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Abstract

In this paper, we present constructions of first, second, and third order schemes for diffusion
by the method introduced in [J. Comput. Phys., 227 (2007) 315-352]. In this method, numerical
schemes for diffusion are constructed by advection schemes via an equivalent hyperbolic system.
This paper demonstrates that the method enables straightforward constructions of diffusion schemes
for finite-volume methods on unstructured grids. In particular, it is demonstrated that a robust
first-order upwind scheme leads to a robust first-order diffusion scheme, and a high-order advection
scheme leads to a high-order diffusion scheme. It is shown that first, second, and third order schemes
are capable of producing first, second, and third order accurate solution gradients, respectively, on
irregular grids. Accuracy, Fourier stability, and the energy stability of the developed schemes are
discussed. A new hyperbolic diffusion system having virtually no source terms is also introduced to
simplify the construction of the third-order scheme. Numerical results are presented for regular and
irregular triangular grids to demonstrate not only the superior accuracy but also the accelerated
steady convergence over a traditional method.

1 Introduction

Ever-increasing computing speed and parallelism are allowing the use of high-fidelity computational
fluid dynamics (CFD) models in engineering analysis and design involving complex flow fields. How-
ever, the current state-of-the-art for unstructured CFD codes still need improvements in efficiency and
accuracy required for engineering design and optimization, especially for turbulent flow simulations on
unstructured grids [1, 2]. In particular, the derivative quantities needed to evaluate the design such as
viscous/heat fluxes and vorticity are obtained with a lower order accuracy on unstructured grids, e.g.,
fully adapted viscous grids. Also, current state-of-the-art Naver-Stokes codes are known to produce
erratic viscous stress and heating distributions for hypersonic viscous simulations even on a regular
grid [3, 4, 5]. Resolution of these problems is very important for justifying the use of high-fidelity
models in aerodynamic design and optimization. Progress has been made towards overcoming these
problems by improved inviscid methods [6, 7], but a general capability of producing high-accuracy in
these derivative quantities on general irregular grids has yet to be in place. Such a capability is highly
desirable for efficient viscous simulations over complex geometries with grid adaptation. Furthermore,
practical finite-volume CFD codes often rely on robust but inconsistent viscous discretizations such as
the edge-terms-only scheme [8] or a positivity-enforced Galerkin scheme for the sake of robustness. The
use of inconsistent schemes can provide some degree of robustness, but it can lead not only to wrong
solutions [9] but also to convergence deterioration [8]. There is a critical need for developing a robust
and consistent scheme for diffusion on general unstructured grids.

We tackle these problems by a radical method introduced in Ref.[10]. In this method, the steady
state solution to the diffusion equation is computed by integrating in time an equivalent first-order
hyperbolic system to the steady state. This method has been shown to offer a number of advantages
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over conventional methods, including drastic simplifications in discretization (i.e., advection scheme
for diffusion), orders of magnitude acceleration in steady convergence by explicit schemes, and the
equal order of accuracy for the solution and the gradients (viscous/heat fluxes). These advantages
have been demonstrated for the diffusion equation[10] and the advection-diffusion equation[11] by the
second-order residual-distribution method, and later for the compressible Navier-Stokes equations [12],
which were made hyperbolic with the viscous/heat fluxes added as extra variables, by the second-order
finite-volume method. Simply because the diffusion equation is converted to a first-order hyperbolic
system, virtually all existing methodologies for hyperbolic systems are directly applicable to diffusion.
It is now possible, therefore, that a robust first-order advection scheme generates a robust first-order
diffusion scheme, and a high-order advection scheme generates a high-order diffusion scheme.

In this paper, we focus on finite-volume schemes for diffusion. We demonstrate that the method
enables straightforward constructions of diffusion schemes including first and third order schemes, which
are highly valuable components for robust and accurate viscous discretizations on unstructured grids.
We discuss the energy estimate of the hyperbolic diffusion system, and show that the upwind flux leads
to an energy-stable first-order scheme for diffusion. For second and third order schemes, we consider
two types of constructions. One is a straightforward finite-volume construction, and the other takes
advantage of the extra variables carried in the hyperbolic system to avoid gradient computation for
the solution variable. It is shown that the latter yields more economical schemes and these schemes
produce significantly more accurate solutions than those generated by the former. Third-order schemes
are constructed by the third-order finite-volume scheme of Katz and Sankaran developed for hyperbolic
systems[13], which is thus directly applicable to the hyperbolic system for diffusion. To simplify the
construction of the third-order schemes, we introduce a fully hyperbolic diffusion system having no
source terms. Numerical results are presented for both regular and irregular triangular grids. Developed
schemes are compared with a representative traditional scheme. It is demonstrated that first, second,
and third order diffusion schemes are capable of producing the solution and the gradients to the same
order of accuracy on both regular and irregular triangular grids with orders-of-magnitude accelerations
in steady convergence.

2 Hyperbolic Diffusion System

Consider the diffusion equation in two dimensions:
Oru = v Oz + Oyyur), (1)

where v is a constant diffusion coeflicient. Following Ref. [10], we consider computing the steady state
solution to the diffusion equation (1) by solving the following first-order hyperbolic diffusion system:

O = v(0zp+ 0yq),
Oip (8a:u - p)/Tra (2)
8tq = (ayu - Q)/Trv

where p and ¢ are the gradient variables, which relax to the solution derivatives, d,u and 9yu, respec-
tively, in the steady state, and T;. is a free parameter called the relaxation time. Note that the system
is equivalent to the diffusion equation (1) in the steady state for arbitrary 7)., and thus, inherently, the
system is not stiff in contrast to the hyperbolic heat equation of Cattaneo[14]. Write the system in the
vector form,

0,U + 0,F + 0,G = S, (3)
where
U —vp —vq 0
U=|p |, F=| —u/T, |, G= 0 , S=| —-p/T | . (4)
q 0 —u/T; —q/T;
Consider the flux Jacobian of the flux projected along an arbitrary vector, n = (ng,n,):
0 —Ung —Uny
A, — 8(I;Un) _ a(Fn%—i[}Gny) I 0 0 7 (5)
—ny /T 0 0
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where H = [F, G] is the flux tensor. It has the following eigenvalues:

M=)y A=

= A3 = 0. (6)

The eigenvalues are independent of n, and therefore the system describes a wave propagating isotropi-
cally. The third eigenvalue corresponds to the inconsistency damping mode[10], acting on the compo-
nents of p and ¢ such that ¢, — p, # 0. The relaxation time 7;. does not affect the steady solution, and
thus can be defined solely for the purpose of accelerating the convergence to the steady state[10, 11].
Following Ref. [10], we define T, as
L2 1

Ir= v’ LT_27T7 (™)
where the length scale, L,, has been defined to maximize the effect of propagation as will be discussed
later. The relaxation time thus defined is large enough to destroy the equivalence between the diffusion
equation and the hyperbolic system during the time evolution towards the steady state. The hyperbolic
system here designed specifically for steady computations is simply called the hyperbolic diffusion
system. Time-accurate computation is possible by implicit time integration schemes, e.g., utilizing the
dual-time stepping method [15, 16], but it is beyond the scope of the present paper. The absolute
Jacobian, |A,| is constructed by the right-eigenvector matrix, R,,, and the diagonal eigenvalue-matrix,
An7

1 1 -1 0 -A 0 0
R,=2 nz/Lr nm/Lr *2713/ , A= 0 A0, (8)
ny/Lr ny/L, 2n, 0 0 O
where A = |A\1| = |X\2| = /v/T, = v/L,, as follows:
1 0 0
A, =R, AR =X 0 n2  ngn, |. (9)

2

0 ngny n,

The hyperbolicity implies that the system has a characteristic form. Multiplying the hyperbolic diffusion
system by R.! from the left decouples the system into three characteristic equations in the direction
n:

w3
T

Owy — AOpwy = —App,  Orwa + AOpwy = —Ap,, Oyws = — (10)

where
On = N30 +1y0y, Dn=pNg +qny, w1 =Lypy+u, we=Lp,—u, ws3=qgny;—pny,. (11)

It shows that the first two characteristic variables, w; and ws, are propagated at the same speed in the
negative and positive directions, respectively, and they are also damped by the source term whereas the
third variable w3 is purely damped (inconsistency damping mode).

3 Energy Estimate

We define the energy associated with the hyperbolic diffusion system as

U2 +L3(p2 +q2)

E
2

. (12)

The governing equation for the energy can be derived by multiplying the hyperbolic system (3) by the
row vector, £8 = (u, L2p, L2q), from the left:

HE + 0. fF + 0,9" = —v(p® + ¢%), (13)
where

fP=—vup, ¢ = —vuq. (14)
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Figure 1: Dual control volume for the node-centered finite-volume method with
scaled outward normals associated with an edge, {j, k}.

By integrating the energy equation over the domain 2, we obtain

d

EdV——?{ ¥ . ndA—v| (p® +¢?)av, (15)
dt o9

Q

where 92 denotes the boundary of the domain, f¥ = (f¥, g¥), n is the unit outward normal vector, and
dA denotes the infinitesimal boundary area. This 1ntegral form shows that the total energy is damped
by the magnitude of the solution gradient and changed only by the boundary flux. In the steady state,
we have (p,q) = Vu = (0,u, dyu), and the energy estimate reduces to

/ Vu-VudV — j{ u—dA =0, (16)
o0 671

which is the well-known energy estimate of the Laplace equation. It is a manifestation of the fact that

the hyperbolic diffusion system is equivalent to the diffusion equation in the steady state.

4 Node-Centered Edge-Based Finite-Volume Schemes

4.1 Discretization

The node-centered edge-based finite-volume scheme for Equation (3) is given by

dU;
Vi — > YA +S,V, (17)

ke{k;}

where Vj is the dual volume, {k;} is a set of neighbors of the node j, ®;; is a numerical flux, and
Aj, is the magnitude of the directed area vector, i.e., Aj; = |nji| = |n§k +n7;| (see Figure 1). This
formulation is valid for general unstructured grids. Note also that an appropriate boundary flux must
be supplied at the boundary node. For example, the simplest boundary flux would be the one point

quadrature:
dU; b oAb
Vi—= gt Z Qi Ajr +S;V; — Z H; -ajAS, (18)

ke{k;} J€{iv}

where {jp} is a set of boundary nodes, and ﬁl]’ and Ag are, respectively, the unit outward normal vector
and the magnitude of the boundary portion of the dual volume around a boundary node j € {j,}. For
first-order schemes, it is sufficiently accurate, but for second-order schemes, a different quadrature is
required for the linear exactness in the flux integration. See Ref.[9] for a comprehensive list of linearity

preserving boundary quadrature formulas. We evaluate the numerical flux by the upwind flux:

1 N 1
O, = i(HL +Hg) -0y — §|An|(UR -Uyg), (19)
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where 1, is the unit directed area vector, and A,, is defined as the normal flux Jacobian along 1y,

OH - fy)
ou

The left and right states are obtained by the nodal solutions for first-order accuracy and by the linear
extrapolation from the nodes for second/third-order accuracy as we will discuss later. We numerically
integrate the semi-discrete system (17) towards the steady state to obtain the steady solution, which
will be the steady solution to the diffusion equation (1). The global time step is defined as the minimum
of the local time steps defined by

2V,
S W/LeAjp+ VT

ke{h;)

At; = CFL

(21)

The maximum CFL number depends on the scheme construction as well as the time-integration scheme,
and will be determined later. It should be noted here that the time step is O(h) and that it is signifi-
cantly larger than a typical diffusion time step of O(h?). It leads to O(1/h) acceleration in the steady
convergence over traditional methods. This ever-increasing acceleration factor has been shown to bring
a tremendous acceleration in steady computations for the diffusion, the advection-diffusion, and the
compressible Navier-Stokes equations [10, 11, 12].

4.2 First-Order Scheme

For first-order accuracy, we evaluate the left and right states by the nodal solutions:
Uy :Uj, Ugr = Uyg. (22)
The upwind flux is then given by
1 . 1
5 (B + Hy) - 0y — S [Aq[(Ur = Uj). (23)

This completes the construction of the first-order diffusion scheme. To investigate the energy stability,
we multiply the semi-discrete equation (17) by the vector Ef from the left to get

=

== > oA — vl + )V, (24)
ke{k;}

]dt

which is summed over a set of nodes, {j}, to give
dFE; .
Z V]ditj - Z (ek _KJ )®jrAjk — Z (pa +qj Z KEH ;’-A?, (25)
je{s} ec{e} je{s} j€{an}

where {e} is a set of edges, and the relation ®;, = —®;; has been used to obtain the first term. Note
also that the last term is the boundary flux contribution from the semi-discrete equation (18) defined
at boundary nodes. It can be expanded as follows:

dE; R v
> deftj = > @ —tF) ngd -2 Y 724N = S vl + ¢V - BT > €rAjn, (26)
= ec{e} je€lin} = " eefe}

where
eji = (ur —u;)? + L2 [(pr — pj, ax — q;) - 0j]” > 0. (27)

Note that the last term on the right hand side, which is the contribution from the dissipation term, is
nonpositive, and it is O(h) smaller than others. It is easy to show by converting the first term as a
sum over the nodes that the first term on the right hand side cancel out except on the boundary; the
remaining contribution cancels the half of the boundary flux sum. We thus finally obtain the discrete
energy estimate for the first-order scheme:

S Y A - Y v - e 3 (29

Jje{i} J€{in} Jje{s} e€{e}
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which can be written also by arranging the boundary contribution in the form of the trapezoidal rule
over each boundary edge as

dE; ff + £F v
D Vit = D e AL Y v Vi g D Grdg (29)
J€{i} e€{en} J€{4} " eefe}

where {e;} is a set of boundary edges, the subscripts 1 and 2 denote the end nodes of an edge e € {ep},
n’ and AY are, respectively, the unit outward normal and the magnitude of the edge. For the central
scheme (zero dissipation), it is a discrete analog of the energy estimate (15). For the upwind scheme, the
dissipation acts as reducing the energy, and thus the energy cannot increase by the dissipation. That is,
the central scheme is energy consistent, and the upwind scheme is energy stable. It is a valid conclusion
for triangular, quadrilateral, and mixed grids. Moreover, the energy-stable first-order upwind scheme
for diffusion is applicable to cell-centered finite volume methods also.

It is worth pointing out that the central flux yields a scheme of different nature: the discrete
equations are decoupled and the gradient variables are explicitly computed from the solution values by
the edge-based Green-Gauss method. The scheme, then, reduces to a traditional scheme: second-order
accurate for the solution and first order accurate for the gradidents on irregular grids. Moreover, the
explicit time step will be O(h?), not O(h) any more. It is known that the central scheme applied to
the hyperbolic diffusion system leads, in the same way, to the Bassi-Rebay scheme in the discontinuous
Galerkin method. See Ref.[9] for details. In this paper, we will not discuss the central scheme any
further.

To derive an optimal length scale, L,, we consider the first-order scheme on a regular quadrilateral
grid for the sake of simplicity. Consider the Fourier mode, Ugexpi(S,x/h + Byy/h), which is defined
on a regular grid of uniform spacing h. Uy is a vector of amplitudes. 3, and 3, are the frequencies in
and y directions, respectively, and i = /—1. We insert the Fourier mode into the semi-discrete scheme
and obtain the evolution equation for Uy in the form:

—— —=MU 30
dt 0, ( )

where the matrix is found for smooth components to be

[ ovB2 wpe By
2hL, h h
e v
M — _Z 31
hL? L2 0 ’ (31)
By 0 v
hL? L2 |
where 32 = 32 + 65. The eigenvalues are given by
v v s \/ LB>  L2p®
——, ———= |14+ =*4/1- - 2-16) ). 32
72 2L%<+2h no T (10 (82)

Following Ref.[10], we define L, such that the last two eigenvalues to be complex conjugate to maximize
the effect of error propagation. By setting the expression inside the square root to be nonpositive for
all frequencies, we obtain

2
L, < ———. 33
~ w(rh+4) (33)
In this paper, for the sake of simplicity, we take
1
L,.=—, 34
5 (34)

for all schemes.
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4.3 Second-Order Schemes
4.3.1 Scheme I

For second-order accuracy, we compute the nodal gradients by a linear least-squares method, and
evaluate the left and right states by the linear extrapolation from the nodes:

1 1
UL:UjJriVUj'Aljk, UR:Uk*§VUk~A1jk, (35)

where Alj, = (z, — zj,yx — y;), and VU; and VU, are the solution gradients computed by the least-
squares method at j and k, respectively. The numerical flux is computed by the upwind flux (19).
The discrete energy estimate differs from the first-order scheme by the contribution from the nodal
gradients:

dE; . v v
2 Vitg == 2 A - 2 v Vi m g D e g D v (30)

je{s} j€{in} Je{s} ec{e} " ee{e}

where the term involving the nodal gradients is indicated by v;,
Vik = Awlﬁu/lj + Awgﬁu/gk. (37)
Here, the following notations have been introduced:
Awy = wiy, —wij, Awy = way, — waj, &\UTU = Vwy; - Aly, @gj = Vwsy; - Aljy. (38)

The energy stability depends on the sign of 7;,. The scheme is strictly energy-stable if v;, > 0, e.g.,
if the edge-projection of the nodal gradients of the characteristic variables shares the sign with the
corresponding edge-derivative along the edge. Note that the last two terms on the right hand side
are O(h) smaller than the first two consistent terms. It is also noted that we can always ensure the
energy stability by ignoring the gradients, i.e., by reverting back to the energy-stable first-order scheme.
The above discrete energy equation corresponds to the point integration of the boundary flux, which
is linearity-preserving for quadrilateral elements. If the linearity-preserving boundary quadrature for
triangles [9] is used, then we obtain

dE; —- . v v
> Vi = > EFRlAL = > v + gV - 3L, > endn - o > vk, (39)

J€{s} ec{ep} J€{s} ec{e} " ec{e}
where fF is defined, with £¥(u, p, q) = (—vup, —vuq), as

fiE _ 3fE(u17p17 Ch) + 2fE(ulap2a Q2) + 2fE(”27P17 ql) + 3fE(U27p27 QQ) (40)
10 '
The resulting boundary quadrature is still exact for linear fluxes over each boundary edge.
On a regular triangular grid as shown in Figure 3(a), we substitute smooth functions into the scheme

and expand it to get

du; vh?
7; = V(axp + ayQ) - E [83290 (89cp + 8yQ) + 6;cy(6:cp + 8yQ) + ayy (axp + 6@/(])] + O(h3)7 (41)
dp; _ 1 o 3

dt = T. (895’& - p) - 127, [aacmcu + aﬂcyyu + 836962;“] + O(h )7 (42)
dq; 1 h?

7; = i(ayu —-q) — 127, [Dyyytt + sy + Ozwyu] + O(R?). (43)

Note that the gradients are defined by the central-difference in the analysis, and therefore they are
second-order accurate. If the smooth functions are the exact steady solutions, then we obtain the
truncation error, (7, Tp, Tq):

o= 00, (44)
h2
h2

Ty = _ﬁaxyyu+0(h3). (46)
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The truncation error in the first equation is O(h?). This is a special property of the edge-based finite-
volume scheme on triangles with second-order gradients[13]. On the other hand, the truncation errors
in other equations are O(h?) because the point integration of the source term is not compatible with
the edge-based flux integration scheme to third-order accuracy. Therefore, the scheme is second-order
accurate even with second-order gradients. It is second-order accurate for both solution and gradient
variables.

Note that the above analysis is presented just for the sake of comparison and by no means intended to
be a rigorous mathematical proof of accuracy. Such a proof is not necessary because the reconstruction-
based edge-based finite-volume scheme has been well studied and already known to be second-order
accurate on arbitrary triangular grids for hyperbolic systems [17]. The same applies to all truncation
error analyses presented in the rest of the paper, including those for third-order schemes that are also
known to be third order accurate on arbitrary triangular grids for hyperbolic systems.

4.3.2 Scheme II

The second-order upwind diffusion scheme constructed in the previous section produces accurate
solution gradients, (pj;,q;). We may then replace the least-squares gradients of the main variable by
(pj»q;):

1 1

ur = uj+ 5 (P, ¢5) - ALk, up=uk — 5

This scheme, called Scheme II, is more economical than Scheme I because gradient computations are

not necessary for the main variable. Gradient computations are required only for the gradient variables.
The energy estimate is essentially the same as that of Scheme I, but with the following changes:

Vuj = (pj;4;),  Vur = (pr, qr), (48)

in the computation of Vw; ; and Vwsy, for 7. Again, the construction of an energy-stable second-order
scheme is beyond the scope of the present paper.

For Scheme II, the Taylor expansion provides insights not only on the accuracy but also on the
stability in the time integration. On a regular triangular grid in Figure 3(a), we substitute smooth
functions into the scheme and expand it to get

(k> ar) - Al (47)

du;
(7; = v(0p+ 0yq)
h
— o (V24 VB)0(p = 0u) + V20, (p — Dsw) + V20, (q — D) + (V24 V3D, (g — D)
vh?
- 12 022 (0xP + Oyq) + Oy (Oup + 0yq) + Oyy (9up + 9yq)] + O(hg)a
dpj 1 h2 1 3
de 1 ]’L2 1 3
a ?(&ju —q) - 6T. Oyy(q — Oyu) + Oy (q — Oyu) + Oy (p — Ozu) + 5(89396(1 + Oyyq + 022p) | + O(R7).

Suppose that the smooth functions are the numerical solutions. Then, the above equations show how
the numerical solutions evolve in time. Noting that the first equation has a first-order spatial error
term, we expect that Scheme II will be stable with the forward Euler time-integration, which is not
true for typical second-order schemes. Suppose, on the other hand, that the smooth functions are the
exact steady solutions. Then, we obtain the truncation error, (7,7, 74):

h2

Tp = _ﬁ(amp + Oyyp + Oxaq) + O(h%), (50)
h2

Tq = *ﬁ(amq + Oyyq + Oap) + o(h®). (51)

Again, the truncation error in the first equation is O(h?) because of the second-order accurate gradients,
but not in other equations for the same reason mentioned in the previous section. In order to achieve
third-order accuracy, it is necessary to discretize the source term in a compatible manner, which is the
subject of the next section.
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4.4 Third-Order Schemes

We construct third-order diffusion schemes following the work of Katz and Sankaran[13]. The third-
order scheme of Katz and Sankaran was introduced for the Euler equations and it is generally applicable
to hyperbolic systems. Therefore, it is directly applicable to the hyperbolic diffusion system. They
demonstrated that the node-centered edge-based finite-volume scheme can achieve third-order accuracy
on triangular grids if the nodal gradients are computed to second-order accuracy and the flux is linearly
extrapolated to the edge-midpoint in the case of nonlinear equations. The third-order accuracy has
been demonstrated for regular as well as irregular triangular grids in Refs. [13, 18, 19]. In applying the
third-order scheme to our hyperbolic diffusion system, we need to discretize the source term carefully.
The need for a careful discretization for source terms has been as pointed out in Ref. [13] and described
in the form of a matching truncation error problem in Ref.[20]. It is known that the point integration
as we have done in the first and second order schemes will not work. Currently, two general techniques
are available for achieving third-order accuracy for equations with a source term. One is to discretize
the source term by an extended Galerkin discretization formula[21]. Another is to write the source term
in the divergence form as suggested in Ref.[20], so that it can be discretized straightforwardly by the
third-order scheme. However, both techniques typically require computations of the second derivatives
of the source term. To avoid computations of the second derivatives, we introduce a special divergence
form for the hyperbolic diffusion system.

4.4.1 Fully Hyperbolic Diffusion System

We propose to express the source term in the hyperbolic diffusion system in the divergence form:
S — 0, F° +90,G*, (52)
so that the whole system can be written as
9,U +9,F +9,G =0, (53)

where F=F — F%, G = G — G*, and

0 0
FF=| w-y)gTr |, G =| -(y—y)p/T- |, (54)
—(z — ;) q/T) (x — ;) p/T)

where (z;,y;) denotes the coordinates of a node j in a computational grid. That is, the system is
defined locally around each node in the grid. It is straightforward to derive the governing equation for
W = ¢z — Dy, which is a consistency constraint on p and ¢, from the last two equations:

T — T Y-y _ Bw
3tw+< T >5xw+( T )5‘yw T (55)

which shows that w is convected and damped. The convective behavior implies the third wave that now
propagates at a finite speed:
(T —xj)na + (y — yj)ny

A3 = T . (56)

For this reason, we call the modified system (53) the fully hyperbolic diffusion system. The fully
hyperbolic diffusion system is equivalent to the following:

Ou = v(0p+ 0yq),
T.0;p = (Opu—p)+(y—yj)w, (57)
T.0ig = (Oyu—gq)—(z—z;)w.

The terms proportional to w on the right hand side vanish precisely at the node j. Therefore, the fully
hyperbolic system is consistent with the original system at the node j. These extra terms appear to
introduce O(h) errors in the neighborhood of j, but w vanishes in the steady state and thus they do
not affect the accuracy of the scheme as will be shown later by truncation error analysis. Also, it has
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no effect on the energy estimate (15). We emphasize that the fully hyperbolic formulation is built upon
the constraint, w = 0. The technique can be extended to other types of equations and source terms
provided such constraints exist and can be incorporated into the divergence formulation of source terms.

Note that the fully hyperbolic diffusion system is not unique. For example, we may define the source
term fluxes also as

0 0
F' = | —(x—a2)p/T. |, G =| —(x—=z;)q/T, |, (58)
—(y—y;)p/T: —(y—y;)a/T:
which lead to
Oww = v(0zp+ 0yq),
T,0p = (Opu—p)+ (2 — ;) (Oup+ 0yq), (59)
T:0iq = (Oyu—q)+ (y —y5) (Oup + 9yq).

Therefore, the extra terms in the last two equations will vanish in the steady state. This system
works equally well for constructing a third-order scheme, but it is not considered in this paper because
extensions to the advection-diffusion equation would require a new construction, i.e., the advective term
also needs to be incorporated into the extra terms. On the other hand, the formulation (54) can be
extended to the advection-diffusion equation without any modification.

The construction of a third-order scheme is now straightforward. We simply apply the scheme
of Katz and Sankaran to the fully hyperbolic diffusion system (53). No source term discretization is
necessary. Also, second derivatives of the source term are not needed. As in the second order schemes,
there are two possible constructions for third-order schemes: Scheme I and II.

4.4.2 Third-Order Scheme I

In order to upgrade the second-order scheme to third order, we only need to make two minor
modifications. One is to remove the point source term discretization and add the upwind flux for the
source-term flux (54). The other is to perform the gradient reconstruction by a quadratic fit (instead
of a linear fit). Note that only the coefficients for the gradients are stored for the quadratic fit and the
second derivatives are never computed. Consequently, the cost of the quadratic gradient computation
is fully comparable to that of the linear gradient computation provided the number of the neighbors
involved is comparable.

The energy-estimate for the third-order scheme is the same as the second-order version (36) except
that it has the following extra term associated with the consistency constraint on the right hand side:

=Y (@ae —pay) {ABgn, — ABpIn, | Ajr, (60)
ec{e}

where Az =z — x5, Ay =y —y;, P = (2 +pr)/2, @ = (4 + a)/2, A(Ag) = Agy, — Agy, and
A(Ap) = Ap,, — Ap;. It is not clear if this term, which is apparently O(h?) smaller than others, is
positive or negative. Consequently, the third-order scheme is not guaranteed to be energy-stable. The
construction of an energy-stable third-order scheme is a subject for future work.

To confirm the third-order accuracy on a regular grid, we substitute smooth functions into the
scheme and expand to get

du; vh?

7; = V(00 +0yq) = 75 (020 (02p + 8yq) + Ouy (Dup + 0yq) + By (Oup + 8yq)] + O(h%), (61)
dpj _ i _ h2 _ _ _ 3
. T, (Ozu —p) + 127, (O + Ozy + ayy)(p Ozu) — (Ox + 2ay)(6xq (%p)} +O(h?), (62)
dq; 1 h?

CT; = f(ayu —q)+ o7, [(Oze + Oy + Dyy)(q — Oyu) — (8 + 20,)(9eq — Dyp)] + O(h®). (63)

Observe that the extra terms introduced in the fully hyperbolic formulation have generated terms
proportional to ;¢ — Jyp in the last two equations, which vanish for exact steady solutions. Assuming
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that the smooth functions satisfy the steady equation, we therefore find that all second-order error
terms vanish, thus giving

7w = O(h®), (64)
mn = O(h?), (65)
., = O(h%). (66)

The truncation error is, therefore, O(h?) for all equations. The scheme is truly third-order accurate.
We emphasize that this scheme does not require computations of second derivatives.

4.4.3 Third-Order Scheme II

As described in Section 4.3.2 for the second-order scheme, we can replace the least-squares solution
gradients in Scheme I by the gradient variables (p;, ¢;). The resulting scheme is still third-order accurate.
To see this, we expand the scheme on a regular triangular grid as before to get

du;
% = U(Oup + Dyq)
h
— o |(V2HVE)u(p — 0uu) + V20, (p — D) + V20, (q — Oyu) + (V24 VE)Dy (g — )
h2
- V]_T [8wa: (8acp + ayQ) + ary (8wp + 61161) + 6yy (89;]? + 81/Q)] + O(h3)7
dpj 1 h2 3
E = i(amu - p) - @ [(8xx + aﬂvy)(q - ayu) + 8xw(p - 830”) + 6y(8acq - 8yp)] + O(h )7 (67)
de 1 h2 3
a i(ay“ —q) — 6T, [(Duy + Oyy) (p — Ouu) + Oyy(q — Oyu) — 0x(9xq — Iyp)] + O(R”).

It is clear as all the leading error terms vanish that Scheme II is truly third-order accurate. As can
be expected from the existence of the first-order error term, this scheme is stable with the forward
Euler time integration. Again, we emphasize that this scheme does not require computations of second
derivatives, and moreover it is more economical than Scheme I because gradient computations are not
needed for the solution .

5 Fourier Stability Analysis

In this section, we analyze the stability of the developed schemes by the Fourier analysis on a
regular triangular grid. As we have done in Section 4.2 in determining the length scale, we insert a
Fourier mode into each spatial discretization and derive the corresponding amplification matrix, M.
The eigenvalues of M are denoted by Ay where k = 1,2, 3, which are relevant to the stability condition.
In what follows, we seek the maximum CFL number for the first, second, and third order schemes, with
two time-integration schemes: the forward Euler scheme and a two-stage TVD Runge-Kutta scheme.

5.1 Forward-Euler Time Integration

The stability condition for the forward-Euler time integration is given by
1+ Athg] <1, k=1,2,3. (68)

We find the maximum CFL number by numerically solving the above inequalities for CFL over a range
of frequencies, (8, 8y) € [—7, 7] x [—m, 7] where the frequencies are sampled over N = 500 intervals
in each direction. The results are shown in Figure 2(a) and Table 1. The maximum CFL number for
Scheme I is 1.0677 for second order and 1.0743 for third order at h = 1/8, but it continues to decreases
as h gets smaller (h = 1/2",n = 3,4,5,...,26) as shown in Figure 2(a) . It is essentially unstable
as expected. On the other hand, for Scheme II, the maximum CFL number converges to the limiting
value 0.7313 for both second order and third order as h — 1/226. Therefore, the forward-Euler time
integration can be employed to drive the solution to the steady state for Scheme II under the restriction
CFL < 0.7313. For the first-order scheme, the maximum CFL number is insensitive to h: 1.3032 for
nearly all values of h considered.
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Figure 2: Maximum CFL number for h = 1/2¢, i = 3,4,5,...,26.
First-Order Second-Order Third-Order
Scheme I  Scheme II  Scheme I  Scheme II
Forward Euler 1.3032 Unstable 0.7313 Unstable 0.7313
Two-Stage TVD Runge-Kutta 1.3032 1.2967 1.2865 1.2967 1.2865

Table 1: Asymptotic Maximum CFL number (h = 1/225) for the first and second order schemes.

5.2 Two-Stage Runge-Kutta Time Integration
Stable time integration for Scheme I is possible with the two-stage TVD Runge-Kutta time integra-
tion [22]. The stability condition is

1
14+ Ath, + §(At)\k)2 <1, k=123 (69)

For each scheme, we numerically compute the maximum CFL number that satisfies the stability con-
dition as described in the previous section. The results are shown Figure 2(b) and in Table 1. All
schemes are conditionally stable with the two-stage TVD Runge-Kutta time integration for practically
large CFL numbers around 1.3.

6 Results

We consider a steady diffusion problem in a unit square with the exact solution given by

w(z,y) = sinh(7z) sin(wisgi)nz(jri)nh(wy) sin(mx) . (70)

Numerical results are presented for regular and irregular triangular grids with 9x9, 17x17, 33x33,
65x65, 129x129, and 257x257 nodes. The coarsest grids are shown in Figures 3(a) and 3(b). The
first, second, and third order upwind schemes for the hyperbolic diffusion systems are compared with
the Galerkin scheme directly applied to the diffusion equation (1). We compute the numerical solution
by marching in time with the two-stage TVD Runge-Kutta scheme at CFL= 1.28 for second and third
order schemes, and by the forward Euler scheme at CFL=1.28 for the first order scheme, at CFL=0.73
for second and third order versions of Scheme II, and at CFL= 0.99 for the Galerkin scheme. The
steady state is taken to be reached when the residuals drop below 107'® in the L; norm. The initial
solution is set up by the exact solution with random perturbation. The Dirichlet boundary condition is
applied everywhere on the boundary. The quadratic fit is performed with the nearest neighbors on the
regular grids (with stencil extensions for the boundary nodes). For the irregular grids, to avoid possible

12
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0 X 1 0 X 1
(a) Regular grid (b) Irregular grid

Figure 3: 9 x 9 regular and irreqular grids. The irregular grid is generated from the regular grid by
random diagonal swapping and nodal perturbation.

ill-conditioning, we increase the number of neighbors up to 10 by adding neighbors of the neighbors.
It should be possible to make the third-order scheme nearly as compact as the second-order scheme by
a more sophisticated selection of neighbors. Note that the number of neighbors is typically more than
enough in three-dimensional tetrahedral grids to which the edge-based third-order scheme is applicable.
In both linear and quadratic fits, the unweighted least-squares method is employed to generate the
coefficients, c;i, = (c;fk, cgk); the gradients are computed in the form

(Vu)y = Y ejnlur —uy). (71)

ke{k;}

The costs of the linear and quadratic fits are thus comparable on regular grids, but differ on irregular
grids by the number of extra neighbors added for the quadratic fit. In the quadratic fit, second deriva-
tives can be computed, but we do not compute them nor store the least-squares coefficients for them
because second derivatives are not needed in the third-order scheme.

Error convergence results for the regular grids are shown in Figure 4. The results confirm the design
order of accuracy in all variables for all schemes: first, second, and third order accuracy in u and p
for first, second, and third order schemes, respectively. Results for ¢ are very similar to those for p,
and therefore not shown. In all results, we observe that Scheme II gives more accurate solutions and
gradients than Scheme I (compare red and blue lines). Also, we see for second-order accuracy that
Scheme I is less accurate than the Galerkin scheme while Scheme II is equally accurate as the Galerkin
scheme. For the Galerkin scheme, the gradients are computed by the unweighted linear least-squares
method. For these regular triangular grids, the least-squares gradients are second-order accurate at the
interior nodes. However, we observe that Scheme I and Scheme II produce more accurate gradients
than the linear least-squares gradients even in the second-order case.

Results in Figure 5 confirm the design accuracy of the developed schemes for the irregular grids.
We observe again that Scheme II produces consistently more accurate solutions than Scheme I, and
the second-order version of Scheme II is comparably accurate with the Galerkin scheme. For the
accuracy in the gradients, Scheme I and II produce significantly more accurate gradients than the
least-squares gradients computed from the solution of the Galerkin scheme. On the finest grid, the
third-order schemes produce nearly three orders of magnitude more accurate gradients than the least-
squares gradients. Even the second-order results show almost two orders of magnitude improvements
over the least-squares gradients.

It is emphasized that the third-order schemes are only slightly more expensive than the corresponding
second-order schemes. The cost per time step measured in the numerical experiment (averages taken
over iterations and over all grids in the irregular grid case) is summarized in Table 2. It shows that
Scheme I and II require approximately 8% and 6% additional work to upgrade the accuracy from second
order to third order. Note also that Scheme II, which does not require gradient computations for the
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main variable, is nearly 10% more economical than Scheme I. It is also seen that the per-time-step cost
of the Galerkin scheme (implemented in a loop over elements) is lower than any other scheme. However,
the Galerkin scheme is the most expensive scheme in terms of the overall cost of obtaining the steady
solution as we will see below.

Figures 6(a) and 6(b) show the total time steps (iterations) required to reach the steady state for
the regular grids. Figure 6(a) shows, as expected from O(h?) time step required for traditional diffusion
scheme, that the number of iterations increases quadratically (with respect to 1/h) in the Galerkin
scheme whereas it increases linearly in the hyperbolic schemes. Although the cost per iteration is more
expensive in the hyperbolic schemes, the O(1/h) acceleration in iterations yields O(1/h) acceleration
in the CPU time as shown in Figure 6(b). Note that the acceleration factor grows as the grid gets
finer. Furthermore, the convergence acceleration comes with the superior accuracy in the gradients.
Comparison among the hyperbolic schemes in Figure 6(b) show that Scheme II converges faster than
Scheme I for both second and third order accuracy, and that third-order schemes require only slightly
more CPU time than the corresponding second-order schemes. Similar results are obtained for irregular
grids, and shown in Figure 7.
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Figure 4: Error convergence results for regular grids. h is the effective mesh spacing defined as the L,
norm of the square root of the dual volume.

\\\\\\
‘‘‘‘‘‘‘‘

————
-
(-

-------
______
,,,,,,

—HB— 1st Order —HB— 1st Order

Loglo(Ll error of u)
L

Galerkin
—©—Scheme | (2nd)
—A—Scheme | (3rd)
—©-Scheme Il (2nd)
—A— Scheme Il (3rd)
‘‘‘‘‘ Slope 1
- Slope 2
= = =Slope 3

-2

—1‘.5
Log; o(h)

(a) Error in u

-1 -0.5

LoglO(Ll error of p)
L

LSQ (Galerkin)
—©—Scheme | (2nd)
—A—Scheme | (3rd)
—©-Scheme Il (2nd)
—A— Scheme Il (3rd)
‘‘‘‘‘ Slope 1
- Slope 2
= = =Slope 3

-2

—1‘.5
Log; o(h)

(b) Error in p

-1 -0.5

Figure 5: Error convergence results for irregular grids. h is the effective mesh spacing defined as the
L, norm of the square root of the dual volume.

14



Preprint accepted for publication in Journal of Computational Physics, 2013.

Galerkin  First-Order Second-Order Third-Order
Scheme I  Scheme II  Scheme I  Scheme II
Forward Euler 0.66 1.00 1.26 1.33
Two-Stage TVD RK 2.78 2.53 2.99 2.68

Table 2: Comparison of the cost per time step with respect to the cost of first-order scheme based on
the CPU time measured in the irregular grid case.
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Figure 6: Iteration and CPU time required to reach the steady state for regular grids.
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Figure 7: Iteration and CPU time required to reach the steady state for irregular grids.
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7 Concluding Remarks

In this paper, we have constructed and analyzed first, second, and third order finite-volume schemes
for diffusion on unstructured grids. The energy estimate has been derived for the hyperbolic diffusion
system, which is equivalent to the well-known energy estimate of Laplace’s equation in the steady
state. The first-order scheme has been shown to be energy-stable with the upwind flux, which is readily
applicable to the diffusive term in turbulence model equations as well as to the viscous terms in the
Navier-Stokes equations [12]. It is emphasized that the developed energy-stable first-order diffusion
scheme is applicable to both node-centered and cell-centered finite-volume methods for fully irregular
grids of any element type.

Two types of constructions have been considered for second and third order schemes: Scheme I and
Scheme II. Scheme I corresponds to a common edge-based finite volume construction for hyperbolic
systems. Scheme II employs the gradient variables in the reconstruction for the main variable, resulting
in second and third order schemes that are stable with the forward-Euler time integration. In both
second and third order accuracy, Scheme II was shown to converge faster and give more accurate
solution and gradients than Scheme I. Superior accuracy and efficiency over the Galerkin scheme has
been demonstrated by numerical results for both regular and irregular triangular grids. In particular, the
developed second- and third-order schemes have been shown to yield second- and third-order accurate
gradients, respectively, on irregular grids.

The most striking advantage of the third-order schemes developed here is that third-order accuracy
achieved in the gradients nearly at the cost of second-order hyperbolic schemes, which is already more
efficient by factor O(1/h) than traditional diffusion schemes. Even in the second-order schemes, the
gradients are computed to second order accuracy along with O(1/h) acceleration. As it typically
requires third and fourth order schemes to achieve second and third order accuracy in the gradients, the
developed second and third order schemes are expected to offer tremendous improvements in efficiency
for diffusion problems.

We note that the schemes generated based on the hyperbolic method cannot be time accurate
with explicit time integration schemes. Time-accurate computations are possible only with implicit
time integration schemes, including space-time methods. The development of time-accurate hyperbolic
schemes based on the backward-difference time integration is currently underway, and will be reported
elsewhere. We note also that the extension of the hyperbolic method to more complex systems requires
a careful study in the construction of a first-order hyperbolic system. As discussed in Ref.[12], a
first-order formulation of the compressible Navier-Stokes equations having a simple eigen-structure has
not been found yet. To avoid this difficulty, a strategy was proposed in Ref.[12] based on a separate
treatment of the inviscid and viscous terms each of which can be independently analyzed and proved to
be hyperbolic. The strategy is currently being studied for a model advection-diffusion equation. The
details will be reported in a subsequent paper. Note finally that the number of extra variables required
in the hyperbolic method can be substantially high for complex systems. For the three-dimensional
compressible Navier-Stokes equations, 6 viscous stresses and 3 heat fluxes will be required, at least. It
remans to be investigated that the advantages of the hyperbolic method overwhelm any complication
arising from a large number of extra variables, or that the hyperbolic method offers a resolution of
problems encountered by the current state-of-the-art CFD solvers.
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