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Abstract

In this paper, we present first, second, and third order implicit finite-volume solvers for advection-
diffusion problems based on the first-order hyperbolic system method. In particular, we demonstrate that the
construction of an uniformly accurate third-order advection-diffusion scheme is made trivial by the hyperbolic
method while a naive construction of adding a third-order diffusion scheme to a third-order advection scheme
can fail to yield third-order accuracy. We demonstrate also that the gradients are computed simultaneously
to the same order of accuracy as that of the solution variable on irregular triangular grids: first, second
and third order accurate gradients by the first, second, and third order schemes, respectively. Furthermore,
the first and second order schemes are shown to achieve one order higher accuracy for the solution variable
in the advection limit. It is also shown that these schemes are capable of producing highly accurate and
smooth solution gradients along the boundary in a highly-skewed anisotropic irregular triangular grid while
conventional schemes suffer from oscillations on such a grid. Numerical results show that these schemes are
capable of delivering high accuracy over conventional schemes at a significantly reduced cost.

1 Introduction

This paper is a sequel to the previous paper [1], where we presented first, second, and third order diffusion
schemes constructed based on the the first-order hyperbolic system method [2]. In this method, diffusion schemes
are constructed from advection schemes via an equivalent hyperbolic system. We demonstrated that first, second,
and third order diffusion schemes constructed by the upwind flux yield first, second, and third order accurate
solution and gradients, respectively, on irregular triangular grids, with significant acceleration in convergence
over a traditional scheme. In particular, the third-order diffusion scheme was shown to be incomparably more
accurate and efficient, providing third-order accuracy in the solution as well as in the gradients at a significantly
reduced cost over conventional schemes.

Towards the development of a robust, accurate, and efficient three-dimensional viscous solver capable of
producing high accurate derivatives (e.g, viscous stresses, heat fluxes, and vorticity) on unstructured grids,
we now consider the advection-diffusion equation. The main focus of the paper is on the uniform third-order
accuracy from the advection limit to the diffusion limit. The third-order scheme considered in the current
study belongs to the class of numerical schemes based on vanishing residuals [3, 4, 5]. The second-order error
term contains the residual that vanishes in the steady state; the leading error is then upgraded to third order.
This type of scheme is known to deliver high-order accuracy on a relatively compact stencil (e.g., third-order
accuracy on a second-order stencil), and thus very attractive for practical computations where high accuracy
is demanded at a minimal additional cost. Successful applications of these schemes to the advection-diffusion
equation require a careful construction to ensure the property of vanishing residuals. If not designed properly,
the scheme loses the design accuracy at least by one order as shown in Ref.[4] for a similar high-order scheme, and
in Ref.[6] for conservation laws with source terms. To achieve third-order accuracy for the advection-diffusion
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equation, the advective and diffusive terms must be discretized not only to third order but also in a compatible
manner as we discuss later in details. Uniform accuracy is very important for advection-diffusion problems for
a practical reason. Since such accuracy deterioration occurs typically where the advective and diffusive terms
are equally important, it can happen anywhere the local Reynolds number falls within such a range in practical
viscous flows, e.g., a boundary layer. Consequently, improperly-designed high-order schemes will only increase
the computational cost without delivering high accuracy; locally generated lower error may then propagate
through the downstream and affect other regions where high-accuracy is maintained otherwise.

A radical approach to ensure the uniform accuracy is to integrate the advective and diffusive terms into a
single hyperbolic system as proposed in Ref.[7]. In this approach, the accuracy degradation cannot occur because
there is only a single hyperbolic system. However, the extension to the compressible Navier-Stokes equations
is not straightforward. A full eigen-structure has not been found yet for the hyperbolized compressible Navier-
Stokes equations, and therefore a full integration of the inviscid and the viscous terms remains a challenge. To
overcome the difficulty, a simplified approach was proposed in Ref.[8], where the inviscid and viscous terms are
analyzed and discretized independently. As demonstrated in Ref.[8], the hyperbolic viscous system alone can be
fully analyzed and the eigen-structure can be derived to construct the upwind viscous flux. A full Navier-Stokes
discretization is then constructed by adding the upwind viscous flux to the inviscid flux. For the type of scheme
considered in the current study, such an approach often fails for conventional methods, but it works trivially
for hyperbolized systems because all terms are discretized by the same scheme. In this paper, we discuss the
simplified approach for the model equation, and thereby lay a foundation for the construction of first, second,
and third order hyperbolic Navier-Stokes schemes.

The paper begins with the hyperbolic formulation for the advection-diffusion system, describes implicit
first, second, and third order node-centered edge-based finite-volume schemes, including the discussion on the
compatibility problem for uniform third-order accuracy, then presents numerical results and discussion, and
finally concludes with remarks.

2 Hyperbolic Advection-Diffusion System
Consider the advection-diffusion equation in two dimensions:
O+ a 0yu + bOyu = v (Opaut + Oyyut), (1)

where u is the solution variable, (a,b) is a constant advection vector, and v is a constant diffusion coefficient.
Construction of numerical schemes for the advective term is relatively straightforward, but the same is not
necessarily true for the diffusive term of second derivatives, especially for high-order methods and unstructured
grids. A radical approach to diffusion is to convert the diffusive term into a hyperbolic system as proposed in
Ref.[2], which is extended to the advection-diffusion in the following form:

Ou+adu+boyu = v(0:p+ 0yq),
atp = (8Lu - p) /TTa (2)
dhqg = (Oyu—q)/T,

where p and ¢ are called the gradient variables which relax to the solution derivatives, d,u and 9yu, respectively,
in the steady state, and 7, is a free parameter called the relaxation time. The system is equivalent to the
advection-diffusion equation (1) in the steady state for any nonzero T,. Therefore, the steady solution to the
advection-diffusion equation (1) can be computed by solving the first-order system. This idea was first introduced
in Ref.[2], and subsequently extended to the advection-diffusion equation [7] and the Navier-Stokes equations
[8]. Discretization is made simple because there are no second derivatives and the system is hyperbolic[7] for
which a variety of well established techniques are available. The hyperbolic system here designed specifically for
steady computations is simply called the hyperbolic advection-diffusion system. This formulation clearly shows
that the method is different from other relaxation models[9, 10, 11, 12] . Our method introduces relaxation
only in the diffusive fluxes, and our target equation is exactly the advection-diffusion equation (1), not an
asymptotic approximation. In other words, our hyperbolic model reduces to the advection-diffusion equation
exactly in the steady state for any nonzero T,., whereas other models are equivalent to the advection-diffusion
equation only in the limit 7. — 0, resulting in a stiff relaxation system. In our model, the stiffness is not an
issue because T;. is a free parameter and does not have to be small. The relaxation time can be determined
not by physical consideration but by numerical consideration, i.e., fast steady convergence. Also, our target
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applications are second- or higher-order partial differential equations, such as the Navier-Stokes equations, not
specific to rarefied gasdynamics or radiation hydrodynamics. A similar hyperbolic system is utilized in a recent
work [13] 1, where high-order explicit time-stepping schemes are constructed based on the first-order hyperbolic
formulation of diffusion. However, again, the relaxation time is restricted as it has to be proportional to the
mesh spacing to the power of the order of accuracy, e.g., T, = O(h?) for second-order schemes, so that the
hyperbolic system accurately represents the original diffusion term at any instant of time. Consequently, the
O(1/h)-type fast convergence, which is one of the distinguished features of our method, cannot be achieved
in their method. Also, it is not known whether their method can produce the gradients to the same order of
accuracy as that of the solution on irregular grids. We emphasize again that the key idea of the hyperbolic
method considered in this paper is to construct a hyperbolic system that recovers the original equation in
the steady state. The time evolution of the solution will not be accurate for a large value of T,. designed
for fast steady convergence, and therefore explicit time-stepping schemes cannot be constructed for unsteady
problems. Time-accurate computations are possible by implicit time-stepping (or space-time) schemes, where a
fast steady solver constructed in this work can be used to solve a system of globally coupled residual equations
arising from the implicit time integration scheme. Note that this is not a severe limitation of the hyperbolic
method. Many practical simulation codes employ implicit time-stepping schemes for efficiency and robustness
purposes especially for high-Reynolds-number applications, and demand powerful steady solvers. The steady
solver constructed based on the hyperbolic method has a potential for significantly improving the efficiency of
the implicit time-integration scheme as well as the accuracy in the gradients. In fact, the hyperbolic method has
already been extended to unsteady problems, first in Ref.[14] for a second-order residual-distribution method,
and then in Ref[15] for a very high-order residual-distribution method. In both, the second- and higher-order
backward Euler time-integration schemes are used, and a steady solver have been shown to be capable of solving
the unsteady residual equations very efficiently as well as producing highly accurate solution gradients at every
physical time step. The methodology is equally applicable to the finite-volume schemes. Further discussion on
time accurate schemes is beyond the scope of the present paper.
We write the system in the vector form,

0,U + 0, F + 9,G = S, (3)
where
U au — vp bu — vq 0
U=|p |, F=| —uw/T, |, G= 0 , S=| —-p/T. |. (4)
q 0 —u/T; —q/T:

In Ref.[7], the system is taken as a single hyperbolic system. In this paper, we consider the advective term and
the diffusive term separately.

au —up bu —vq
F=F'+Fi=| 0 |+| —u/T. |, G=G*+G?=| 0 |+ 0 . (5)
0 0 0 —u/T,

The flux Jacobian projected along an arbitrary vector, n = (ng,n,) is given by

OF 0G

An — Ay Na AT
au’ T au™

=A%+ A7, (6)

where A2 and A are the advective and diffusive Jacobians, respectively,

a, 0 0 0 —UNg —Uny
, OF® lek OF? lel
Al=Sghet o= 0 0 0], Ad = STt ag ™ = —ng /T, 0 0 . (D
0 0 0 —ny /T, 0 0

n Ref.[13], it is stated that the first-order hyperbolic system method was first introduced in the paper [4], but it is not true.
The method was first introduced in Ref. [2].
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and a,, = ang+bn,. The advective Jacobian has the eigenvalue, a,, and the diffusive Jacobian has the following

eigenvalues:
v
A==£,/—, 0. 8
Vi (5)

The zero eigenvalue corresponds to the inconsistency damping mode[2], acting on the components of p and ¢
such that ¢, — p, # 0. It can be made nonzero by the fully hyperbolic formulation [1], which we shall employ
in this study for constructing a third-order scheme.

The relaxation time is defined as T, = L./(|a,| + v/L,) in Ref.[7] based on a unified treatment of the
advective and diffusive terms. However, in this paper, we treat the diffusive part independently and thus define
the relaxation time as suggested for pure diffusion in the previous paper:

L? 1
T,=—", Lr=—. 9
1% " 2T ()

With the purely diffusive relaxation time, the system reduces to the scalar advection equation in the advection
limit, v — 0:

Ou+ad,u+boyu = 0,
atp = O, (10)
8tq = Oa

whereas for T, = L,./(|an| + v/L,), it remains finite (T, — L./|a,|) and thus generates a coupled system:
Ou+adu+boyu = 0,
Op = (Oxu—p)/Tr, (11)
o = (Oyu-—aq)/T-

Anticipating the extension to the Navier-Stokes equations, we find the decoupling as in Equation (10) more
suitable for modeling the hyperbolic Navier-Stokes system[8], where the viscous stresses and heat fluxes are
taken as the gradient variables, which are not physically coupled with the inviscid terms. In the inviscid limit,
the hyperbolic Navier-Stokes system that decouples reduces exactly to the Fuler equations. Also, the separate
treatment of the inviscid and viscous terms dramatically simplifies the construction of numerical schemes because
it only requires the eigen-structure of each term, which can be fully analyzed independently. In other words, the
inviscid scheme can be chosen independently from the choice of the hyperbolic viscous scheme. This simplified
approach was first considered for the hyperbolic Navier-Stokes system in Ref.[8], but not studied for the model
equation before. This paper only considers the linear model equation, but the method can be extended to
nonlinear equations by the preconditioned conservative formulation proposed in Ref.[8].

3 Node-Centered Edge-Based Finite-Volume Scheme

3.1 Discretization

The node-centered edge-based finite-volume scheme for Equation (3) is given by
dU,
Vit == ) @l 8V (12)
ke{k;}

where V; is the measure of the dual control volume around node j in the set {J} of nodes, {k;} is a set of neighbors
of j, @i is a numerical flux, and Aj;, is the magnitude of the directed area vector, i.e., Aj; = [nj;| = |n§k +n7, |
(see Figure 1). This formulation is valid for triangular, quadrilateral, or mixed grids, and all schemes developed
below can be directly applied to any grid except the third-order scheme, which is third-order accurate only on
triangular grids. For the third-order scheme, the point-source integration in Equation (12) cannot be employed;
it needs to be discretized carefully to preserve the accuracy as will be discussed later. Note also that an
appropriate boundary flux must be supplied at the boundary node. For first-order schemes, a point evaluation
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is sufficiently accurate, but for second-order schemes, a different quadrature is required for the linear exactness
in the flux integration. See Appendix E in Ref.[16] for a comprehensive list of linearity preserving boundary
quadrature formulas in two and three dimensions. For the third-order scheme, yet another formula is required
for preserving quadratic fluxes. In this paper, however, we focus on test problems where the point evaluation is
sufficient for all schemes: uniformly spaced flat boundary grids. Details on the accuracy-preserving boundary
flux quadrature formulas will be given in a separate paper.

3.2 Numerical Flux

The numerical flux is computed by the upwind flux:
1 ) 1
ijk:i(HL"'_HR)'njk_§|An|(UR_UL)7 (13)

where Hy, = [F1, G|, Hr = [Fgr, Gg], and 0 = (ng,ny) is the unit directed area vector. The left and right
fluxes and solutions are defined at the edge midpoint and evaluated by the nodal values for first-order accuracy
and by the linear extrapolation from the nodes for second/third-order accuracy as discussed later. A, is the flux
Jacobian projected along ;. The construction of the absolute Jacobian, |A,,|, requires the full eigen-structure
of the target system. The eigen-structure of the hyperbolic advection-diffusion system (3) is simple enough to
enable the construction of the upwind flux[7]. In this paper, however, we consider a simplified construction,
which was proposed for the hyperbolic Navier-Stokes scheme in Ref.[8]. In this approach, the numerical flux is
defined by the sum of the upwind advection flux ®%, and the upwind hyperbolic-diffusion flux @?k:

where
a 1 a a -~ 1 a
e = 5( L+HR)'njk*§\An|(UR*UL)7 (15)
d P dy - Lo
Q5 = §(HL +HEg) - fjy — §\An|(UR -Uyp). (16)

The left and right fluxes and the Jacobians are defined separately for the advection term and the hyperbolic
diffusion terms:

la,| 0 O
%:[ %7(}%]7 aR:[ aR7G(IIi!]7 |A(71L|: 0 0 01, (17)
0 0 0
1 0 0
v
H = [F{,G}|, H}=[F% G|, |AY= |0 n2  ngny | . (18)
0 ngny n§
Note that the resulting flux can be written as
1 . 1 “
©jp = 5(Hy +Hp) ny — 5 (lanl+[A%]) (Ur —Uy), (19)

In this way, each absolute Jacobian can be constructed independently for the advective term and the diffusive
term. It has been successfully demonstrated for the hyperbolic Navier-Stokes system[8]: the inviscid term and
the viscous terms are both hyperbolic and their eigen-structures can be fully analyzed independently.

It should be noted that we do not assume that |A,,| = |[A2|+ |AZ|, which is not true. We have simply added
a diffusive flux to an advective flux. This is, therefore, an approximation. The impact of the approximation can
be studied by comparing it with the numerical flux having the true Jacobian |A,|, but such a comparison is
beyond the scope of the present paper. The objective of this paper is to study the approximate approach, which
can be extended to more complex systems. Note that this approximate approach, e.g., simply add a viscous
flux to an inviscid flux to construct a Navier-Stokes flux, is widely adapted (although it may not be recognized
as approximate) in many discretization methods, including the finite-volume methods and the discontinuous
Galerkin methods. Here, in the same way, we have added the upwind hyperbolic diffusion flux, instead of a
conventional diffusive flux, to the upwind advective flux.
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3.3 Implicit Solver

A steady-state solution can be obtained by marching in time towards the steady state as demonstrated in
the previous paper. In this paper, we drop the time derivative term,

0=— > ®pd+8;V;, (20)
ke{k;}

and construct an implicit solver for the global system of steady residual equations. The advantage of O(1/h)
acceleration in the steady convergence over traditional methods, which has been observed for explicit time-
marching schemes [2, 7, 8, 1], now comes in the iterative convergence of the linear system arising from the
implicit formulation as will be demonstrated later.

Consider the global system of residual equations, which consists of rows of the nodal residual (20):

0 = Res(Uy,), (21)

where U}, denotes the global solution vector for which the system is to be solved. We consider the iterative
method in the form:

Uyt =Up + AU, (22)
where the correction AUy, is the solution to the following linear system:

JRes

TUhAUh = —Res(U7}). (23)
The Jacobian matrix is constructed analytically by differentiating the residual of the first-order scheme and
hand-coded. Therefore, the method is Newton’s method for the first-order scheme, and a defect correction
method for the second and third order schemes, provided the linear system is fully solved. In practice, we do
not fully solve but relax the linear system. In this work, we employ, for the sake of simplicity, the sequential
block (point-implicit) Gauss-Seidel (GS) relaxation to relax the linear system to a specified tolerance. It is
possible to add a pseudo-time term to the left hand side, but it is not used in this work. It is emphasized that
the condition number of the Jacobian is O(1/h) for the first-order hyperbolic formulation, not O(1/h?), which is
typical for diffusion schemes, even in the diffusion limit, implying O(1/h) acceleration in iterative convergence
over traditional schemes for diffusion dominated problems.

3.4 First-Order Scheme

We construct a first-order scheme by evaluating the left and right states with the nodal solutions:
U, =1y, Upgr = Uy, (24)

and the numerical flux by the upwind flux (19). The resulting scheme corresponds to Scheme I in Ref.[1]. In
this paper, we employ a modified version of Scheme I, called Scheme II, where the gradient variables are used
to enable the linear extrapolation of the solution:

1 1
ur, =uj+ 5 (pj.¢5) - AL, ur =up — 5

5 ) (k> ar) - Al (25)

where Aljp = (Ayjk, Ayjx) = (zx — 5, yx — y;j). The source terms are evaluated by the point integration as
indicated in Equation (12). The scheme is compact and first-order accurate for all variables in the diffusion limit
as shown in the previous paper[l]. The Jacobian is constructed exactly based on this scheme. In this paper,
we demonstrate that the scheme can achieve second-order accuracy in the advection limit. For vanishingly
small v, the hyperbolic diffusion term has no effect on the advection-diffusion equation, but it is still capable of
producing accurate gradients, resulting in a second-order accurate scheme for the advective term.

3.5 Second-Order Scheme

For second-order accuracy, we compute the nodal gradients by a linear least-squares (LSQ) method, and
evaluate the left and right states by the linear extrapolation from the nodes. Again, we employ Scheme II and
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avoid the gradient computation for the solution by using (p, ¢) as in Equation (25). The gradient computation
is required only for p and ¢ to perform the linear extrapolation:

1 1
PL=pj+ 5 Vp; - ALy,  pr=pK— 3 Vg - Aljg, (26)

1 1
w=aq+3 Vq; - ALk, qr=qx — 3 Vi - Aljy, (27)

where Vp; is the gradient of p computed by the LSQ method at j, and similarly for Vg; . The numerical flux
is computed by the upwind flux (19). As in the first-order scheme, the source terms are evaluated by the point
integration also for the second-order scheme. This scheme is known to be second-order accurate for both the
solution and the gradients in the diffusion limit [1]. In the advection limit, the scheme becomes a third-order
advection scheme as shown later.

3.6 Third-Order Scheme

As in the previous work, we consider the third-order edge-based finite-volume scheme discovered by Katz
and Sankaran[17]. It is a very special node-centered finite-volume scheme for hyperbolic conservation laws: the
second-order node-centered edge-based finite-volume scheme achieves third-order accuracy on triangular grids if
the nodal gradients are exact for quadratic functions and the flux is linearly extrapolated to the edge-midpoint in
the case of nonlinear fluxes. For linear problems considered in this paper, the flux extrapolation is not necessary.
Third-order accuracy is achieved by simply replacing the linear LSQ gradients by quadratic ones in the second-
order scheme. The third-order accuracy has been demonstrated for regular as well as irregular triangular grids
in Refs.[17, 18, 19]. Tt is a very economical third-order scheme: third-order accuracy obtained nearly at the cost
of the second-order edge-based finite-volume scheme. Nevertheless, its extensions to other types of equations
including source terms are not straightforward. As the scheme relies on the second-order error term that
vanishes in the steady state, every term in a target equation must be discretized with a compatible second-order
error term. For source terms, the use of the point integration is not compatible, and thus third-order accuracy
cannot be achieved. An extended Galerkin discretization formula proposed in Ref.[20] is compatible, and also a
systematic method to ensure the compatible discretizaton has also been devised in Ref.[6]. See Ref.[1] for more
details. For the diffusive term in the original form (1), it is also not straightforward to develop a compatible
discretization. Here, we focus on the diffusion term.

In Section 3.6.1, we first illustrate the compatibility problem for the advection-diffusion equation. And then,
in Section 3.6.2, we present the hyperbolic construction as a radically simple way to avoid the problem.

3.6.1 Compatibility Problem of Uniform Third-Order Accuracy for Advection-Diffusion

Consider the advection-diffusion equation,
Oz f + 0yg = v (0zatt + Oyyut), (28)

where (f,g) = (au,bu). In the absence of the diffusive term (e.g., v = 0), the third-order scheme has the
following local truncation error at node j on a regular triangular grid[6]:

7;adv =C1 Om((‘?mf + 81/9) +Cs 8m/(awf + 81/9) +C3 ayv(awf + ayg) + O(hg)’ (29)

where the derivatives are defined at j, h is a typical mesh spacing, and the coefficients, Cy, C3, and Cj3, are
geometrical constants of O(h?). Without loss of generality, we focus on a regular triangular grid composed of
isosceles right triangles of spacing h where the truncation error is specifically given by

h2
TR = 10,0 (00f +0,0) + 0y (00 + Dy9) + 0,y (B f + Dyg)] + O(R°). (30)
The second-order error term will vanish because 0, f + 0,9 = 0 for the exact solution or equivalently because
Oz f + Oyg = 0 in the steady state, and thus the truncation error is upgraded to third-order. Consequently, the
discretization error is expected to be third-order. In order to achieve third order accuracy for the advection-
diffusion equation, the diffusion scheme must have a second-order error term in the form:
h2

T 2 00 (1 (Dt 0y ) + 0y (v (Dt + D) + 0y (v (D + D) + OG®),  (31)
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so that
Tadv-diff — adv y rdiff % (O + Dy + Dyyr] + O(R®), (32)
where
7 =0gf + 0yg — v (Ozgu + Oyyu), (33)

and thereby the second-order error term vanishes for r = 0, i.e., in the steady state. We emphasize that there
are two requirements for constructing a uniformly third-order advection-diffusion scheme. First, the diffusion
scheme must have a second-order error term that vanishes in the steady state. Second, the second order error
must be in the form compatible with that of the advection scheme.

The linear Galerkin scheme (i.e., the continuous P; Galerkin scheme), which is equivalent to the three-point
central finite-difference scheme on the grid considered here[21], has a second-order error term,

T vh?
Tjdl = ﬁ(aﬂﬂmwu + Oyyyyu) + O(hg)v (34)

which does not vanish in the steady state, leading to

7;adv diff _ 7;adv n 7—jdlff
h2
12
Clearly, the second-order error term does not vanish. This scheme is, therefore, second-order accurate, and can
be third-order accurate only in the advection limit (v — 0). Without exploring various other diffusion schemes
or seeking a general guiding principle, we took a third-order version of the linear Galerkin scheme described in
Refs.[22, 23], which is obtained by upgrading the element-gradient by a curvature correction. The curvature
correction term is computed from the gradients reconstructed at nodes. See Ref.[22] for details. Note that this
third-order Galerkin scheme is a corrected linear Galerkin scheme, not a discontinuous Galerkin scheme nor the
continuous P, Galerkin scheme[22]. This scheme has the following truncation error:

[am:c(a:cf + ayg + Vaa:a:u) + axy(awf + 8yg) + ayy(azf + ayg + Vayyu)} + O(h?))‘

. h2
7;-d1ff =13 [0z (V (0zgt 4 Oyytt)) + Opy (V (Ogats + Oyyts)) + Oyy (v (Ogats + Oyyu))] + O(h3), (35)
and thus it is third-order accurate in the steady state where v (0w + 9yyu) = 0. However, the sum of the
third-order advection scheme and the third-order Galerkin scheme has the following truncation error:
. . h?
Tadvedifl  qadvy T = (00" + 01”4 0,') + O(R®), (36)

where
' =0uf + 0yg + v (Opau + Oyyu). (37)

We immediately notice that the diffusive term in 7’ has a wrong sign, and therefore the second-order term does
not vanish in the steady state where r = 0 but v’ # 0. The scheme is only second-order accurate except in
the advection limit or in the diffusion limit, i.e., not uniformly third-order accurate. This is the compatibility
problem associated with the second requirement stated above. A similar discussion can be found in Ref.[4],
which pertains to second- and high-order residual-distribution schemes.

There is a possibility that the edge-based diffusion scheme in Refs.[16, 24] can also achieve third-order
accuracy with a vanishing second-order error term. However, our experience indicates that the scheme requires
a cubic fit for the gradient reconstruction. Moreover, it is not immediately clear if the scheme is guaranteed to
be compatible with the third-order advection scheme on arbitrary triangular grids. Nevertheless, a recent work
reported in Ref.[20] shows that a similar edge-based diffusion scheme yields fourth-order accuracy with a cubic fit
and appears to be compatible with the third-order advection scheme. Although encouraging, this type of scheme
results in a very large stencil due to the cubic fit, and makes itself less attractive for practical implementations.
A systematic construction of the gradient stencils based on high-order elements with a technique to damp high-
frequency errors proposed in Ref.[20] may prove to overcome the drawback in practical applications. While the
search continues for a compatible and economical third-order diffusion scheme, we show in the next section that
the construction of uniformly third-order advection-diffusion schemes is trivial in the hyperbolic method. The
compatibility problem does not exist because all terms are made hyperbolic and can be discretized in exactly
the same way, thus yielding a fully compatible second-order error term.
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3.6.2 Hyperbolic Formulation for Uniform Accuracy

Consider a fully hyperbolic formulation:

0,U + 0,F +0,G =0, (38)
where
au —up 0
F=F'+F' +F=| 0 |+ | /T |+]| w-v)a/Tr |, (39)
0 0 —(z —z;) ¢/ T
bu —vq 0
G=G"+G'+G*=| 0 |+| 0 |+ | -(w-w)p/T- |, (40)
0 —u/T, (x —xz;)p/T,

where (z;,y;) denotes the location of a node at which the system is discretized. This system is constructed
by adding the advective term to the fully hyperbolic diffusion system introduced in Ref.[1]. As described in
Ref.[1], the fully hyperbolic diffusion system is constructed by the divergence formulation of the source term
[6], and the formulation is equivalent to the original system in the steady state. The main advantage of this
particular divergence formulation is that we can avoid the computation of the second derivatives of the source
terms, which is required in other techniques to achieve third-order accuracy for equations with source terms.
See Ref.[1] for more details. Observe that each part is hyperbolic and can be discretized by the same third-order
upwind scheme. The numerical flux is constructed simply as a sum of the upwind advection flux, the upwind
hyperbolic-diffusion flux, and the upwind source flux. The discretization is thus written as

0=— Y @, A;. (41)
ke{k;}

Observe that the source term in Equation (20) has been turned into a flux balance and incorporated into the
modified flux function, @, :

O, = Y, + Oy + B3y, (42)

where @, and @?k are the upwind advection and hyperbolic diffusion fluxes given in Equations (15) and (16).
The upwind source flux, @7y, is given by

S 1 S S -~ 1 S
ik = 5( L+HR)'njk_§\An|(UR—UL)7 (43)

where H; = [F$,G3], Hy = [F},G%], and A} = (0F°/0U)n, + (0G*/0U)n,. The absolute Jacobian is
evaluated at the midpoint of the edge:

AL = BN
0 00 |Asjm|/T, 0 0 0 —ny ny
— | ~Ayjm/Asjm 0 0 0 00||lo o o0
AZjp/Asim 0 0 0 oo0ollo o o
0 0 0
- m 0 myAym  —n Ay | (44)
0 —nyAzjm nyAzjm,
where
ASjm = Az jmng + AYjmny, ATjm = Tm — i, AYjm = Ym — Y5, xm:xj;xk, ym:WTyk (45)
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The left and right fluxes are linearly extrapolated from j and k:

0
s o~ s 1 s -~ 1
HL ‘N = H] ‘N + §V(Hj . Iljk) . Aljk = TTT ijyjk s (46)
—ijxjk
0
s - s A 1 s - 1
Hy - ny, = Hj - fgy — iv(Hk i) - Al = ST Ayjr(wr — Vg - Aljg) | (47)
—ijk(wk - Vwk . Aljk)
where

Wj = Ngqj — NyPj, Wk = NgQk — NyPk, Vw;=nzVq; —nyVDp;, Vwi=n,Vq,—n,Vps. (48)

The gradients, Vp; and Vg;, are computed by a quadratic fit; they are already available from the advective and
diffusive parts of the algorithm. It is important to note that the above formula is valid only for the residual at
node j. That is, the source flux must be computed separately for the two nodes, 7 and k. This is because the
source fluxes in Equations (39) and (40) must be modified when it is computed for the residual at the node k
with (x;,y;) replaced by (zx, yx), so that the differential system approximates the original system precisely at
k [1, 6]. For the node-centered edge-based scheme, the dissipation term becomes identical, but the average flux
term is different for j and k. For this reason, the discrete conservation does not hold for the source flux term
as it should not (because it is a source term). See Ref.[6] for more details.

The left and right states used to evaluate the numerical fluxes are computed by the same linear extrapolation
as in the second-order scheme. For the third-order scheme, however, the gradient computation must be exact for
quadratic functions, i.e., a quadratic fit. It requires five neighbors and may extend beyond the edge-connected
neighbors in some cases. In the previous paper[1], we selected 10 neighbors by including neighbors of the edge-
connected neighbors as necessary, and stored the list of 10 neighbors at each node. Here, we avoid carrying
information on the neighbors of the neighbors by implementing the quadratic gradient reconstruction in two
steps, where each step is compact, as described in Appendix. This method involves all neighbors of the edge-
connected neighbors. The total number of neighbors can be as large as 18, and it can be much more than
necessary in many cases. A smart selection of a minimal number of neighbors may be possible, but in this
study we employ the two-step method for robustness and simplicity. It is robust as it has far more neighbors
than necessary even at boundary nodes, and simple as it can be implemented with the list of edge-connected
neighbors only. The latter can be helpful especially in a parallel code, where typically only the edge-connected
neighbors are available across partitions.

The resulting scheme is guaranteed to be uniformly third-order accurate because each term is a hyperbolic
system and the third-order scheme has already been demonstrated for hyperbolic systems [17, 18, 19]. Here,
we just show that the compatibility problem mentioned in the previous section is resolved by the hyperbolic
formulation. Expanding the scheme on the regular triangular grid considered in the previous section, we find
the truncation error for each equation as

T = —6”3 (V24 VB0, (p = 01) + V20, (p — 01) + V20, (a — Dyu) + (V2 + V5), (q — O,u)

+ TZ [Oat + Oy + Dyyr] + O(R3), (49)
TP = e (O + 90)(a 000 + Dualp— 0,20 + 0,0 — Dy + O0), (50)
TI = 6@; [(Day + Byy) (p — Dott) + Dy (g — Dytt) — D, (Dag — Dyp)] + O(W?), (51)

where 7 = a 0,u + b0yu — v(0,p + 0yq). Observe that there are first- and second-order error terms but they all
vanish in the steady state where r =0, p — O,u =0, ¢ — Oyu = 0, and J,q — dyp = 0. The most critical term is
the second-order error term in the first equation, which vanishes in the steady state for the advection-diffusion
equation, meaning that the advective and diffusive terms have been discretized in a perfectly compatible manner.
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The scheme is, therefore, uniformly third-order accurate for any set of parameters, (a,b) and v, and also for
unstructured triangular grids as already demonstrated for hyperbolic systems in Refs.[17, 18, 19].

We emphasize again that the third-order finite-volume scheme itself has already been studied for hyperbolic
systems in Refs.[17, 18, 19]. In the above, we have shown that instead of developing a compatible third-order
scheme for diffusion (and source), we can reformulate the diffusion term as a hyperbolic system and directly
apply the third-order scheme to the advective and diffusive terms to produce a uniformly third-order accurate
advection-diffusion scheme. More importantly, we have shown that the uniform third-order accuracy is achieved
simply by adding the upwind hyperbolic diffusion scheme to the upwind advection scheme. A full integration
of the advective and diffusive terms, including the source flux, into a single hyperbolic system is not necessary
although it is possible.

4 Numerical Results

4.1 Isotropic Grids

We consider the steady advection-diffusion problem in a square domain with the exact solution given by [4]

9.2
u(x,y) = cos(2mn) exp (H\/EZW 5) , (52)

where £ = ax + by, n = bx — ay, and with the Dirichlet boundary condition. The advection vector is set as
(a,b) = (1.23,0.12) and v is determined from the parameter Re by

/02 112
L= a’+b ’ (53)
Re

for Re =107%,1073,1072,101, 1, 10,102, 102, 105. Numerical results are presented for a series of independently
generated eight irregular triangular grids with N nodes, where N =2048, 8192, 18432, 32768, 51200, 73728,
100352, 131072. The coarsest grid is shown in Figure 2. As can be seen, the grid is fully irregular with
random number of neighbors and some vanishingly small volumes. The first, second, and third order hyperbolic
advection-diffusion schemes, designated as SchemelI(1st), SchemelI(2nd), and SchemelI(3rd), are compared with
two traditional schemes. One is the third-order advection scheme with the linear Galerkin scheme, and the other
with the third-order Galerkin scheme considered in Section 3.6.1. The former is designated as Galerkin, and the
latter as Galerkin(3rd). These schemes are termed ‘traditional’ because they are scalar schemes directly solving
the advection-diffusion equation (1). The implicit iterative method is implemented with the first-order residual
Jacobian for the advective part and the exact linear-Galerkin Jacobian for the diffusive part for both traditional
schemes. For the Galerkin(3rd) scheme, the Jacobian for the diffusive part is, therefore, approximate. See
Table 1 for a summary of discretizations and Jacobians. In all cases, the GS relaxation is terminated when the
residual of the linear system is reduced by two orders of magnitude in the L; norm. For gradient reconstruction,
the unweighted linear LSQ method is used for Schemell(2nd), and the two-step quadratic LSQ method as in
Appendix is used for SchemelI(3rd) and the two traditional schemes. In all cases, the initial solution is set by
the exact solution randomly perturbed. Steady convergence is taken to be reached when the residual in the L
norm drops by ten orders of magnitude or reaches the machine zero.

Error convergence results are shown in Figures 3 to 10. Only the results for v and p are shown because
the results for ¢ is very similar to those for p. Also, the results for Re = 102 are not shown because they
look identical to those for Re = 1076, The legend is shown in the error convergence plot for p only; it applies
equally to the plot for v on the left side. For the traditional schemes, p corresponds to the z-component of
the quadratic LSQ gradients. First, it is observed that the Galerkin scheme is second-order accurate in the
solution and first-order accurate in the gradients (even with the quadratic LSQ fit) except in the advection limit
Re = 105 (Figure 10) where the third-order advection scheme dominates and yields third- and second-order
accuracy in the solution and the gradients, respectively. Second, the Galerkin(3rd) scheme gives third-order
accuracy in the solution and second-order accuracy in the gradients in the diffusion dominated cases, but the
accuracy begins to deteriorate by one order at Re = 1 (Figure 6) and starts recovering third-order accuracy
at Re = 10® (Figure 9). As predicted, therefore, the scheme is not uniformly third-order accurate. On the
other hand, SchemelI(1st), SchemelI(2nd), and SchemelI(3rd) never encounter such accuracy deterioration. As
results show, SchemellI(1st) and Schemell(2nd) are uniformly first- and second-order accurate, respectively, in
both the solution and the gradients. Observe also that as advection dominates (Re = 10%,10°), SchemelI(1st)
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and Schemell(2nd) yield one order higher accuracy in the solution, i.e., second-order and third-order accuracy,
respectively. The second/third-order accuracy is expected because the gradients are computed with first /second-
order accuracy, which is employed in the face-reconstruction for the advection scheme. This way of achieving
second /third-order accuracy for advection is interesting and economical: second-order advection scheme with no
gradient computations, and third-order advection scheme with linear (not quadratic) LSQ gradients. In effect,
the hyperbolic diffusion scheme here plays a single role of providing accurate gradients with the diffusive term
kept negligibly small. Finally, observe that Schemell(3rd) gives third-order accuracy for both the solution and
the gradients for all values of Re. It is worth emphasizing that the gradients are third-order accurate even in
the advection limit. The third-order scheme is very efficient in terms of the accuracy in the gradients as we
shall discuss next.

Iterative convergence results are presented in Figures 11 to 18. The same legend applies as in the error
convergence plots, and therefore it is not shown. Again, the results for Re = 1073 are not shown because they
look identical to those for Re = 107°. In each figure, three plots are shown: total iterations for convergence,
the total number of the GS relaxations, and the total CPU time taken for convergence, all versus 1/h, where
h = 1/v/N. First, it is observed that the convergence characteristics of the Galerkin(3rd) scheme are nearly
identical to those of the Galerkin scheme. This is an unexpected result because the Jacobian is exact for the
Galerkin scheme but only approximate for the Galerkin(3rd) scheme. The results imply that the Jacobian of
the linear Galekrin scheme behaves like exact for the third-order Galerkin scheme. Second, the number of GS
sweeps increases quadratically as the grid gets finer in the diffusion dominated cases while increases linearly in
the advection dominated cases. It is consistent with the change in the condition number of the Jacobian matrix
from O(1/h?) in the diffusion limit to O(1/h) in the advection limit. In terms of CPU time, as shown in the
right-most plot, the cost of these traditional schemes varies from O(1/h?) or equivalently O(N?) in the diffusion
limit to O(1/h®) or O(N'5) in the advection limit. On the other hand, the hyperbolic schemes preserve,
for all values of Re, O(N'®) convergence in the CPU time. This result is a direct consequence of solving
the hyperbolic advection-diffusion system instead of the scalar advection-diffusion equation. In the diffusion
limit, the hyperbolic schemes are, therefore, O(1/h) times faster than the traditional schemes. Note that the
acceleration factor grows as the grid gets finer (i.e., as h — 0). In the advection limit, both traditional and
hyperbolic schemes show O(N!-?) convergence in the CPU time. Results for Re = 10° show that the traditional
schemes are (2 or 3 times) faster than the hyperbolic schemes, which is expected because the hyperbolic schemes
solve two additional equations. However, it is not immediately clear if the traditional schemes are more efficient
because the third-order hyperbolic scheme is capable of delivering third-order accurate gradients. If we focus
on the accuracy in the gradients, the third-order hyperbolic scheme is to be compared with a fourth-order
scalar advection-diffusion scheme. The cost of the third-order hyperbolic scheme being comparable with that of
the second-order scheme, it implies a tremendous potential advantage of the third-order hyperbolic scheme for
applications where accurate gradients are sought. Note also that Schemell(2nd) achieves third-order accuracy
in the advection limit with the linear LSQ gradients, not the quadratic LSQ gradients.

Table 2 shows how the number of iterations and GS sweeps vary with Re for the finest grid. For the
traditional schemes, the number of GS sweeps increases significantly as diffusion dominates. Also, the the
number of iterations increases as advection dominates because of the approximate Jacobian. For the hyperbolic
schemes, the number of iterations does not vary significantly, but the number of GS sweeps somewhat increases
as diffusion dominates. If desired, it may be possible to reduce the number of GS sweeps by deriving an
optimal L, for the numerical scheme in the diffusion limit as in Ref.[2], not for the differential equations as in
Refs.[7]. Yet, we emphasize that the hyperbolic schemes are already an order-of-magnitude more efficient than
the traditional schemes in the diffusion limit. See table 3 for the CPU time comparison for the finest grid. It
should be noted that this comparison is just for a given grid, and further acceleration is expected for finer grids
because the hyperbolic schemes yield O(1/h) acceleration in iterative convergence over conventional schemes.

Finally, we mention that a third-order advection-diffusion scheme developed in Ref.[25] is also capable of
producing third-order accurate solution and gradients. In their scheme, the hyperbolic formulation is not used,
and the third-order gradients are obtained by an explicit gradient reconstruction. The main and important
difference between their scheme and our scheme is that their scheme requires third-order accurate gradients to
achieve third-order accuracy for the diffusion term. The same requirement is also found in the third-order scheme
of Ref.[20], which again does not use the hyperbolic method, where a cubic fit is used to provide third-order
accurate gradients for the viscous terms. In contrast, our scheme requires only second-order accurate gradient
reconstruction, which requires only 5 neighbors rather than 9 neighbors in a cubic fit in two dimensions, and
achieves third-order accuracy for the solution and the gradients. In three dimensions, a quadratic fit requires 9
neighbors, which can be secured by the neighbors in many cases in tetrahedral grids, while a cubic fit requires
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21 neighbors, which requires the neighbors of the neighbors in many cases (or high-order elements as proposed
in Ref.[20]). Moreover, our implicit solver is more efficient in terms of iterative convergence, firstly by the
consistent Jacobian exact for the first-order scheme (their scheme would perhaps have to rely on inconsistent
Jacobians for the diffusive part), and secondly by the reduced condition number, O(1/h) instead of typical
O(1/h?), of the linearized residual system as a consequence of solving the first-order hyperbolic system.

4.2 Derivative Prediction on Irregular Anisotropic Grid

The second test problem focuses on the accuracy of the derivatives computed on the boundary in anisotropic
grids. It is a model problem for viscous boundary-layer calculations. An anisotropic grid was generated from
an isotropic irregular grid (1089 nodes) by shrinking the y-coordinate. Figure 19 shows the resulting grid. Note
that the domain extends to 1.0 in x direction but only to 0.01 in the y direction, leading to the aspect ratio of
approximately 100. As a result, the grid is highly skewed, and many conventional diffusion schemes are known
to produce oscillatory solutions on such grids [16, 24]. We use the same exact solution as in the previous test
case, and set Re = 10. Four schemes have been tested for this case: two second-order schemes, Galerkin and
SchemelI(2nd); two third-order schemes, Galerkin(3rd) and SchemeII(3rd). The solution w is specified on the
boundary for all schemes. For the hyperbolic schemes, the variables p is specified on the boundary, and ¢ is
specified on the left, right, and top boundary. On the bottom boundary indicated by the thick red line in Figure
19 (which may be considered as a wall), the variable g, corresponding the y-derivative of w, is computed by the
schemes. The residual at a boundary node is closed by the physical flux evaluated at the node. For Galerkin
and Galerkin(3rd), the y-derivative is computed from the solution by the quadratic least-squares method. The
y-derivative on the bottom boundary is the normal derivative, modeling the viscous stress in viscous boundary-
layer computations. Figure 20 shows the results obtained by the second-order schemes. It shows that the
normal derivative obtained by Galerkin is very oscillatory. This result is expected by the fact that the Galerkin
discretization is not positive on such a grid, and also from the results shown in Refs.[16, 24]. On the other
hand, the normal derivative computed by Schemell(2nd) is highly accurate. The computed derivative values
are on top of the curve of the exact derivative. Note that Galerkin uses the third-order advection scheme. The
results show that the third-order accuracy in the advective term does not compensate the failure of the Galerkin
discretization for this problem. Figure 21 shows the results obtained by third-order schemes. Observe that
Galerkin(3rd) gives much better results than Galerkin, but still somewhat oscillatory. Schemell(3rd), on the
other hand, produces a highly accurate normal derivative distribution along the boundary. Figure 22 shows the
blow-up of Figure 21, where the high accuracy delivered by Schemell(3rd) can be clearly seen: the numerically
computed derivatives are still on top of the exact curve. These results indicate that the hyperbolic schemes
allow highly arbitrary grid generation or adaptation on viscous grids, even through the boundary layer, without
degrading the accuracy in the derivative quantities such as the viscous stresses and the heat fluxes.

To verify the order of accuracy and demonstrate the efficiency of the hyperbolic schemes, we performed
the computation over a series of grids: 1089, 4225, 16641, 66049, and 103041 nodes. The error convergence
results are shown in Figure 23. The results show that the design order of accuracy has been achieved for the
hyperbolic schemes at boundary nodes. On the other hand, Galerkin and Galerkin(3rd) show one order lower
order accuracy due to the incompatibility of the advection and diffusion schemes. Note that the error is defined
as the difference between the predicted ¢ and the exact ¢ on the bottom boundary only; it does not include
errors at the interior nodes. As expected from the previous qualitative comparison, we see that the hyperbolic
schemes yield significantly lower errors. Schemell(3rd) gives the lowest level of errors: more than one order
of magnitude smaller than Galerkin(3rd). Schemell is a second-order scheme, but it yields significantly lower
errors than Galerkin(3rd). Moreover, the hyperbolic schemes are very efficient. Figure 24 shows the CPU time
comparison. As can be clearly seen, although the hyperbolic schemes are slower in the coarsest grid, they get
faster than the conventional schemes as the grid is refined. The hyperbolic schemes are intrinsically faster as
indicated by the slopes in the figure: O(1/h?) or equivalently O(N!-5) for the hyperbolic schemes, and O(1/h*)
or equivalently O(N?) for the conventional schemes. These results demonstrate once again that the hyperbolic
schemes achieve O(1/h)-acceleration in convergence over conventional schemes. It is striking that the hyperbolic
schemes are capable of achieving higher-order accuracy as well as higher-order accurate derivatives through the
boundary over conventional schemes at a reduced cost.
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5 Concluding Remarks

We have extended the diffusion schemes developed in the previous paper[1] to the advection-diffusion equa-
tion, generating uniformly accurate first, second, and third order advection-diiffusion schemes on unstructured
triangular grids. The advective, diffusive, and source terms have been discretized in a unified framework by the
method of hyperbolic systems that converts the diffusive and source terms into hyperbolic systems. The devel-
oped hyperbolic schemes are node-centered edge-based finite-volume schemes with the upwind flux for all terms.
An implicit iterative method has been developed for all schemes based on the exact Jacobian of the first-order
scheme. Also, a two-step implementation of the quadratic LSQ gradient reconstruction has been proposed for
robustness and simplicity, in which each step is compact, requiring only the list of the edge-connected neighbors.

The developed schemes were compared with two traditional schemes: the third-order advection scheme with
the linear Galerkin diffusion scheme, and with a third-order version of the linear Galerkin diffusion scheme[22,
23]. It was shown analytically as well as numerically that the latter scheme cannot be third-order accurate when
advection and diffusion are equally important (Re = 1,10, 102 in Figures 6, 7, 8) while the former is third-order
accurate only in the advection limit. Typically, the accuracy is deteriorated by one order, and in a critical case
(Re = 100), the deterioration begins to appear on fine grids. We emphasize again that the third-order Galerkin
diffusion scheme is a corrected version of the linear Galerkin diffusion scheme as described in Ref.[22], not
the discontinuous Galerkin scheme nor the continuous P, Galerkin scheme. On the other hand, the developed
schemes have been confirmed to be uniformly accurate up to the design (or higher) order accuracy for all values
of Re, i.e., Re = 1076,1073,1072,1071, 1,10, 102,103, 10°. Specifically, the first-order scheme has been shown
to yield first-order accurate solution and gradients, and second-order accurate solution in the advection limit.
The second-order scheme has been shown to yield second-order accurate solution and gradients, and third-order
accurate solution in the advection limit. The third-order scheme has been shown to yield uniformly third-order
accurate solution and gradients.

It was also shown that the first- and second-order schemes become second- and third-order schemes in the
advection limit (Re = 10° in Figure 10). Specifically, the developed first-order scheme yields second-order
accurate solutions and first-order accurate gradients in a compact stencil (no gradient reconstruction) with fast
Newton-like convergence. The developed second-order scheme yields third-order accurate solutions and second-
order accurate gradients with linear LSQ gradients (not quadratic LSQ gradients). These results demonstrate
that the upwind hyperbolic diffusion scheme is capable of producing accurate gradients even with a vanishingly
small diffusive coefficient. It implies that a compact second-order inviscid scheme may be constructed by
incorporating the upwind hyperbolic diffusion scheme to compute accurate gradients. The resulting scheme will
not require explicit gradient computations for second-order accuracy, and require only linear LSQ gradients for
third-order accuracy.

For iterative convergence, the hyperbolic schemes have been shown to bring O(1/h) acceleration in conver-
gence over traditional schemes except in the advection limit. No such acceleration was observed in the advection
limit as expected, and the developed schemes converged somewhat slower than the traditional schemes in the
test problem considered. However, there are decisive advantages in the hyperbolic schemes, which overwhelm
the slightly slower convergence in the advection limit. First, in the advection limit, the first- and second-order
schemes achieve one order higher accuracy in the advection limit as mentioned above. Second, the third-order
scheme produces third-order accurate gradients, which typically requires fourth-order schemes.

A particularly important contribution of this paper is the demonstration of the simplified approach: construct
an advection-diffusion scheme as a sum of an advection scheme and a hyperbolic diffusion scheme. The approach
has been shown to work well in terms of accuracy as well as efficiency for a wide range of parameter Re
from the diffusion limit (Re = 107°) to the advection limit (Re = 10°%). For the compressible Navier-Stokes
equations, it dramatically simplifies the construction of numerical schemes as a viscous scheme can be developed
independently from the inviscid scheme. As shown in Ref.[8], the viscous terms can be made a hyperbolic system,
its eigen-structure can be fully analyzed, and therefore discretized easily by the upwind scheme or any other
scheme suitable for hyperbolic systems. It can then be added to any inviscid scheme to construct a hyperbolic
Navier-Stokes scheme.

It has been shown also that the hyperbolic schemes are capable of producing highly accurate derivatives along
a boundary on a highly skewed grid. For a test case modeling a viscous boundary layer, the second- and third-
order hyperbolic schemes produce highly accurate derivatives normal to the boundary while both second- and
third-order Galerkin schemes suffer from oscillations. It demonstrates the potential of the hyperbolic schemes
for overcoming the difficulties in predicting viscous and heat fluxes on unstructured grids [26]. Moreover, it was
demonstrated that the hyperbolic schemes converge rapidly for this problem as well, giving O(1/h)-acceleration
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over conventional schemes. It is noteworthy that the hyperbolic schemes are capable of producing higher-order
accurate derivatives through the boundary at a significantly reduced cost for fine grids.

We emphasize again that the core idea of the hyperbolic method lies in the construction of a first-order
hyperbolic system for target differential equations, and therefore it is generally applicable to any second-order
partial differential equation as well as any discretization method. Applications to other types of equations are
now made particularly easier as we have shown in this paper that numerical schemes can be constructed for
each non-hyperbolic term independently by turning it into a hyperbolic system. However, extensions to third-
and higher-order derivative terms would require a careful construction of a first-order system to ensure the
hyperbolicity. It remains to be demonstrated and left as future work.

It should be noted that the schemes generated based on the hyperbolic method cannot be time accurate
with explicit time integration schemes. Time-accurate computations are possible by implicit time integration
schemes, including space-time methods. The development of time-accurate hyperbolic schemes based on the
backward-difference time integration has been demonstrated in Ref.[14] for a second-order residual-distribution
method and in Ref.[27] for a very high-order residual-distribution method. The methodology is immediately
applicable to the finite-volume methods as an efficient steady solver is in place and can be used to solve a system
of globally coupled equations arising from the implicit time integration scheme. Note finally that the number
of extra variables required in the hyperbolic method can be substantially high for complex systems. For the
three-dimensional compressible Navier-Stokes equations, 6 viscous stresses and 3 heat fluxes will be required,
at least. Consequently, the memory requirement is tripled compared with a conventional Navier-Stokes solver
although the factor may be less than three since there are quantities such as grid metrics that do not scale with
the number of equations. Note, on the other hand, that the increase in the degrees of freedom is dramatically
small compared with other high-order methods, e.g., the discontinuous Galerkin method, especially for the
third-order finite-volume scheme (which should be compared with a fourth-order discontinuous Galerkin scheme
in terms of the accuracy in the derivatives). Further study is required to determine if the advantages of the
hyperbolic method overwhelm any complication arising from a large number of extra variables for the Navier-
Stokes equations, and that the hyperbolic method offers a resolution of problems encountered by the current
state-of-the-art CFD solvers.

k

Figure 1: Dual control volume for the node-centered finite-volume method with scaled
outward normals associated with an edge, {j, k}.
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Scheme Discretization Jacobian
Advection Diffusion Advection Diffusion
Galerkin Third-order upwind Linear Galerkin First-order upwind Exact
Galerkin(3rd)  Third-order upwind Third-order Galerkin First-order upwind Linear Galerkin
SchemellI(1st) First-order upwind Exact
SchemelI(2nd) Second-order upwind First-order upwind
SchemelI(3rd) Third-order upwind First-order upwind

Table 1: Summary of discretizations and Jacobians.

X

Figure 2: Irregular triangular grid with 2048 nodes.
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Re = Va2 +b?/v

Scheme

1076 1073 1072 1071 1 10 102 103 106
Galerkin 5(12564) 5(12564) 5(12565) 5(12567) 6(15124) 7(7292) 10(861) 23(118) 49(2
Galerkin(3rd)  7(10987) 7(10987) 7(10989) 7(11003) 7(11018) 8(6385) 10(848) 23(119) 49(2
SchemellI(1st) ( 24) ( 24) 5(324) ( 26) ( 43)  5(264) 5(98) 5(75)  5(
SchemelI(2nd) 77(58) 77(58) 77(58) 77(57) 77(52)  77(34)  78(25)  93(24) 94(
SchemelI(3rd)  46(151)  46(151)  46(151)  46(151)  46(146) 46(122) 58(116)  66(59) 51(

Table 2: Total number of iterations in the finest grid case. The number in the parenthesis is the average number
of GS-sweeps per iteration required to ensure two orders of magnitude reduction in the residual of the linear
system.
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Re = Va2 +b2/v

Scheme

10-° 1073 1072 107! 1 10 102 103 106
Galerkin 5.0e+03 4.8e+03 4.8e+03 4.8¢+03 7.0e+03 4.5e+03 8.3e+02 3.1e+02 1.4e+4-02
Galerkin(3rd)  5.5e+03 5.6e+03 6.5e+03 6.1e+03 5.8¢+03 4.2¢4+03 6.4e+02 2.2e+02 1.2e+02
SchemelI(1st)  1.4e+02 1.3e+02 1.3e+02 1.3e+02 1.4e+02 1.1e+02 4.3e+01 3.9e+01 3.6e+01
Schemell(2nd) 5.0e+02 4.7e+02 5.2e4+02 4.4e4+02 4.0e+02 2.9e+02 2.5¢+02 2.8¢+02 4.2¢402
SchemelI(3rd) 7.2e+02 7.2e+02 7.1e+02 6.4e4+02 5.8e4+02 5.3e4+02 5.9e+02 3.9e+02 3.0e+02

Table 3: Total CPU time for convergence in the finest grid case.
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Figure 19: Grid used for the second test problem.
1089 nodes. Aspect ratio of approximately 100 (Note
the different scalings in z and y axes).

Thick red

line indicates the boundary along which the normal
derivative is computed by numerical schemes.

Y-derivative of u at y=0

|| Galerkin
° Schemell(2nd)
Exact

Figure 20: Wall normal derivative, ¢ = u,, distribu-
tion along the bottom boundary (y = 0) obtained by
Galerkin and SchemelI(2nd) on the grid in Figure 19.

Appendix: Two-Step Implementation of Quadratic LSQ Gradient Re-

construction

First, we compute and store the coefficients for the gradient once for a given grid with a set {J} of nodes.

1. Construct temporary

data:

For each node j € {J}, loop over the edge-connected neighbors k € {k;} and store the edge-vector:

AXj(k‘) = X — Xj,

(A1)

where Ax;(k) = (Az;(k), Ay;(k)), xi = (zk, Yr), and x; = (z;,y;). One can skip this step if the data is

already available in a

code.

2. Compute gradient coefficients:

For each node j € {J} , loop over the neighbors of k, ¢ € {{;} within the loop over the edge-connected

neighbors k € {k;}:

Ax = Ax; (k) + Axi(£),

20
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tion along the bottom boundary (y = 0) obtained by
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derivative, ¢ = wu,, distribution along the bottom

boundary (y = 0).

and accumulate each entry of a 5x5 LSQ matrix for a quadratic fit, Argp. Note that Ax = 0 if the
neighbor coincides with the node j. It is not necessary, but we reset Ax = Ax;(k) in that case to increase
the contribution from the edge-connected neighbors. After the loop over k € {k;}, compute the inverse
of the LSQ matrix, AZ;Q. Next, set ¢ = 0 and repeat the same double loop. Within the double loop,
increment ¢ by ¢ = ¢ + 1, and compute the coefficients:

cji = ALsob, (A.3)

where ¢;; = (cf;, ¢y, ciF, ¢/, cfl), b = (Ax, Ay, Ax?/2, AxAy, Ay?/2). Save the first two components,
c}; and ¢}, at the node j.
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The remaining coefficients, cff, ¢}/, and ¢/, can be used to compute the second derivatives but not required

in the third-order scheme for the hyperbolic advection-diffusion system. Note that the method automatically
introduces slight weights based on the connectivities, e.g., 2 if a node is processed twice, which happens for
the edge-connected neighbor shared by two adjacent elements. We point out that the only data needed are the
coeflicients cj; and cj; for each node, and other data such as Az; and Ay; computed at the first step as well as
the LSQ matrices can be deleted at the end of the process.

Having computed and stored the coefficients, we can perform the gradient reconstruction at every residual
evaluation in two steps. We outline the procedure for the variable p, but it is equally valid for any variable.

1. Construct temporary data: For each node j € {J} , loop over the edge-connected neighbors k € {k;} and
store the edge-difference of the variable for which the gradient is sought:

Ap;(k) = pr — pj. (A4)

2. Compute the gradient: For each node j € {J} , initialize the gradient, Vp; = 0 and the counter, i = 0,
and loop over the neighbors of k, ¢ € {{;} within the loop over the edge-connected neighbors k € {k;}.
Within the double loop, increment ¢ by ¢ = ¢ + 1 and accumulate the gradient contribution:

cx.

Vp; =Vp;+4p| ] . Ap=Ap;(k) + Api(0), (A.5)

Cji

or Ap = Ap;(k) in the case the neighbor coincides with j if the reset has been employed in the calculation
of the coefficients in Equation (A.2).

Acknowledgments

This work has been funded by the U.S. Army Research Office under the contract/grant number W911NF-
12-1-0154 with Dr. Frederick Ferguson as the program manager. Support by Software CRADLE is also greatly
acknowledged.

References

[1] H. Nishikawa. First-, second-, and third-order finite-volume schemes for diffusion. J. Comput. Phys.,
256:791-805, 2014.

[2] H. Nishikawa. A first-order system approach for diffusion equation. I: Second order residual distribution
schemes. J. Comput. Phys., 227:315-352, 2007.

[3] C. Corre and X. Du. A residual-based scheme for computing compressible flows on unstructured grids.
Comput. Fluids, 38:1338-1347, 2009.

[4] H. Nishikawa and P. L. Roe. On high-order fluctuation-splitting schemes for Navier-Stokes equations. In
C. Groth and D. W. Zingg, editors, Computational Fluid Dynamics 2004, pages 799-804. Springer-Verlag,
2004.

[5] M. Ricchiuto, N. Villedieu, R. Abgrall, and H. Deconinck. On uniformly high-order accurate residual
distribution schemes for advection-diffusion. J. Comput. Appl. Math., 215:547-556, 2008.

[6] H. Nishikawa. Divergence formulation of source term. J. Comput. Phys., 231:6393-6400, 2012.

[7] H. Nishikawa. A first-order system approach for diffusion equation. IT: Unification of advection and diffusion.
J. Comput. Phys., 229:3989-4016, 2010.

[8] H. Nishikawa. New-generation hyperbolic Navier-Stokes schemes: O(1/h) speed-up and accurate vis-
cous/heat fluxes. In Proc. of 20th AIAA Computational Fluid Dynamics Conference, ATAA Paper 2011-
3043, Honolulu, Hawaii, 2011.

[9] C. Cattaneo. A form of heat-conduction equations which eliminates the paradox of instantaneous propa-
gation. Ct. R. Acad. Sci., Paris, 247:431-433, 1958.

22



Preprint accepted for publication in Journal of Computational Physics, 2014.

[10]

[11]

[12]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R. B. Lowrie and J. E. Morel. Methods for hyperbolic systems with stiff relaxation. Int. J. Numer. Meth.
Fluids, 40:413-423, 2002.

H. Gémez, 1. Colominas, F. Navarrina, and M. Casteleiro. A discontinuous Galerkin method for a hyperbolic
model for convection-diffusion problems in CFD. Int. J. Numer. Meth. Eng., 71:1342-1364, 2007.

F. Navarrina H. Gémez, 1. Colominas and M. Casteleiro. A hyperbolic model for convection-diffusion
transport problems in CFD: Numerical analysis and applications. Rev. R. Acad. Cien. Serie A. Mat.,
102(2):319-334, 2008.

G. I. Montecinos, Lucas O. Mller, and E. F. Toro. Hyperbolic reformulation of a 1D viscoelastic blood flow
model and ader finite volume schemes. J. Comput. Phys., 266:101-123, 2014.

A. Magzaheri and H. Nishikawa. First-order hyperbolic system method for time-dependent advection-
diffusion problems. NASA-TM-2014-218175, March 2014.

A. Mazaheri and H. Nishikawa. Very efficient high-order hyperbolic schemes for time-dependent advection-
diffusion problems: Third-, Fourth, and Sixth-Order. Comput. Fluids, 2014. submitted.

H. Nishikawa. Beyond interface gradient: A general principle for constructing diffusion schemes. In Proc.
of 40th AIAA Fluid Dynamics Conference and Exhibit, ATAA Paper 2010-5093, Chicago, 2010.

A. Katz and V. Sankaran. Mesh quality effects on the accuracy of CFD solutions on unstructured meshes.
J. Comput. Phys., 230:7670-7686, 2011.

A. Katz and V. Sankaran. An efficient correction method to obtain a formally third-order accurate flow
solver for node-centered unstructured grids. J. Sci.Comput., 51:375-393, 2012.

B. Diskin and J. L. Thomas. Effects of mesh regularity on accuracy of finite-volume schemes. In Proc. of
50th AIAA Aerospace Sciences Meeting, ATAA Paper 2012-0609, Nashville, Tennessee, 2012.

B. B. Pincock and A. Katz. High-order flux correction for viscous flows on arbitrary unstructured grids.
In Proc. of 21st AIAA Computational Fluid Dynamics Conference, ATAA Paper 2011-2566, San Diego,
California, June 2013.

B. Diskin, J. L. Thomas, E. J. Nielsen, H. Nishikawa, and J. A. White. Comparison of node-centered and
cell-centered unstructured finite-volume discretizations: Viscous fluxes. AIAA J., 48(7):1326-1338, July
2010.

H. Nishikawa. Higher-order discretization of diffusion terms in residual-distribution methods. In H. Decon-
inck and M. Ricchiuto, editors, VKI Lecture Series 2006-01: CFD - High Order Discretization Methods.
von Karman Institute for Fluid Dynamics, Belgium, 2006.

H. Nishikawa. Multigrid third-order least-squares solution of Cauchy-Riemann equations on unstructured
triangular grids. Int. J. Numer. Meth. Fluids, 53:443-454, 2007.

H. Nishikawa. Robust and accurate viscous discretization via upwind scheme - I: Basic principle. Comput.
Fluids, 49(1):62-86, October 2011.

R. Abgrall, D. De Santis, and M. Ricchiuto. High order preserving residual distribution schemes for
advection-diffusion scalar problems on arbitrary grids. INRITA Report, N 8157, December 2012.

P. A. Gnoffo. Updates to multi-dimensional flux reconstruction for hypersonic simulations on tetrahedral
grids. ATAA Paper 2010-1271, January 2010.

A. Mazaheri and H. Nishikawa. High-order residual-distribution hyperbolic advection-diffusion schemes:
3rd-, 4th-, and 6th-order. In Proc. of 7th AIAA Theoretical Fluid Mechanics Conference, AIAA Awviation
and Aeronautics Forum and Exposition 2014, AIAA Paper 2014, Atlanta, GA, June 2014.

23



