuracy for pj and qj , and for k = O(h), the scheme is not consistent. However, the situation is different in
the case k → 0. In this case, the solution converges to the solution of

0 = ν (px + qy)x + O(h2), (4.77)
0 = ν (px + qy)y + O(h2), (4.78)

and thus the scheme is not consistent. Unfortunately, unlike the one-dimensional case, the cell-residuals do
not all necessarily vanish in two dimensions, and so we cannot discuss this any further. We only mention that
numerical experiments show that the scheme is indeed inconsistent.

On the other hand, for τ = hT√
ν/Tr

= hLr

ν , we obtain

0 = ν (px + qy) +
νh

2Lr
[(ux − p)x + (uy − q)y] + O(h2), (4.79)

0 =
ν

L2
r

(ux − p) +
νh

2Lr
(px + qy)x + O(h2), (4.80)

0 =
ν

L2
r

(uy − q) +
νh

2Lr
(px + qy)y + O(h2). (4.81)

For a nonzero finite value of Lr which is the case of (4.63), this shows that the numerical solution converges to
the solution of the first-order system (4.3) as h → 0. By eliminating the first-order terms by using the equations
themselves, we find

0 = ν (px + qy) − νh2

4
[(px + qy)xx + (px + qy)yy] + O(h2), (4.82)

0 = (ux − p) − h2

4
[(ux − p)x + (uy − q)y]x + O(h2), (4.83)

0 = (uy − q) − h2

4
[(ux − p)x + (uy − q)y]y + O(h2), (4.84)

thus they converge at the rate of O(h2).
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4.6 Boundary Conditions

In two dimensions, the discrete problem is always overdetermined for triangular grids. Therefore, unlike the
one-dimensional case, there are no ways via boundary conditions to equate the number of unknowns and the
number of cell residuals. A simple treatment would be that we specify just any values that can be specified.
For example, for the Dirichlet conditions, we specify uj and the gradient along the boundary (pj or qj or their
combination). Note that the tangential gradient corresponds to zero eigenvalue and so it is irrelevant to the
characteristic condition. This means that it suffices to specify one value on the boundary because there is only
one characteristic coming out of the boundary. The same is true for the Neumann conditions where we specify
only the gradient normal to the boundary.

5 Derived Scalar Schemes

The first-order system approach is useful also in deriving scalar schemes. As mentioned earlier, the scalar
isotropic distribution scheme does not provide sufficient dissipation for high-frequency error modes. This means
that we need to add a dissipation term in the scheme. However, deriving a dissipation term for the diffusion
scheme is not a trivial task especially if we wish to keep the scheme compact. For example, if we apply the
Lax-Wendroff time-expansion procedure for the second-order diffusion equation, we immediately face a problem
of discretizing second-derivatives of the residual (i.e., the fourth-derivative of the solution) which is not trivial
on unstructured grids and certainly cannot be done in a compact manner. Now recall that the system schemes
can be thought of as a scalar scheme with an implicit reconstruction of the gradients. Then, it is legitimate to
replace the implicit reconstruction by an explicit one. If we decide to do this, we are left with the uj component
of the system schemes. In one dimension, this is given by (3.23) which can be written as

h
duj

dt
=

[
1
2
φL − τν

2Tr

(
∆uL

h
− pL

)]
+

[
1
2
φR +

τν

2Tr

(
∆uR

h
− pR

)]
, (5.1)

where φL =
∫

L
νuxx dx = ν∆pL and φR =

∫
R

νuxx dx = ν∆pR. In two dimensions, we have from (4.26)

Sj
duj

dt
=

∑
T∈{Tj}

[
1
3
φT − τν

4Tr

{
∇uT − (pT , qT )

}
· nT

j

]
, (5.2)

where φT =
∫

T
ν (uxx + uyy) dxdy = ν(pT

x + qT
y )ST . These are now scalar schemes with all (pj , qj) evaluated

by explicitly reconstructed gradients. As can be seen clearly from these formulas, we have just discovered a
form of dissipation: it is constructed over a cell by the difference between the constant gradient of u within the
cell and the average of the reconstructed gradients. These terms sum up to zero over the cell, and therefore
the schemes remain conservative. Note that these dissipation terms originate from the least-squares part of the
distribution matrices, (3.16) and (4.19). This means that we can derive a dissipation term of a scalar scheme
for the second-order diffusion equation by applying the least-squares discretization to its equivalent first-order
system, in much the same way as is done in [26] for advection schemes . Without going through the first-order
system, it would have been almost impossible to derive these dissipation terms.

We now have a family of scalar schemes for the diffusion equation in which the parameter (τ/Tr) may be
chosen, for example, to endow the scheme with a property such as positivity [42]. These scalar schemes are,
however, under the O(h2) time step restriction because they are discretizations of second-order derivatives for
which O(h2) geometric factor cannot be avoided. For this reason, we do not consider these schemes further in
this paper.

6 Results

6.1 One-Dimensional Problem

We consider the following problem:

ut = ν uxx + νπ2 sin(πx) in Ω = [0, 1], (6.1)
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N ITR L1 error of u Order L1 error of p Order
8 401 2.40E-04 1.29E-03

16 1601 5.67E-05 2.08 3.24E-04 2.00
32 6394 1.38E-05 2.04 8.12E-05 2.00
64 25546 3.39E-06 2.02 2.03E-05 2.00

128 102112 8.40E-07 2.01 5.08E-06 2.00
256 408372 2.09E-07 2.01 1.27E-06 2.00

Table 1: τ = 2Tr and Lr =
h√
2

N ITR L1 error of u Order L1 error of p Order
8 279 2.40E-04 1.29E-03

16 1109 5.67E-05 2.08 3.24E-04 2.00
32 4432 1.38E-05 2.04 8.12E-05 2.00
64 17710 3.39E-06 2.02 2.03E-05 2.00

128 70796 8.04E-07 2.01 5.08E-06 2.00
256 283133 2.09E-07 2.01 1.27E-06 2.00

Table 2: τ = 2Tr and Lr =
h

0.4

where ν = 1 and u(0) = u(1) = 0. We compute the steady state solution to this problem, by solving the
equivalent first-order system

ut = ν px + νπ2 sin(πx),
pt = (ux − p)/Tr.

(6.2)

The source term in the first equation is evaluated by the trapezoidal rule over the cell and included in the cell-
residual, in exactly the same way that p in the second equation is treated. We start from the initial solutions,
u = x(x−1) and p = 2x−1, integrate in time with a time step defined by (3.28) until convergence, and compare
the solutions with the exact steady state solutions: u = sin(πx) and p = π cos(πx). We tested new schemes
for grids with numbers of cells N = 8, 16, 32, 64, 128, 256. The CFL number is taken to be 0.99 for all cases.
A scheme is taken to be converged when the nodal residuals are reduced nine orders of magnitude in the L1

norm, in order to ensure that the solutions are fully converged. We remark that the steady state solution is
independent of ν, and the schemes are designed also to be independent of ν, and therefore all results shown
here are valid for any ν. In all results, we show L1 errors only for brevity. L2 and L∞ errors behave similarly.

Shown in Tables 1 to 3 are results for the choice τ = 2Tr for three different choices of Lr. Table 1 shows
results for the scheme with the optimal damping for high-frequency modes. As expected, we see that the
number of iterations (indicated by the abbreviation ITR) grows quadratically with the mesh size, and also that
the second-order accuracy is obtained for both variables. Table 2 shows results for the scheme with a larger Lr

which corresponds to increasing the relaxation parameter ω toward 1 in the point Jacobi iteration for uj . It
converges faster than the previous scheme, but we still have the quadratic increase in the number of iterations.
Tables 3 shows results for the scheme with an even greater Lr, corresponding to ω → 1. We now observe that
the accuracy for the gradient variable deteriorates to first-order. This confirms the analysis in Section 3.5.

Next, in Tables 4, 5, and 6, we show results for the choice τ = h√
ν/Tr

for three different choices of Lr.

These schemes allow O(h) time step, and we expect that the number of iterations grows linearly. Table 4 shows
results for the optimal Lr in convergence toward the steady state. As can be clearly seen, the scheme converges
surprisingly fast, and the number of iterations does grow linearly. Even for the finest grid, it takes only 2,279
iterations while the schemes τ = 2Tr take about 280,000 iterations (more than 100 times as many) for the same
grid. It should be noted that each iteration costs roughly the same for all schemes. Therefore, the gain in the
number of iterations is directly translated into CPU time. In the finest grid case, we compared CPU times for
two schemes, i.e., the scheme of Table 4 and the scheme of Table 2. The result is that the former took only
3 seconds while the latter took 357 seconds (nearly 6 minutes). The gain is substantial, and will be more and
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N ITR L1 error of u Order L1 error of p Order
8 333 2.40E-04 1.03E-02

16 1197 5.67E-05 2.08 5.13E-03 1.00
32 4521 1.38E-05 2.04 2.56E-03 1.00
64 17549 3.39E-06 2.02 1.28E-03 1.00

128 69178 8.04E-07 2.01 6.41E-04 1.00
256 275671 2.09E-07 2.01 3.20E-04 1.00

Table 3: τ = 2Tr and Lr =
h

0.00001

N ITR L1 error of u Order L1 error of p Order
8 89 2.40E-04 1.29E-03

16 150 5.67E-05 2.08 3.24E-04 2.00
32 268 1.38E-05 2.04 8.12E-05 2.00
64 561 3.39E-06 2.02 2.03E-05 2.00

128 1022 8.04E-07 2.01 5.08E-06 2.00
256 2279 2.09E-07 2.01 1.27E-06 2.00

Table 4: τ =
h√
ν/Tr

and Lr =
h

4

(
1 +

1
sin πh

2

)

more substantial as the grid gets finer. Table 5 shows results with the approximate Lr in (3.58). It generally
takes more iterations but just a few, showing that it is a good and useful approximation. For the N = 64
grid, however, the scheme converges faster than the one with the optimal Lr. Remember that the optimal Lr

was derived based on the damping property only, and the error propagation was not taken into account. In
particular, the most persistent mode (β = πh) was designed to be purely damped with the optimal Lr. A
detailed analysis shows that the most persistent error mode begins to propagate rather than purely damped
for the approximate Lr. This could improve the convergence but only marginally, and as we increase Lr from
the optimal one the convergence property soon deteriorates because the damping factor grows rapidly. Table
6 shows results with Lr = 1. This symmetrizes the first-order diffusion system. Although it takes longer to
converge than the previous schemes, the time step is still O(h) and the number of iterations grows linearly.
For example, for the finest grid, the number of iterations is only about 1

20 of those of the schemes τ = 2Tr.
Obviously, as far as the iteration toward the steady state is concerned, these schemes offer a great advantage
over the conventional schemes with O(h2) time step.

Finally, we remark that all schemes converge to the same solution (except for the gradient variable in Table
3). This is because the one-dimensional discrete problem has a unique solution as mentioned in 3.2. Therefore,
as long as the scheme is consistent, it converges to the same solution.

6.2 Two-Dimensional Problem

We consider the following problem:

ut = ν(uxx + uyy) in Ω = [0, 1] × [0, 1], (6.3)

where ν = 1 and the boundary conditions u(x = 0) = 0, u(x = 1) = sin(πy), u(y = 0) = 0, u(y = 1) = sin(πx).
We compute the steady state solution to this problem by solving the equivalent first-order system

ut = ν (px + qy),
pt = (ux − p)/Tr,
qt = (uy − q)/Tr.

(6.4)

The exact steady solution is given by

u(x, y) =
sinh(πx) sin(πy) + sinh(πy) sin(πx)

sinh(π)
. (6.5)
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N ITR L1 error of u Order L1 error of p Order
8 94 2.40E-04 1.29E-03

16 157 5.67E-05 2.08 3.24E-04 2.00
32 270 1.38E-05 2.04 8.12E-05 2.00
64 556 3.39E-06 2.02 2.03E-05 2.00

128 1126 8.04E-07 2.01 5.08E-06 2.00
256 2293 2.09E-07 2.01 1.27E-06 2.00

Table 5: τ =
h√
ν/Tr

and Lr =
1
6

+
h

4

N ITR L1 error of u Order L1 error of p Order
8 331 2.40E-04 1.29E-03

16 702 5.67E-05 2.08 3.24E-04 2.00
32 1383 1.38E-05 2.04 8.12E-05 2.00
64 2973 3.39E-06 2.02 2.03E-05 2.00

128 6152 8.04E-07 2.01 5.08E-06 2.00
256 12753 2.09E-07 2.01 1.27E-06 2.00

Table 6: τ =
h√
ν/Tr

and Lr = 1

We start from the initial solutions, u = p = q = 1 inside the domain. On the boundary, we specify u
everywhere, p on the top and bottom boundary, and q on the left and right boundary as they can be evaluated
from u given there. We employ the forward Euler time stepping to integrate in time until convergence with the
CFL number 0.9, and compare the solutions with the exact steady state solution. The method is taken to be
converged when the nodal residuals are reduced nine orders of magnitude in the L1 norm. This ensures that
all numerical solutions are fully converged. New schemes were tested for a series of regular triangular grids:
10×10, 20×20, 40×40, 80×80, 160×160. We remark again as in the one dimensional cases that the steady state
solution as well as the schemes are independent of ν, and therefore all results shown here are valid for any ν.

Table 7 shows results for the scheme with τ = 2Tr (the Galerkin scheme for uj) and the optimal Lr for
high frequency damping. Exactly as expected, we observe a quadratic increase in the number of iterations and
second-order accuracy for both variables. Remember that this is the Galerkin scheme for uj , but we have now
the solution gradients of the equal order of accuracy. Table 8 shows results for the scheme with τ = h√

ν/Tr

with

the optimal choice for Lr for the fastest convergence. As can be seen, the number of iterations indeed increases
linearly as we expect, and it converges tremendously faster than the previous one for all grids. For example,
in the finest grid case, this scheme is about 40 times faster than the previous one. Table 9 shows results for
the same scheme with an approximate expression for the optimal Lr which is the same as the one-dimensional
version. It only shows a slight increase in the number of iterations. This demonstrates the effectiveness of the
approximation. Table 10 shows results for Lr = 1, i.e., the symmetric first-order diffusion system. As expected,
it takes more iterations to reach the steady state. Nevertheless, the time step remains O(h), and the number
of iterations grows linearly with the mesh size. For the finest grid, this scheme converges nearly 8 times faster
than the Galerkin scheme. Furthermore, this factor grows linearly as the grid gets finer because the factor in
the time steps are O(h). Hence, this scheme still offers a great advantage for the iterative convergence toward
the steady state over the conventional schemes with O(h2) time step.

Note that the numerical solution is not unique in two dimensions. We observe from these results that the
errors are generally larger for the Galerkin scheme (τ = 2Tr).

Finally, we mention that there are other iterative methods which show a similar linear convergence property,
such as the alternating-direction implicit methods or the preconditioned conjugate gradient methods (see [43]).
But these are inherently implicit methods and require a considerable amount of work such as inverting a large
matrix at every iteration. This makes them incomparably more expensive than our schemes which are purely
explicit and do not require any matrix inversion. Also, the conventional Gauss-Seidel iteration scheme could
perform similarly with optimum over-relaxation [44]. But this is not general: it is true only with an optimal
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Grids ITR L1 error of u Order L1 error of p Order L1 error of q Order
10×10 660 2.67E-03 2.60E-02 2.60E-02
20×20 2534 6.09E-03 2.13 6.48E-03 2.00 6.49E-03 2.00
40×40 9784 1.46E-04 2.06 1.60E-03 2.02 1.60E-03 2.03
80×80 37601 3.56E-05 2.04 3.97E-04 2.01 3.97E-04 2.01

160×160 144542 8.82E-06 2.01 9.94E-05 2.00 9.94E-05 2.00

Table 7: τ = 2Tr and Lr =
hT√

3

Grids ITR L1 error of u Order L1 error of p Order L1 error of q Order
10×10 283 1.39E-03 1.50E-02 1.50E-02
20×20 590 4.06E-04 1.78 3.22E-03 2.22 3.20E-03 2.23
40×40 969 1.14E-04 1.83 7.48E-04 2.11 7.52E-04 2.09
80×80 2116 3.00E-05 1.93 1.81E-04 2.05 1.81E-04 2.05

160×160 3545 7.67E-06 1.97 4.45E-05 2.03 4.45E-05 2.03

Table 8: τ =
hT√
ν/Tr

and Lr =
h

4

(
1 +

√
1 +

4
π2h2

T

)

relaxation factor. On the other hand, there are no subtle tuning parameters in our schemes: any Lr = O(1) will
allow O(h) time step. Remember also that our schemes come with solution gradients computed simultaneously
with comparable accuracy to the main variable.

7 Concluding Remarks

This paper has introduced a new strategy for computing the steady state solution of the diffusion equation,
based on the first-order system that is equivalent to the diffusion equation in the steady state. We developed a
class of residual-distribution schemes for the first-order system. Compared with the standard Galerkin scheme,
the proposed scheme has remarkable features. First, the new scheme gives second-order accuracy for both the
solution and the gradient variables. For practical problems, such as the Navier-Stokes equations, this means that
the scheme directly computes the viscous stresses and the heat fluxes in addition to the velocity components
with the same order of accuracy. Second, the schemes with τ = h√

ν/Tr

and Lr = O(1) allow O(h) time step

which is significantly larger than the time step of O(h2) for the conventional schemes. This is a great advantage
for steady state computations, motivating the use of explicit time integration schemes for diffusion problems.
For time accurate computations, we can employ the dual time stepping technique [45, 46] in which the proposed
scheme can be used as a fast iterative method in the inner iteration (see also [47, 48] which are specific to
residual-distribution schemes).

In this paper, we studied two types of schemes with τ = 2Tr and τ = h√
ν/Tr

. The former corresponds to

the Galerkin discretization for the main variable, and can be designed so as to have a smoothing property in
exactly the same way as the standard scalar scheme. Note that it is identical to the standard Galerkin scheme
for the main variable but it comes with equally accurate solution gradients. For the purpose of marching in time
toward the steady state, however, this scheme is not well suited for because increasing the relaxation factor ω in
the context of the point Jacobi iteration causes accuracy deterioration for the gradient variables. In this case,
the other scheme, τ = h√

ν/Tr

, is better suited because this scheme is stable with O(h) time step and converges

rapidly to the steady state. We have shown therefore that the first-order system approach works for deriving an
effective smoother for multigrid as well as for developing a fast explicit scheme for steady state computations.

We have shown also that the Galerkin scheme, which by itself is not a residual-distribution scheme by
definition, arises as a special case of the proposed scheme. It is not residual-distribution by itself, but combined
with gradient computations, it is a residual-distribution scheme with cell-residuals defined for the equivalent
first-order system. This paper revealed a connection between two methods which had been apparently completely
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Grids ITR L1 error of u Order L1 error of p Order L1 error of q Order
10×10 294 1.41E-03 1.49E-02 1.49E-02
20×20 610 4.10E-04 1.78 3.21E-03 2.22 3.18E-03 2.23
40×40 1006 1.15E-04 1.84 7.45E-04 2.11 7.49E-04 2.09
80×80 2196 3.01E-05 1.93 1.81E-04 2.04 1.81E-04 2.05

160×160 3703 7.68E-06 1.97 4.45E-05 2.02 4.45E-05 2.02

Table 9: τ =
hT√
ν/Tr

and Lr =
1
6

+
hT

4

Grids ITR L1 error of u Order L1 error of p Order L1 error of q Order
10×10 1489 2.62E-03 1.37E-02 1.37E-02
20×20 3158 5.67E-04 2.21 2.92E-03 2.23 2.84E-03 2.27
40×40 5913 1.33E-04 2.10 6.99E-04 2.06 6.99E-03 2.02
80×80 10480 3.24E-05 2.04 1.74E-04 2.01 1.74E-04 2.01

160×160 18169 7.97E-06 2.02 4.34E-05 2.00 4.34E-05 2.00

Table 10: τ =
hT√
ν/Tr

and Lr = 1

different methods, and justifies the use of the Galerkin discretization in the framework of the residual-distribution
method.

Although we focused on residual-distribution schemes in this paper, the first-order system approach can
apply equally to finite-difference or finite-volume methods. For each scheme employed, an optimal value of Lr

may be derived based on a smoothing property or the fastest convergence to a steady state. Or we may simply
take Lr = 1 to keep the system symmetric. In this case, obviously Lr = O(1), and therefore the resulting
scheme will allow O(h) time step. It must be kept in mind however that accuracy is obtained only in the steady
state. A rapid convergence with O(h) time step is achieved at the cost of giving up the time accuracy.

This paper has just established a basis for a further development. Yet another remarkable improvement comes
in advection-diffusion problems. The first-order system has now an advection term and remains a hyperbolic
system, and so we may simply apply an upwind scheme for the entire system. Apparently, there is no need any
more to ‘add’ two schemes, an advection scheme and a diffusion scheme, to construct an advection-diffusion
scheme. This will be the subject of the subsequent paper.
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