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Abstract

In this paper, we derive a general accuracy-preserving boundary flux quadrature formula for the second-
and third-order node-centered edge-based finite-volume discretizations on triangular and tetrahedral grids.
It is demonstrated that the general formula reduces to some well-known formulas for the second-order scheme
in the case of linear fluxes. Some special boundary grids are also examined. In particular, a simple one-point
quadrature formula, which is typically used for quadrilateral grids, is shown to be exact for quadratic fluxes
on triangular with uniformly spaced straight boundaries. Numerical results are presented to demonstrate
the accuracy of the general formula, and accuracy deterioration caused by incompatible boundary flux
quadrature formulas. In general, the third-order accuracy is lost everywhere in the domain unless the third-
order accuracy is maintained at boundary nodes. It is also demonstrated that the third-order scheme does
not require high-order curved elements for curved boundaries but requires accurate surface normal vectors
defined, which can be estimated by a quadratic interpolation from a given grid, to deliver the designed
third-order accuracy.

1 Introduction

Second-order node-centered edge-based finite-volume schemes are widely used in state-of-the-art Computa-
tional Fluid Dynamics (CFD) codes, and have been well studied by many researchers in the past decades. The
basic algorithm was established in the early work represented by Refs.[1, 2, 3], and further studies have been
performed in recent work by Refs.[4, 5, 6, 7, 8]. One of the key elements in the node-centered formulation is
the boundary flux quadrature formula. In the node-centered edge-based discretization, the residual needs to be
closed at a boundary node, where a boundary condition is imposed weakly, by integrating the flux along the
dual boundary faces. It is well known that the second-order accuracy degrades unless the boundary residual
is exact for linear fluxes, i.e., fluxes varying linearly in space. Boundary flux quadrature formulas that ensure
the exactness for linear fluxes (linearity-preserving formulas) on triangular and tetrahedral grids have been
known for a long time, but a formal proof did not seem available in the literature. Recently, a simple proof
was presented in Appendix B in Ref.[9], where the linearity-preserving boundary flux quadrature formulas are
derived for triangles and tetrahedra, and extended to quadrilaterals, hexahedra, prisms, and pyramids under
certain geometrical regularities.

A recent work by Katz and Sankaran [5, 6] revealed that the node-centered edge-based finite-volume dis-
cretization achieves third-order accuracy on triangles (tetrahedra in three dimensions) if the nodal gradients
are estimated such that they are exact for quadratic functions and both the solution and the flux are linearly
extrapolated to the dual-volume face. Since then, there have been efforts for constructing a third-order scheme
for the Navier-Stokes equations based on the third-order edge-based scheme [10, 11]. However, our experience
shows that third-order accuracy is lost unless the boundary residual is designed to be exact for quadratic fluxes.
In an attempt to achieve third-order accuracy at boundary nodes, we found that a straightforward application of
the linearly-preserving boundary flux quadrature formulas does not provide third-order accuracy and extensions
of the proof described in Ref.[9] to third-order accuracy is not straightforward. In this paper, therefore, we
propose another approach to derive boundary flux quadrature that preserves the accuracy of the edge-based
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finite-volume discretization at boundary nodes. The basic idea is to generate a boundary stencil from an interior
stencil by shrinking an edge. The procedure has been employed routinely in the residual-distribution method
for implementing a weak boundary condition (see, e.g., Ref.[12]), but does not seem to have been utilized in the
node-centered edge-based finite-volume method. This paper demonstrates that the approach can be applied to
the finite-volume method on triangular and tetrahedral grids, and generates a general formula that preserves the
order of accuracy of the interior scheme through the boundary nodes. It is demonstrated that the well-known
formula for second-order schemes can be easily derived from the general formula. Extension to tetrahedra is
also quite straightforward, and a general formula for tetrahedral grids is also presented in this paper. Numer-
ical results demonstrate that the accuracy-preserving boundary quadrature is critical to the construction of
the third-order scheme. Third-order accuracy can be lost completely through the domain by an incompatible
boundary flux quadrature formula. Also, it is shown that the third-order finite-volume scheme considered in
this paper does not require curved elements for problems involving curved boundaries.

The paper is organized as follows. First, we define the node-centered edge-based finite-volume discretization
to be investigated. Second, the accuracy of the discretization is discussed for interior stencils, and the need
for boundary fluxes is briefly discussed. Then, we derive a general formula for the boundary flux quadrature
that preserves the order of accuracy of the interior discretization at boundary nodes. Some special cases are
discussed subsequently. Numerical results are then presented to verify the theoretical results and to examine
the impact of low-order formulas. Finally, the paper concludes with remarks.

2 Node-Centered Edge-Based Finite-Volume Discretization

2.1 Discretization

Consider a steady conservation law in two dimensions:

div f = 0, (1)

where f = (f, g) is the flux vector, which is generally a nonlinear function of the solution u. All discussions that
follow are based on the scalar equation, but will be valid for systems. Note that the steady conservation law
represents various types of equations, including diffusion equations, source terms, time-dependent equations, as
they all can be cast in the form of steady conservation laws [13, 14, 15, 16]. We consider the node-centered
edge-based finite-volume scheme for Equation (1) in the form:

1

Vj

∑
k∈{kj}

ϕjk(njk) = 0, (2)

where Vj is the measure of the dual control volume around node j, {kj} is a set of neighbors of j, ϕjk(njk) is a
numerical flux evaluated at the midpoint of the edge [j, k], and njk is the scaled directed area vector associated
with the edge, i.e., njk = (nx, ny) = nℓ

jk + nr
jk (see Figure 1). For the numerical flux, we consider the upwind

flux of the form:

ϕjk(njk) =
1

2
(fL + fR) · n̂jk|njk| −

1

2
|an| (uR − uL)|njk|, (3)

where n̂jk = (n̂x, n̂y) denotes the unit directed area vector, and an = (∂f/∂u) n̂x + (∂g/∂u) n̂y. The left and
right solutions and fluxes, (uL, uR, fL, fR), are computed by the linear extrapolation:

uL = uj +
1

2
∇uj ·∆rjk, uR = uk − 1

2
∇uk ·∆rjk, (4)

fL = fj +
1

2
∇fj ·∆rjk, fR = fk − 1

2
∇fk ·∆rjk, (5)

where ∆rjk = (∆xjk,∆yjk) = (xk −xj , yk − yj), and the over-bar indicates that the gradients are approximate,
typically provided by a least-squares (LSQ) fit. The flux extrapolation is required for third-order accuracy;
it is not necessary for second-order accuracy [6]. In this paper, we consider two LSQ gradient constructions:
one with a linear fit, and the other with a quadratic fit. Linear LSQ gradients are exact for linear functions,
and quadratic LSQ gradients are exact for quadratic functions. It is known that the edge-based finite-volume
discretization yields second-order accuracy with linear LSQ gradients, and third-order accuracy with quadratic
LSQ gradients on triangular/tetrahedral grids [6]. The edge-based finite-volume discretization is applicable to
and widely used for triangular, quadrilateral, and mixed grids, but here we focus on triangular and tetrahedral
grids, only on which third-order accuracy can be achieved.
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Figure 1: Stencil of the edge-based finite-volume
discreetization with scaled outward normals asso-
ciated with an edge, {j, k}.
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Figure 2: Stencil of the edge-based finite-volume
discretization at a boundary node.

2.2 Accuracy of Edge-Based Finite-Volume Scheme

In this section, we discuss the accuracy of the edge-based finite-volume scheme on triangular grids. Accuracy-
preserving boundary-flux quadrature formulas that we discuss later will be derived based on the result of this
section. Accuracy analyses for the edge-based finite-volume discretization have been performed by various
researchers in the past decades. But only a few analyses are available for third-order accuracy: Refs.[5, 6] based
on an order analysis, and Ref.[17] based on a Taylor expansion approach. Here, we follow the latter, but the
proof is outlined, for simplicity, based on the assumption that the solution is quadratic, which is sufficient for
proving third-order accuracy.

For simplicity, we first consider the accuracy of the edge-based discretization for the solution gradient in the
integral form:

(∇uj)EB =
1

Vj

∑
k∈{kj}

1

2
(uL + uR)njk. (6)

Let us consider a quadratic solution defined around the node j:

uj + (x− xj)∂xuj + (y − yj)∂yuj +
1

2
(x− xj)

2∂xxuj + (x− xj)(y − yj)∂xyuj +
1

2
(y − yj)

2∂yyuj , (7)

where all the derivatives involved in the above expression are constants defined at the node j. The solution
value at the neighbor k is then exactly expressed by

uk = uj + ∂jkuj +
1

2
∂2jkuj , (8)

where we have introduced the notation:

∂jk ≡ ∆rjk · (∂x, ∂y). (9)

For the nodal gradients used in the linear extrapolation, we assume that they are computed exactly for quadratic
solutions:

∇uj = ∇uj , ∇uk = ∇uj + ∂jk∇uj . (10)
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Consider the difference:

uR − uL =

(
uk − 1

2
∇uk ·∆rjk

)
−

(
uj +

1

2
∇uj ·∆rjk

)
= uj + ∂jkuj +

1

2
∂2jkuj −

1

2
(∇uj + ∂jk∇uj) ·∆rjk −

(
uj +

1

2
∂jkuj

)
= uj + ∂jkuj +

1

2
∂2jkuj −

1

2
∂jkuj −

1

2
∂2jkuj − uj −

1

2
∂jkuj

= 0. (11)

Hence, the linearly extrapolated solutions, uL and uR, are identical to each other at the midpoint of the edge.
Note that they are identical but not exact for quadratic solutions. Consequently, we have for the average:

1

2
(uR + uL) = uL = uj +

1

2
∇uj ·∆rjk = uj +

1

2
∇uj ·∆rjk = uj +

1

2
∂jkuj . (12)

Summing over the edges, we obtain

(∇uj)EB =
1

Vj

∑
k∈{kj}

1

2
(uL + uR)njk

=
1

Vj

∑
k∈{kj}

(
uj +

1

2
∂jkuj

)
njk

=
uj
Vj

∑
k∈{kj}

njk +
∂xuj
2Vj

∑
k∈{kj}

∆xjknjk +
∂yuj
2Vj

∑
k∈{kj}

∆yjknjk. (13)

On triangular grids, the following identities hold:∑
k∈{kj}

njk = 0,
∑

k∈{kj}

1

2
∆xjk nx =

∑
k∈{kj}

1

2
∆yjk ny = Vj ,

∑
k∈{kj}

1

2
∆yjk nx =

∑
k∈{kj}

1

2
∆xjk ny = 0. (14)

Hence, the edge-based formula gives the exact gradient:

(∇uj)EB =
1

Vj

∑
k∈{kj}

1

2
(uL + uR)njk = ∇uj , (15)

for quadratic solutions. It implies that the gradient can be estimated to second-order accuracy. However,
the formula cannot be used as an explicit formula for second-order gradients because it requires second-order
gradients in the linear extrapolation step. An implicit gradient computation may be possible, but it is beyond
the scope of the present paper. The above derivation also shows that the exactness of the edge-based integration
relies on the non-exactness of the extrapolated solutions at the edge-midpoint. If the extrapolated solutions were
exact for quadratic solutions, first-order error terms proportional to the second derivatives would be introduced
in Equation (13). Note that the x-derivative and the y-derivative are independently computed to the true values.
Thus, the edge-based integration of the flux divergence is also exact for quadratic fluxes on triangular grids:

1

Vj

∑
k∈{kj}

1

2
(fL + fR) · njk = div fj . (16)

Note also that the dissipative term proportional to uR − uL may be added to the average flux without affecting
the result because uR − uL = 0 for quadratic solutions as shown earlier. Therefore, we can write

1

Vj

∑
k∈{kj}

ϕjk(njk) = div fj . (17)

In general, the flux is a nonlinear function of the solution. In such cases, even for quadratic solutions, errors
are committed in the flux gradient, which then generates a second-order error term proportional to the third-
derivatives of the fluxes.

1

Vj

∑
k∈{kj}

ϕjk(njk) = div fj + Ch2, (18)
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where C is a constant depending on the geometry and the third-derivatives of the flux. However, the second-
order error vanishes on regular triangulations as shown in Refs.[18, 17, 14]. On a triangular grid composed of
right isosceles triangles, we have, for general non-quadratic fluxes,

1

Vj

∑
k∈{kj}

ϕjk(njk) = div fj +
h2

12
[∂xx(div f)j + ∂xy(div f)j + ∂yy(div f)j ] +O(h3), (19)

where h corresponds to the length of the two equal sides [14]. The second-error truncation error term contains
the second derivatives of the conservation law and thus vanishes for exact solutions. As a result, the truncation
error becomes third-order, and the discretization error is also third-order on regular grids, where the truncation
error order matches the discretization error. For irregular grids, it is known that the truncation error is one
order lower than the discretization error for a first-order system of conservation laws [4, 19]. The second-order
error term may no longer vanish, but at the same time Equation (18) guarantees second-order truncation error
on arbitrary triangular grids, implying that the discretization error is third order. Finally, we remark that the
flux gradients may be evaluated by utilizing the chain rule:

∇fj =

(
∂f

∂u

)
j

∇uj , (20)

where
(
∂f
∂u

)
j
is the flux Jacobian evaluated at node j. As long as the solution gradient is exact for quadratic

solutions, the flux gradient is second-order accurate, which is sufficient to ensure the second-order truncation
error.

2.3 Boundary Flux Quadrature

At a node located on a boundary, a boundary condition needs to be imposed. It can be imposed either
strongly or weakly. If the boundary condition is imposed strongly, then the edge-based discretization is replaced
by an algebraic equation such as uj − uB = 0, where uj is a solution value at the boundary node j and uB is a
value specified by the boundary condition. In this case, no boundary flux quadrature is required. On the other
hand, if the boundary condition is imposed weakly through a boundary flux as described in Ref.[20], then the
edge-based discretization needs to be closed by boundary flux contributions in order to define the residual at
the boundary node. The solution at the boundary node is then determined by solving the residual equation.
The weak boundary approach thus requires boundary flux quadrature. It is the main focus of the discussion
that follows.

Consider a boundary stencil shown in Figure 2. Applying the edge-based discretization to this stencil, we
obtain

5∑
k=2

ϕjk(njk) = ϕj2(n
l
j2) + ϕj3(nj3) + ϕj4(nj4) + ϕj5(n

r
j5). (21)

This does not include, yet, the contribution from the boundary faces defined by the face normal vectors,
nL
B = (yj − y5, x5 − xj)/2 and nR

B = (y2 − yj , xj − x2)/2. The edge-based discretization needs to be closed by
adding some approximation to the boundary fluxes:

5∑
k=2

ϕjk(njk) + [Boundary Fluxes] = ϕj2(n
l
j2) + ϕj3(nj3) + ϕj4(nj4) + ϕj5(n

r
j5) + ϕL(n

L
B) + ϕR(n

R
B), (22)

where ϕL(n
L
B) and ϕR(n

R
B) are the boundary flux contributions estimated over the left and right boundary

faces, respectively. Note that the boundary contributions are approximations to the flux integration over the
two boundary faces of the dual control volume:

ϕL(n
L
B) ≈

∫
f · dnL

B , ϕR(n
R
B) ≈

∫
f · dnR

B . (23)

The boundary flux integration is discretized typically by a quadrature formula. It is important to note, how-
ever, that the accuracy of the quadrature formula by itself does not guarantee the accuracy of the edge-based
discretization. The accuracy is determined by the exactness of the overall discretization (22). Therefore, the
boundary flux quadrature must be designed to ensure that the overall discretization (22) is exact for linear
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Figure 4: Interior stencil made a boundary stencil
by moving the node b to the node j.

and quadratic fluxes for second- and third-order accuracy, respectively. This is the reason, incidentally, that
the accuracy-preserving boundary flux quadrature formula depends on the type of elements; see Appendix B
in Ref.[9] for the quadrature formulas derived for triangles, quadrilaterals, tetrahedra, hexahedra, prisms, and
pyramids for second-order accuracy. For first-order accuracy, it is sufficient to evaluate them as

ϕL(n
L
B) = ϕj(n

L
B), ϕR(n

R
B) = ϕj(n

R
B). (24)

Note that the boundary flux is evaluated at a single node, and thus they carry a single subscript. In practice,
it is a function of the current solution at the node and the solution specified by a boundary condition [20]. For
second-order accuracy, it is well known (see, e.g., Refs.[2, 4, 9]) that the following quadrature formula guarantees
the exactness for linear fluxes on triangular grids:

ϕL(n
L
B) =

5

6
ϕj(n

L
B) +

1

6
ϕ5(n

L
B), ϕR(n

R
B) =

5

6
ϕj(n

R
B) +

1

6
ϕ2(n

R
B). (25)

As we will show later, this formula does not guarantee the exactness for quadratic fluxes, and therefore, if
used with the third-order scheme, the third-order accuracy will be lost. A quadrature formula that guarantees
third-order accuracy is, to the author’s knowledge, not known, and a simple derivation method presented in
Appendix B in Ref.[9] does not seem easily extended to quadratic fluxes. The purpose of this paper is, therefore,
to propose a new derivation method that extends to third-order accuracy, and to derive a quadrature formula
that guarantees the third-order accuracy.

3 Accuracy-Preserving Boundary Flux Quadrature

In this section, we derive a general formula for the boundary flux quadrature that preserves the order of
accuracy of the edge-based discretization at boundary nodes. Consider a full interior stencil shown in Figure 3.
Applying the edge-based discretization to this stencil, we obtain∑

k∈{kj}

ϕjk(njk) = ϕj2(nj2) + ϕj3(nj3) + ϕj4(nj4) + ϕj5(nj5) + ϕjb(njb). (26)

As shown in the previous section, this is second- and third-order accurate with the gradients computed exactly
for linear and quadratic functions, respectively. We propose to convert the interior stencil to a boundary stencil
by moving the node b to the node j while keeping the edge-connections. During the process, we observe

nr
j2 → 1

3
nR
B , nl

jb →
2

3
nR
B , nr

jb →
2

3
nL
B , nl

j5 → 1

3
nL
B. (27)

6
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The stencil then approaches the one shown in Figure 4. In the limit, the edge-based discretization becomes∑
k∈{kj}

ϕjk(njk) = ϕj2(n
l
j2) + ϕj3(nj3) + ϕj4(nj4) + ϕj5(n

r
j5) + ϕjb

(
2

3
nL
B +

2

3
nR
B

)
+ ϕj2

(
1

3
nR
B

)
+ ϕj5

(
1

3
nL
B

)
. (28)

The stencil has now become a boundary stencil, which is similar to the one we considered earlier. Compare
Figure 4 with Figure 2. Note that we have

ϕjb

(
2

3
nL
B +

2

3
nR
B

)
=

2

3
ϕjb

(
nL
B + nR

B

)
, ϕj2

(
1

3
nR
B

)
=

1

3
ϕj2

(
nR
B

)
, ϕj5

(
1

3
nL
B

)
=

1

3
ϕj5

(
nL
B

)
. (29)

Recall also that the leading error term comes from the average flux term. Thus, we can write

ϕjb(n
L
B + nR

B) = ϕjb(n
L
B) + ϕjb(n

R
B), (30)

without degrading the order of the accuracy. The edge-based discretization for the collapsed interior stencil is
then written as∑
k∈{kj}

ϕjk(njk) = ϕj2(n
l
j2) + ϕj3(nj3) + ϕj4(nj4) + ϕj5(n

r
j5) +

2

3
ϕjb

(
nL
B

)
+

2

3
ϕjb

(
nR
B

)
+

1

3
ϕj2

(
nR
B

)
+

1

3
ϕj5

(
nL
B

)
. (31)

Comparing the resulting expression with Equation (22), which is repeated below,

5∑
k=2

ϕjk(njk) + [Boundary Fluxes] = ϕj2(n
l
j2) + ϕj3(nj3) + ϕj4(nj4) + ϕj5(n

r
j5) + ϕL(n

L
B) + ϕR(n

R
B), (32)

we find

ϕL(n
L
B) =

2

3
ϕjb(n

L
B) +

1

3
ϕj5(n

L
B), ϕR(n

R
B) =

2

3
ϕjb(n

R
B) +

1

3
ϕj2(n

R
B). (33)

This boundary discretization preserves the accuracy of the interior discretization because no modifications,
which would affect the order of accuracy, have been made to the initial interior discretization. Therefore,
second- and third-order accuracy is maintained at a boundary node for the second- and third-order accurate
edge-based finite-volume discretizations, respectively.

Several remarks are in order. First, the idea of vanishing ghost cells is borrowed from the residual-distribution
method, where the vanishing ghost cells are widely utilized for implementing weak boundary conditions (see,
e.g., Ref.[12]). The use of a ghost node (or edge) is found in Ref.[21], but it was employed for creating an
isotropic stencil for LSQ gradient reconstructions on boundaries, and thus it is not collapsed onto the boundary
node. As is done in the residual-distribution method as well as in the finite-volume methods, the node b can
serve as a ghost node where physical conditions are specified, and the boundary flux is determined through a
numerical flux evaluated by the solution at node j and the ghost state at b [20]. It is emphasized that there
are more than one way to define the boundary flux at a boundary node and it may influence the quality of the
solution, but it has no impact on the order of accuracy as long as it is consistent with the physical flux. It
is beyond the scope of the present work to compare various methods for evaluating the boundary flux. Note
that the fluxes ϕj2 and ϕj5 must be evaluated, just like the interior scheme, by the solutions and fluxes linearly
extrapolated to the midpoint of the right and left boundary face, respectively. If these fluxes are evaluated simply
by the average flux, the general formula reduces to the well-known formula (25), and the scheme will reduce
to a second-order accurate scheme. It should be emphasized that these fluxes are evaluated exactly as in the
interior scheme and thus do not involve any boundary condition. It is the nodal flux ϕjb that takes into account
boundary conditions. Furthermore, these fluxes are defined at the midpoint of the boundary face, which will not
be located at a physical curved boundary, but curved elements are not necessary and should not be introduced.
Third-order accuracy relies on a special property on linear triangles, i.e., Equations (14), and therefore it would
be lost on curved elements. The derived formula (33) is general, and perfectly matches the order of accuracy
between the interior and boundary discretizations: second/third-order accuracy for second/third-order schemes
through the boundaries. For tetrahedral grids, the edge-based discretization is known to achieve second- and
third-order accuracy with linear and quadratic LSQ fits, respectively. Hence, in the same way, a general formula
can be derived for a tetrahedral grid, which is given in Appendix A.
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4 Special Cases

4.1 Exact Quadrature for Linear Fluxes

The well-known formula (25), which is exact for linear fluxes, can be derived from the general formula.
Consider the general formula for ϕL:

ϕL(n
L
B) =

2

3
ϕjb(n

L
B) +

1

3
ϕj5(n

L
B). (34)

Without loss of generality, we assume zero dissipation and ub = uj , and take a local coordinate, denoted by s,
along the edge [j, 5] from the node j to the node 5, to write

ϕL(n
L
B) =

2

3
fj · nL

B +
1

6

(
fj + f5 −

∂sf5 − ∂sfj
2∆s

∆s2
)
· nL

B , (35)

where ∂s denote the partial differential along the local coordinate and ∆s = |nL
B |. The finite-difference term in

the parenthesis corresponds to the curvature that is zero for linear fluxes. Therefore, we obtain

ϕL(n
L
B) =

2

3
fj · nL

B +
1

6
(fj + f5) · nL

B =

(
5

6
fj +

1

6
f5

)
· nL

B, (36)

which is equivalent to the well-known formula (25). In this paper, this formula is referred to as the two-point
formula. The same result can be obtained similarly for the other contribution, ϕR(n

R
B). Note that the physical

flux may be replaced by the numerical flux without degrading the order of accuracy. More importantly, the
above derivation shows that this well-known formula cannot be exact for quadratic fluxes because it ignores the
curvature term that cannot vanish for quadratic fluxes. This is true even for a simple geometry that we now
consider in the following sections.

4.2 Co-Linear Boundary Edges

Consider a straight boundary, where two adjacent boundary edges are co-linear. Assume that nR
B = cnL

B,
where c is a constant, representing a general non-uniform boundary grid, which includes a boundary grid
generated by geometric stretching. For quadratic fluxes, the curvature is constant, and therefore we can write
the boundary contributions as

ϕL(n
L
B) + ϕR(n

R
B) =

2

3
fj · nL

B +
1

6

(
fj + f5 −

∂ssf

2
∆s2

)
· nL

B +
2

3
fj · nR

B +
1

6

(
fj + f2 −

∂ssf

2
c2∆s2

)
· nR

B , (37)

where ∂ssf is the constant curvature and we have assumed again zero dissipation in the numerical flux. By a
quadratic fit, we obtain the exact curvature for quadratic fluxes as

∂ssf =
2

∆s2

(
1

1 + c
f5 −

1

c
fj +

1

c(1 + c)
f2

)
. (38)

Substituting it into Equation (37), we obtain

ϕL(n
L
B) + ϕR(n

R
B) =

1

6

(
5fj + f5 −

1

1 + c
f5 +

1

c
fj −

1

c(1 + c)
f2

)
· nL

B

+
1

6

(
5fj + f2 −

c2

1 + c
f5 + cfj −

c2

c(1 + c)
f2

)
· nR

B. (39)

For the sake of convenience in the implementation within a boundary-edge loop, we arrange the result into the
following form by using nR

B = cnL
B :

ϕL(n
L
B) + ϕR(n

R
B) =

1

6

[(
5 +

1

c

)
fj + c(1− c)f5

]
· nL

B +
1

6

[
(5 + c) fj +

c− 1

c2
f2

]
· nR

B . (40)

This formula is exact for quadratic fluxes on a straight boundary. The nodes can be randomly distributed. At
each node, the ratio of two adjacent edge lengths, c, needs to be available. In this paper, this formula is referred
to as the two-point(c) formula.
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4.3 Co-Linear Boundary Edges with Uniform Spacing

It is easy to derive a formula for a straight boundary with uniform spacing. We simply set c = 1 in the
formula obtained in the previous section:

ϕL(n
L
B) + ϕR(n

R
B) = fj · nL

B + fj · nR
B. (41)

This is identical to a well-known boundary quadrature formula for regular quadrilateral grids, which is exact
for linear fluxes for a regular quadrilateral boundary stencil. We have just shown that this formula is exact for
quadratic fluxes on triangular grids with uniform boundary grids. This is not a very useful formula for practical
problems involving complex geometries, but it is simple and useful for problems in rectangular geometries
allowing uniformly spaced boundary grids. In this paper, this formula is referred to as the one-point formula.

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5: Coarsest grid. 1089 nodes. Red line indi-
cates the boundary where the accuracy is measured. Figure 6: Uniformly spaced boundary.

Figure 7: Non-uniformly spaced boundary. Figure 8: Fully irregular boundary.
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5 Results

Numerical experiments have been performed on irregular triangular grids in a square domain and in a curved
domain. We consider the linear advection equation, the advection-diffusion equation, Burgers’ equation, and
the Laplace equation. The advection-diffusion equation and the Laplace equation are written as a first-order
hyperbolic system as in Refs.[18, 22]. A source term is added to Burgers’ equation, but it is written in the
divergence form as in Ref.[14]. Therefore, all equations are written in the form of a steady conservation law as
in Equation (1), and discretized in the same way as described in Section 2.1. The nodal gradients are computed
by unweighted linear and quadratic LSQ fits for the second- and third-order discretizations, respectively. For the
quadratic fit, a two-step implementation as described in Ref.[18] is employed to avoid storing the information
about the neighbors of the neighbors and to enable a full implementation in a parallel environment. Truncation
errors (TE) are evaluated by substituting an exact solution into the residual. Discretization errors (DE) are
computed by solving the finite-volume discretization by an implicit solver as described in [18]. For all cases, the
discrete problem is fully solved such that the residuals are reduced by 10 orders of magnitude or to 10−15 in the
L1 norm for all equations. Both TE and DE are measured in the discrete L1 norm, i.e., the arithmetic average
of the absolute values of the nodal residuals and errors, respectively. Order of convergence is determined with
a representative mesh spacing, h, which is computed as the discrete L1 norm of the square root of the dual
control volume.

5.1 Advection

We consider the linear advection equation,

a ∂xu+ b ∂yu = 0, (42)

where (a, b) = (1.23,−0.91) for the exact solution u(x, y) = sin(π(bx − ay)). The domain is taken to be a
square: (x, y) = [0, 1] × [0, 1]. On the boundary, the exact solution is specified (i.e., the residual equation is
not solved) at x = 0, 1, and y = 1, and the solution is computed by the numerical scheme at y = 0 (see Figure
5). The boundary flux quadrature is required, therefore, only on the boundary y = 0, and the boundary flux is
evaluated by the solution at the boundary node, which is upwind and suitable for the outflow boundary. The
right boundary is also an outflow boundary, but we strongly impose the Dirichlet condition for simplicity; the
upwind discretization recognizes the characteristic direction and will not take the solution from the downwind
side anyway. The edge-based discretization is constructed as described in Section 2.1. The gradients are
computed by an unweighted linear LSQ fit for the second-order scheme, and by an unweighted quadratic LSQ
fit for the third-order scheme. We performed the truncation and discretization error computations over a series
of ten irregular triangular grids: 1089, 4225, 16641, 66049, 103041, 148225, 198025, 263169, 332929, 409600
nodes, with three different types of boundary grids: uniformly spaced (Figure 6), non-uniformly spaced (Figure
7), and fully irregular (Figure 8). Note that some boundary nodes are located outside the domain in the fully
irregular case. But the exact solution is chosen such that it is valid outside the square domain, and it will
not cause any problem just like a far-field outer boundary defined quite arbitrarily in a typical external flow
problem. To investigate the impact of reduced order of accuracy at boundary nodes on the interior domain, we
computed discretization and truncation errors separately for the interior and boundary nodes.

Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h) O(h2) O(h)

Two-point O(h2) O(h) O(h2) O(h)

Two-point(c) O(h2) O(h) O(h2) O(h)

General O(h2) O(h) O(h2) O(h)

Table 1: Summary of accuracy orders for the
second-order advection scheme on triangular grids
with uniformly spaced boundary grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h3) O(h2) O(h3) O(h2)

Two-point O(h3) O(h2) O(h2) O(h)

Two-point(c) O(h3) O(h2) O(h3) O(h2)

General O(h3) O(h2) O(h3) O(h2)

Table 2: Summary of accuracy orders for the third-
order advection scheme on triangular grids with
uniformly spaced boundary grids.

Results are summarized in Tables 1-6; actual error convergence plots are given in Appendix B (Figures B.1-
B.12). It is clearly seen from the tables that the truncation error is one order lower than the discretization error

10
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Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h) O(h) O(1)

Two-point O(h2) O(h) O(h2) O(h)

Two-point(c) O(h2) O(h) O(h2) O(h)

General O(h2) O(h) O(h2) O(h)

Table 3: Summary of accuracy orders for the
second-order advection scheme on triangular grids
with non-uniformly spaced boundary grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h3) O(h2) O(h) O(1)

Two-point O(h3) O(h2) O(h2) O(h)

Two-point(c) O(h3) O(h2) O(h3) O(h2)

General O(h3) O(h2) O(h3) O(h2)

Table 4: Summary of accuracy orders for the third-
order advection scheme on triangular grids with
non-uniformly spaced boundary grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h) O(h) O(1)

Two-point O(h2) O(h) O(h2) O(h)

General O(h2) O(h) O(h2) O(h)

Table 5: Summary of accuracy orders for the
second-order advection scheme on triangular grids
with fully irregular boundary grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h3) O(h2) O(h) O(1)

Two-point O(h3) O(h2) O(h2) O(h)

General O(h3) O(h2) O(h3) O(h2)

Table 6: Summary of accuracy orders for the third-
order advection scheme on triangular grids with
fully irregular boundary grids.

for all cases as expected. We then focus on the discretization error. Tables 1 and 2 summarize the results for
uniformly spaced boundary grids. As expected, the one-point formula yields second- and third-order accuracy
on uniformly spaced boundary grids. Also shown is that the two-point formula gives only second-order accuracy
on the boundary for the third-order scheme. The two-point(c) formula, on the other hand, yields third-order
accuracy through the boundary. Similarly, the general formula also achieves the design accuracy. Tables 3
and 4 show the results for non-uniformly spaced boundary grids. It can be seen that the one-point formula
leads to the accuracy deterioration on the boundary to first-order as expected. The two-point formula gives
the same results as those for uniformly spaced boundary grids. It does not yield third-order accuracy on the
boundary. The two-point(c) formula and the general formula produce the same consistent results as before:
second/third-order accuracy for the second/third-order scheme everywhere. The same results are obtained, as
expected, for fully irregular boundary grids as shown in Tables 5 and 6. The results for the two-point(c) formula
are not shown because it is not applicable to these grids; it is a special formula for flat boundaries. We remark
that the perturbation in the y-direction is small compared with that in the x-direction as shown in Figure 8,
but it is so significant that all schemes become inconsistent at boundary nodes with the two-point(c) formula.
It is noteworthy that the order of accuracy in the interior is not affected by any accuracy deterioration on the
boundary for all cases. Seemingly, this result is expected for the advection equation because errors generated
at the outflow boundary are hard to propagate back into the domain. This is not the case for other equations
having isotropic nature, which we will consider in the next section.

5.2 Advection-Diffusion

We consider the advection-diffusion equation,

a ∂xu+ b ∂yu = ν(∂xxu+ ∂yyu). (43)

It is known that the advection-diffusion equation is equivalent to the following system [18]:

∂xF+ ∂yG = 0, (44)

11
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where

F =


au− νp

−u/Tr − (y − yj) q/Tr

(x− xj) q/Tr

 , G =


bu− νq

(y − yj) p/Tr

−u/Tr − (x− xj) p/Tr

 , (45)

where Tr = (2
√
νπ)−2 as described in Ref.[18], and (xj , yj) denotes the location of a node at which the system

is discretized. The third-order edge-based discretization is constructed based on this system as described in
Section 2.1. For the second-order scheme, the terms involving (x − xj) and (y − yj), which represent source
terms, are not used, and a point-integration has been used for the source terms as described in details in
Ref.[18]. Note that u satisfies the advection-diffusion equation (43), and also the gradients are obtained as
(p, q) = (∂xu, ∂yu) to the same order of accuracy as demonstrated in Ref.[18]. The nodal gradients, as required
in the edge-based discretization, are computed in the same way as in the previous case except that we take
∇uj = (pj , qj) and avoid the gradient computation for u [18]. The resulting second- and third-order edge-based
finite-volume schemes are referred to as SchemeII(2nd) and SchemeII(3rd), respectively, as in Ref.[18]. The

domain is a square as in the previous case. For this problem, we set (a, b) = (1.23, 0.12), and ν =
√
a2+b2

Re with
Re = 10. The following exact solution [23] is specified everywhere on the boundary:

u(x, y) = cos(2πη) exp

(
−2π2ν

1 +
√
1 + 4π2ν2

ξ

)
, (46)

where ξ = ax + by, η = bx − ay. For the variables, (p, q), we specify the exact gradients on the boundaries
except on the bottom (y = 0), where the variable q, corresponding to the normal derivative, is computed by the
numerical scheme solving the third equation for q; the boundary flux quadrature is then required. Truncation
errors are, therefore, computed for the third equation. In this problem, we focus on the accuracy of q at
boundary nodes for isotropic and anisotropic grids.

5.2.1 Isotropic Grids

As in the advection case, numerical results have been obtained for a series of ten irregular triangular grids
with three different types of boundary grids: uniformly spaced (Figure 6), non-uniformly spaces (Figure 7), and
fully irregular (Figure 8). Results are summarized in Tables 7-12. Again, the actual error convergence plots are
given in Appendix B (Figures B.13-B.24). Tables 7 and 8 show the results for uniformly-spaced boundary grids.
As expected, for the second-order scheme, all boundary quadrature formulas give second-order discretization
errors and first-order truncation errors. But for the third-order scheme, the two-point formula, which is not
exact for quadratic fluxes, results in second-order discretization error everywhere. It shows that in contrast
to the previous test case, the discretization error in the interior is now affected by degraded accuracy on the
boundary. The diffusion part of Equation (44) describes an isotropic wave, modeling the isotropic diffusion,
and therefore allows the error committed on the boundary to propagate back into the domain. Note that the
system may also be considered as a model for the acoustic wave in the Euler equations, and thus a similar
accuracy deterioration is expected for subsonic inviscid flow calculations. Tables 9 and 10 show the results for
non-uniformly-spaced boundary grids. As expected, the one-point formula now gives first-order error on the
boundary. The discretization error, although deteriorated, stays somewhere between first-order and second-
order for the second-order scheme, which is indicated by O(h1.5) in the table (see Figures B.15 and B.16 for
details). It is interesting that the first-order accuracy on the boundary does not greatly affect the accuracy of the
second-order scheme in the interior. For the third-order scheme, however, the discretization error deteriorates
clearly to first-order with the one-point formula (see Figures B.21 and B.22). Although not shown, similar
accuracy deterioration has been observed for other variables in the interior domain. The accuracy preservation
at boundary nodes, therefore, has a serious impact on the third-order scheme. For the two-point formula, the
discretization error deteriorates to second-order everywhere for the third-order scheme. On the other hand,
the two-point(c) and the general formulas yield second- and third-order accuracy everywhere as expected. The
same results have been obtained, as expected, for fully irregular boundary grids; except that the two-point(c)
formula is not applicable. See Tables 11 and 12. The results indicate that only the general formula can achieve
the third-order accuracy for arbitrary boundary grids.

5.2.2 Anisotropic Grids

To further demonstrate the impact of incompatible boundary flux quadrature, we performed computations
on skewed triangular grids. The test problem is taken from Ref.[18]. The exact solution is still given by Equation
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Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h) O(h2) O(h)

Two-point O(h2) O(h) O(h2) O(h)

Two-point(c) O(h2) O(h) O(h2) O(h)

General O(h2) O(h) O(h2) O(h)

Table 7: Summary of accuracy orders in q(= ∂yu)
for the second-order advection-diffusion scheme on
triangular grids with uniformly spaced boundary
grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h3) O(h2) O(h3) O(h2)

Two-point O(h2) O(h2) O(h2) O(h)

Two-point(c) O(h3) O(h2) O(h3) O(h2)

General O(h3) O(h2) O(h3) O(h2)

Table 8: Summary of accuracy orders in q(= ∂yu)
for the third-order advection-diffusion scheme on
triangular grids with uniformly spaced boundary
grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h1.5) O(h) O(h) O(1)

Two-point O(h2) O(h) O(h2) O(h)

Two-point(c) O(h2) O(h) O(h2) O(h)

General O(h2) O(h) O(h2) O(h)

Table 9: Summary of accuracy orders in q(= ∂yu)
for the second-order advection-diffusion scheme on
triangular grids with non-uniformly spaced bound-
ary grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h) O(h2) O(h) O(1)

Two-point O(h2) O(h2) O(h2) O(h)

Two-point(c) O(h3) O(h2) O(h3) O(h2)

General O(h3) O(h2) O(h3) O(h2)

Table 10: Summary of accuracy orders in q(= ∂yu)
for the third-order advection-diffusion scheme on
triangular grids with non-uniformly spaced bound-
ary grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h1.5) O(h) O(h) O(1)

Two-point O(h2) O(h) O(h2) O(h)

General O(h2) O(h) O(h2) O(h)

Table 11: Summary of accuracy orders in q(= ∂yu)
for the second-order advection-diffusion scheme on
triangular grids with irregular boundary grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h) O(h2) O(h) O(1)

Two-point O(h2) O(h2) O(h2) O(h)

General O(h3) O(h2) O(h3) O(h2)

Table 12: Summary of accuracy orders in q(= ∂yu)
for the third-order advection-diffusion scheme on
triangular grids with irregular boundary grids.

(46) with Re = 10, but the domain is taken as (x, y) = [0, 1]× [0, 0.01]. Highly skewed grids have been generated
by mapping the grids generated in a unit square domain into the new domain. Five levels of grids have been used:
1089, 4225, 16641, 66049, 103041 nodes. As in the previous case, all variables are specified by the exact solution
on all boundaries except that q, corresponding the y-derivative of u, is computed on the bottom boundary by
the numerical scheme. Note that the y-derivative on the bottom boundary is the normal derivative, modeling
the viscous stress in viscous boundary-layer computations. The residual at a boundary node, therefore, requires
the boundary flux contribution. For this problem, the boundary grid is uniformly spaced; we thus consider the
one-point and two-point formulas (exact for quadratic and linear fluxes, respectively) and focus on the impact
of the accuracy of the boundary flux quadrature formula.

Figure 9 shows the distribution of q on the bottom boundary (for the coarsest grid of 1089 nodes) for second-
order schemes: SchemeII(2nd) and Galekrin. Galerkin is included to illustrate the severe skewness present in the
grid; Galerkin is known to produce oscillatory solutions on such grids [9, 24]. Note that Galerkin still uses the
second-order edge-based finite-volume scheme for the advective term, and only the diffusive term is discretized
by the Galerkin method. For Galerkin, the y-derivative is computed from the solution by a linear least-squares
method. SchemeII(2nd) is applied with two different boundary flux quadrature formulas. Both yield very
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Figure 9: Second-order results. q(= uy), on the bottom
boundary.
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Figure 11: Second-order results. DE for q(= uy), in
the interior.
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Figure 12: Second-order results. DE for q(= uy), on
the bottom boundary.

accurate derivatives on the boundary, but the one-point formula gives more accurate results as shown in Figure
10. This result was not expected because the errors obtained with these two formulas are almost at the same
level in the case of isotropic grids. It implies that the impact of the accuracy of the boundary flux quadrature
formula can be large for highly-skewed grids. In terms of the order of accuracy, both quadrature formulas
give second-order accuracy for the second-order scheme as shown in Figures 11 and 12. Accuracy deterioration
is much more serious for the third-order scheme. Third-order results are shown in Figures 13 and 14. Here,
Galerkin(3rd) is a third-order accurate version of Galerkin as described in Ref.[18]; it still exhibits, although
small, oscillations in q, which is computed by a quadratic least-squares method. Note that Galerkin(3rd) uses
the third-order edge-based finite-volume scheme for the advective part, and only the diffusive term is discretized
by the third-order Galerkin method [18]. On the other hand, SchemeII(3rd) gives very accurate results with the
one-point formula, but significant accuracy deterioration can be observed for the two-point formula; see Figures
13 and 14. In fact, as expected, the scheme reduces to second-order accurate with the two-point formula, which
is confirmed by the error convergence plots in Figures 15 and 16. Note that the deterioration is so severe that
it leads to the solution less accurate than those obtained by the second-order scheme.
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Figure 13: Third-order results. q(= uy), on the bottom
boundary.
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Figure 16: Third-order results. DE for q(= uy) on the
bottom boundary.

5.3 Burgers Equation

As an example of nonlinear equations, we consider Burgers’ equation:

∂xf + ∂yg = s(x, y), (47)

where (f, g) = (u2/2, u), and s(x, y) = (1+ sin(x− y)) cos(x− y). The source term has been introduced, so that
the exact solution is given by u(x, y) = sin(x − y) + 2. The equation can be written as a steady conservation
law without a source term:

∂x(f − fs) + ∂y(g − gs) = 0, (48)

where (fs, gs) is the source flux vector defined by

fs = (x− xj)s−
1

2
(x− xj)

2∂xs+
1

6
(x− xj)

3∂xxs, gs = 0, (49)
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and xj denotes the x-coordinate of the node at which the residual is defined. Equation (48) is a third-order
accurate approximation to the original equation, and therefore the third-order finite-volume scheme for the
original equation can be constructed based on Equation (48) without losing third-order accuracy. See Ref.[14]
for more details. The edge-based discretization is then constructed as in Section 2.1 by the upwind flux; the
source divergence part, ∂xf

s + ∂yg
s = 0, is discretized by the central flux. Note that the source divergence

part is evaluated just once and stored as a forcing term. For the second-order scheme, we discretize the original
equation by the upwind flux with a point-integration of the source term. Again, we consider a square domain,
and specify the exact solution at the left, right, and bottom boundaries, and compute the solution on the
top boundary. The choice of the top boundary is due to the characteristic running upward in the positive
y-direction (the characteristic speed is always positive in the y-direction: ∂g/∂u = 1). We use the same grids
as in the previous cases, but those with the fully irregular boundary are different in that the perturbation in
the y-direction are applied at the top boundary instead of the bottom. The flux gradients are computed from
the solution gradients as in Equation (20).

Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h2) O(h) O(1)

Two-point O(h3) O(h2) O(h2) O(h)

Two-point(c) O(h3) O(h2) O(h3) O(h2)

General O(h3) O(h2) O(h3) O(h2)

Table 13: Summary of accuracy orders for the
third-order scheme for Burgers’ equation on trian-
gular grids with non-uniformly spaced boundary
grids.

Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h2) O(h) O(1)

Two-point O(h3) O(h2) O(h2) O(h)

General O(h3) O(h2) O(h3) O(h2)

Table 14: Summary of accuracy orders for the
third-order scheme for Burgers’ equation on tri-
angular grids with fully irregular boundary grids.

It turned out that the results are identical to those for the linear advection equation as shown in Tables
1-6, except that the third-order accuracy deteriorates in the interior with the one-point formula for non-uniform
and irregular boundary grids. Tables are shown, therefore, for Burgers’ equation only for the problematic cases
(see Tables 13 and 14). Error convergence plots are, however, presented for all cases in Appendix B (Figures
B.25-B.36). Note again that the order of accuracy in the interior is not affected by any accuracy degradation
at boundary nodes in many cases. As in the linear advection case, the characteristic runs through the top
boundary to outside the domain, and therefore errors generated at boundary nodes do not seem to propagate
back into the domain. However, as noted above, the accuracy in the interior nodes deteriorates when first-order
errors are introduced at boundary nodes as shown in Tables 13 and 14 and in Figures B.33 and B.35. The
deterioration may look slight in the error convergence plots, but the asymptotic convergence rate is in fact 2.0.
Although not shown, the same results have been obtained with a quadratic LSQ fit directly applied to the
nonlinear flux instead of Equation (20). These results indicate that the third-order scheme tolerates one order
lower accuracy at boundary nodes, but loses the design accuracy with two orders lower accuracy in the nonlinear
case. Nevertheless, with the general formula, second- and third-order accuracy is maintained everywhere for
arbitrary grids.

5.4 Potential Flow over Curved Boundary

To investigate effects of curved boundaries, we consider a potential flow over a cylinder, which is governed
by the Laplace equation for the stream function, ψ:

∂xxψ + ∂yyψ = 0. (50)

The discretization is performed in the same way as in Section 5.2. We thus write the Laplace equation as a
steady conservation law:

∂xF+ ∂yG = 0, (51)
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Figure 17: Exact solution contours for u and the
streamlines for the cylinder problem.

Figure 18: Coarsest irregular triangular grid for
the cylinder problem (820 nodes). Boundary nodes
are irregularly spaced.

where

F =


−p

−ψ/Tr − (y − yj) q/Tr

(x− xj) q/Tr

 , G =


−q

(y − yj) p/Tr

−ψ/Tr − (x− xj) p/Tr

 , (52)

where Tr = (2π)−2, and then apply the third-order edge-based discretization, i.e. SchemeII(3rd). Again, this
scheme is capable of delivering the gradients, (p, q) = (∂xψ, ∂yψ) to the same order of accuracy as that of
the main variable ψ. In this case, the gradients are equivalent to the velocity components: u = ∂yψ = q and
v = −∂xψ = −p, where u and v are the velocity components in the x- and y-directions, respectively. The domain
is taken around a cylinder of unit diameter located at the origin, and the outer boundary is a circle located
at the distance of two cylinder-diameters from the origin. The exact solution is known for this problem (see,
e.g., [25]). The contours of u and the streamlines are shown in Figure 17. Our focus here is on the accuracy
at boundary nodes on the curved boundary of the cylinder, and therefore at the outer boundary, the exact
solution is strongly imposed. At each boundary node, j, on the cylinder, the stream function, which is constant,
is specified by solving

ψj = 0. (53)

Another condition specified at the boundary node is a slip boundary condition. It is implemented by solving
the following equation:

(qj ,−pj) · n̂j = 0, (54)

where n̂j denotes the unit vector normal to the boundary at the node j, whose accuracy has a significant
impact on the order of accuracy as we shall see below. The tangential component of the velocity is determined
by solving the residual equation projected along the tangential direction:

(Resj(3),−Resj(2)) · t̂j = 0, (55)

where Resj(2) and Resj(3) are the residuals for the second and third equations, respectively, and t̂j is a unit
vector satisfying t̂j · n̂j = 0. Note that the projected residual approximates the equation for the tangential
velocity, (u, v) · t̂j , which is equivalent to (q,−p) · t̂j :

1

Tr

[
(∂yψ,−∂xψ) · t̂j − (q,−p) · t̂j

]
= 0. (56)
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Note that Resj(2) and Resj(3) require a boundary quadrature formula, and that the boundary fluxes need to
be computed, for consistency and conservation, based on the edge-normal vectors, nL

B and nR
B in Figure 4. The

normal vector n̂j is used only in Equation (54) and for the associated tangent vector t̂j in Equation (55). Note
also that the above procedure is, in effect, very similar to the weak boundary procedure described in Ref.[26]: the
boundary flux is evaluated by the specified boundary condition, leading to a penalty-term formulation. Finally,
in the actual implementation, the left hand sides of Equations (53), (54), and (55) form a vector of residual at
the boundary node, and they are solved by the implicit solver. We point out that the above boundary condition
implementation is only an example, and other implementations are possible. But it is sufficient to illustrate the
importance of the boundary flux quadrature formulas, which is the main subject of the paper. Furthermore, it
is general enough to examine the effect of the accuracy of the surface normal vector n̂j , which is often required
for practical boundary condition implementations.

Numerical experiments are performed for a series of nine irregular triangular grids: 820, 1830, 3240, 5050,
7260, 9870, 12880, 16290, 20100 nodes. The coarsest grid is shown in Figure 18. Note that the physical boundary
is curved, but the grids are composed of linear triangles and therefore the boundary edges are straight. We do
not consider high-order (curved) elements, e.g., curved P2 elements, because the third-order scheme considered
here relies on a special property of the edge-based scheme that it achieves third-order accuracy on linear
triangles, which would probably be lost on curved elements. Compared with other high-order methods, which
fail to achieve the design order of accuracy without curved elements such as the discontinuous Galerkin method
[27, 28] and the continuous finite-element-type methods [29, 30, 31], the third-order scheme considered here
does not require boundary conditions imposed over the boundary edge (they are imposed at nodes), nor extra
degrees of freedom placed between two boundary nodes, which should be located at the physical boundary and
thus makes a curved boundary edge inevitable on a curved boundary. We point out that similar third-order
schemes exist that preserve third-order accuracy without curved elements [32, 33]. For all the results that we
discuss below, the discretization errors are measured for the variable q, corresponding to the x-velocity, u. The
truncation error was computed for the third component of the residual vector, i.e., Equation (55).

Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h2) O(h) O(h)

Two-point O(h2) O(h2) O(h) O(h)

General O(h2) O(h2) O(h) O(h2)

Table 15: Summary of accuracy orders for the
third-order scheme for the curved boundary prob-
lem: Linear approximation to the surface normal
vector.

Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h2) O(h2) O(h)

Two-point O(h2) O(h2) O(h2) O(h)

General O(h3) O(h2) O(h3) O(h2)

Table 16: Summary of accuracy orders for the
third-order scheme for the curved boundary prob-
lem: Exact surface normal vector.

Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h2) O(h2) O(h)

Two-point O(h2) O(h2) O(h2) O(h)

General O(h3) O(h2) O(h3) O(h2)

Table 17: Summary of accuracy orders for the
third-order scheme for the curved boundary prob-
lem: Quadratic approximation to the surface nor-
mal vector.

Formula
Interior Boundary

DE TE DE TE

One-point O(h2) O(h2) O(h2) O(h)

Two-point O(h2) O(h2) O(h2) O(h)

General O(h3) O(h2) O(h3) O(h2)

Table 18: Summary of accuracy orders for the
third-order scheme for the curved boundary prob-
lem: Cubic approximation to the surface normal
vector.

We first performed the computation with the surface normal vector defined by a typical linear approximation:

n̂j =
(yj+1 − yj−1, xj−1 − xj+1)√

(xj+1 − xj−1)2 + (yj+1 − yj−1)2
, (57)
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Figure 19: Contours of the x-velocity and the
streamlines for the cylinder problem: the general
formula and linear approximation to the surface
normal vector.

Figure 20: Contours of the x-velocity and the
streamlines for the cylinder problem: the general
formula and quadratic approximation to the sur-
face normal vector.

where the boundary nodes are assumed to be ordered clockwise. The results are shown in Table 15 (and Figures
B.37 and B.38). It is observed that the discretization error deteriorates to somewhere between first-order and
second-order on the boundary and to second-order in the interior. It should be noted here that the results
for the one-point and two-point formulas are nearly identical to each other. This is because the relevant flux
components, i.e., the second and third components of the flux vectors (52), are essentially zero: ψ = 0 on
the boundary and other components are also zero up to the accuracy of the surface normal vector. It is a
very special case but it arises in a practical situation when a no-slip condition is strongly imposed at a wall
in a viscous flow. The first-order truncation error on the boundary is, therefore, expected for the one-point
and two-point formulas on irregularly-spaced boundary grids, but the accuracy deterioration with the general
formula is somewhat unexpected. In fact, the truncation error is second-order everywhere as expected with the
general formula, and thus we would expect third-order accuracy in the discretization error. The results imply
that the error in the surface normal vector dominates. To confirm the effect of the approximate surface normal
vector, we performed the same computation with the exact surface normal vector. Results are shown in Table
16 (and Figures B.39 and B.40). The results are now as expected and consistent with those in the previous
sections: inaccurate quadrature formulas fail to achieve the third-order accuracy on the boundary as well as in
the interior; only the general formula is capable of achieving the designed third-order accuracy. To recover the
design accuracy without the exact normal vector, which may not be available in a general case, we employed
a quadratic interpolation to compute a more accurate surface normal vector. A quadratic interpolation is
constructed over three consecutive boundary nodes for x and y in the parameter space of the edge length, s,
and the surface normal vector is obtained as

n̂j =
(dy/ds,−dx/ds)j√
(dx/ds)2j + (dy/ds)2j

. (58)

Note that the above does not give the exact normal vector to the cylinder since the exact parametrization of
x and y is not quadratic in s. As shown in Table 17 (and Figures B.41 and B.42), the results are essentially
the same as those obtained with the exact surface normal vector, thus demonstrating that a quadratically
reconstructed normal vector is sufficiently accurate to ensure third-order accuracy. It is observed from Figures
19 and 20, which compare the solutions obtained with the linear and quadratic approximations on the coarsest
grid as in Figure 18, that the solution is indeed improved near the boundary, especially near the lower right
part of the cylinder, and that no anomalous behaviors [27, 28] are seen in the third-order solution on linear
triangles. Even with the quadratic approximation to the surface normal vector, the use of lower-order boundary
flux quadrature formulas leads to significant accuracy deterioration as can be seen in Table 17 as well as in
Figures 21 and 22. We also tried a cubic interpolation by adding one more node for the interpolation, but

19



Preprint accepted for publication in Journal of Computational Physics, 2014.

Figure 21: Contours of the x-velocity and the
streamlines for the cylinder problem: the one-
point formula and quadratic approximation to the
surface normal vector.

Figure 22: Contours of the x-velocity and the
streamlines for the cylinder problem: the two-
point formula and quadratic approximation to the
surface normal vector.

the results are, again, essentially the same as those obtained with the exact surface normal vector as shown in
Table 18 (and Figures B.43 and B.44). These results indicate that accurate surface normal vectors, computed
at least by a quadratic interpolation, and the general flux quadrature formula are both critical to the successful
implementation of the third-order edge-based scheme.

6 Concluding Remarks

In this paper, a general accuracy-preserving boundary flux quadrature formula has been derived for the node-
centered edge-based finite-volume discretization on arbitrary triangular and tetrahedral grids. The general
formula has been derived by collapsing an interior stencil onto a boundary stencil. The general formula is
exact for linear and quadratic fluxes provided the nodal gradients are computed by linear and quadratic fits,
respectively. In the case of linear fluxes, the general formula has been shown to reduce to the well-known formula
for the second-order scheme. A special formula, which is exact for quadratic fluxes, has been derived from the
general formula at a boundary node whose adjacent boundary edges are co-linear. It is also shown that the
special formula reduces to a simple one-point quadrature formula, as typically used for quadrilateral grids, if
the adjacent edges have the same length. Thereby, it has been proved that the one-point quadrature formula is
exact for quadratic fluxes at a boundary node shared by two co-linear boundary edges of the same length.

The theoretical results have been verified by extensive numerical experiments. Numerical results show that
the third-order accuracy cannot be achieved in the interior of the domain in general unless third-order accuracy
is guaranteed at boundary nodes. Results for highly-skewed irregular triangular grids show that the accuracy in
the normal derivative on a boundary, which models the viscous stress, is greatly affected by the accuracy of the
boundary flux quadrature. Numerical results for a curved boundary problem have shown that the third-order
node-centered edge-based finite-volume discretization does not require high-order curved elements for curved
boundaries but requires accurate surface normal vectors defined at boundary nodes to deliver the designed third-
order accuracy. It is also shown that sufficiently accurate surface normal vectors can be obtained conveniently
by a quadratic interpolation from a given grid.

A challenge is the extension to other types of elements. The edge-based finite-volume discretization is
known to be second-order accurate at best for grids other than pure triangular/tetrahedral grids. Moreover,
the formal second-order accuracy can be achieved only for elements with certain geometric regularities (e.g.,
regular hexahedra or rectangular prisms). In that case, the idea of vanishing ghost cell may be applied to derive
a general formula for the second-order scheme; but it will merely reproduce the formulas already derived in
Ref.[9]. For irregular quadrilateral/prismatic/pyramidal/hexahedral grids, the second-order accuracy needs to
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be established first in the interior stencil, based on which the boundary flux quadrature can be derived by the
method proposed in this paper.
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Appendix A: Accuracy-Preserving Boundary Flux Quadrature for
Tetrahedral Grids

j
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|

|

||

||

njb

nj2

nj3

Figure A.1: A dual volume of a tetrahedron around
the node j. This is a part of a full interior stencil
around the node j; it is then considered as a ghost
cell.

j, b

2

3

|

|

|||

|||

nB

Figure A.2: A boundary element created from the cell
in Figure A.1 by moving the node b to the node j. The
boundary face normal vector nB is pointing outward
from the element.

A general boundary flux quadrature formula can be derived in the same way for tetrahedral grids as in the
two-dimensional case. In an interior stencil on a tetrahedral grid, the edge-based finite-volume discretization
is known to yield third-order accuracy with nodal gradients that are exact for quadratic fluxes. To derive a
general boundary formula, it suffices to consider a single cell in a full tetrahedral stencil. Consider a tetrahedral
cell in Figure A.1, which should be considered as a part of a full tetrahedral stencil around the node j. The
flux contribution from this cell to the edge-based finite-volume discretization at j is given by

ϕj2(nj2) + ϕj3(nj3) + ϕjb(njb). (59)

It is straightforward to show

nj2 → 1

4
nB, njb →

1

2
nB, nj5 → 1

4
nB , (60)

as the node b approaches the node j (see Figure A.2). Note that we take the node b as located outside the
computational domain. Therefore, by shrinking the edge [b, j] from b to j, we find that the above finite-volume
discretization reduces to

1

4
ϕj2(nB) +

1

4
ϕj3(nB) +

1

2
ϕjb(nB). (61)
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This is a general boundary flux quadrature formula on the dual boundary face on the triangular boundary
element [j, 2, 3]: second/third-order accuracy is preserved in the boundary discretization. Note that the fluxes
ϕj2(nB) and ϕj3(nB) are computed at the midpoint of the edge [j, 2] and [j, 3], respectively, just like done in
the interior scheme. On the other hand, the flux ϕjb is computed based on the solution at the node j and a
solution, ub, specified by a boundary condition as described in Ref.[20]. A well-known formula that is exact for
linear fluxes (valid for second-order schemes) can be derived from the general formula. For linear fluxes, the
arithmetic average gives the exact flux at the edge midpoint, and therefore, we can write

ϕjb(nB) = fj · nB, ϕj2(nB) =
1

2
(fj + f2) · nB , ϕj3(nB) =

1

2
(fj + f3) · nB , (62)

where we have assumed fb = fj without loss of generality. Substituting these expressions into the general
formula, we find (

6

8
fj +

1

8
f2 +

1

8
f3

)
· nB , (63)

which is the well-known formula for the second-order edge-based finite-volume discretization [2].

Appendix B: Error Convergence Plots

Actual discretization error (DE) and truncation error (TE) convergence results are listed. In each figure,
DE convergence is shown on the left, and TE convergence is shown on the right. The accuracy orders observed
in these plots have been summarized in Tables 1-18. In the plots, DE-I refers to the discretization error in the
interior, and DE-B refers to the discretization error on the boundary, and similarly for the truncation errors.
Also, UB, NUB, and IRRG refer to uniformly-spaced, non-uniformly-spaced, and irregular boundary grids,
respectively.
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Figure B.1: DE(left) and TE(right) at interior
nodes for the second-order advection scheme, uni-
formly spaced boundary grid (UB).
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Figure B.2: DE(left) and TE(right) at boundary
nodes for the second-order advection scheme, uni-
formly spaced boundary grid (UB).
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Figure B.3: DE(left) and TE(right) at interior
nodes for the second-order advection scheme, non-
uniformly spaced boundary grid (NUB).
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Figure B.4: DE(left) and TE(right) at boundary
nodes for the second-order advection scheme, non-
uniformly spaced boundary grid (NUB).
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Figure B.5: DE(left) and TE(right) at interior
nodes for the second-order advection scheme, ir-
regular boundary grid (IRRG).
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Figure B.6: DE(left) and TE(right) at boundary
nodes for the second-order advection scheme, ir-
regular boundary grid (IRRG).
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Figure B.7: DE(left) and TE(right) at interior
nodes for the third-order advection scheme, uni-
formly spaced boundary grid (UB).
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Figure B.8: DE(left) and TE(right) at boundary
nodes for the third-order advection scheme, uni-
formly spaced boundary grid (UB).
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Figure B.9: DE(left) and TE(right) at interior
nodes for the third-order advection scheme, non-
uniformly spaced boundary grid (NUB).
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Figure B.10: DE(left) and TE(right) at bound-
ary nodes for the third-order advection scheme,
non-uniformly spaced boundary grid (NUB).
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Figure B.11: DE(left) and TE(right) at interior
nodes for the third-order advection scheme, irreg-
ular boundary grid (IRRG).
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Figure B.12: DE(left) and TE(right) at bound-
ary nodes for the third-order advection scheme,
irregular boundary grid (IRRG).
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Figure B.13: DE(left) and TE(right) at inte-
rior nodes for the second-order advection-diffusion
scheme, uniformly spaced boundary grid (UB).
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Figure B.14: DE(left) and TE(right) at bound-
ary nodes for the second-order advection-diffusion
scheme, uniformly spaced boundary grid (UB).
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Figure B.15: DE(left) and TE(right) at in-
terior nodes for the second-order advection-
diffusion scheme, non-uniformly spaced boundary
grid (NUB).
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Figure B.16: DE(left) and TE(right) at bound-
ary nodes for the second-order advection-diffusion
scheme, non-uniformly spaced boundary grid
(NUB).
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Figure B.17: DE(left) and TE(right) at inte-
rior nodes for the second-order advection-diffusion
scheme, irregular boundary grid (IRRG).
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Figure B.18: DE(left) and TE(right) at bound-
ary nodes for the second-order advection-diffusion
scheme, irregular boundary grid (IRRG).
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Figure B.19: DE(left) and TE(right) at inte-
rior nodes for the third-order advection-diffusion
scheme, uniformly spaced boundary grid (UB).
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Figure B.20: DE(left) and TE(right) at bound-
ary nodes for the third-order advection-diffusion
scheme, uniformly spaced boundary grid (UB).
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Figure B.21: DE(left) and TE(right) at inte-
rior nodes for the third-order advection-diffusion
scheme, non-uniformly spaced boundary grid
(NUB).
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Figure B.22: DE(left) and TE(right) at bound-
ary nodes for the third-order advection-diffusion
scheme, non-uniformly spaced boundary grid
(NUB).
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Figure B.23: DE(left) and TE(right) at inte-
rior nodes for the third-order advection-diffusion
scheme, irregular boundary grid (IRRG).
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Figure B.24: DE(left) and TE(right) at bound-
ary nodes for the third-order advection-diffusion
scheme, irregular boundary grid (IRRG).
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Figure B.25: DE(left) and TE(right) at interior
nodes for the second-order scheme for Burgers’
equation, uniformly spaced boundary grid (UB).

−3 −2.5 −2 −1.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Log
10

(h)

Lo
g 10

(L
1 e

rr
or

 n
or

m
 o

f u
)

DE−B, UB, 2nd, Burgers

 

 

One point
Two point
Two point(c)
General
Slope 1
Slope 2

−3 −2.5 −2 −1.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Log
10

(h)

Lo
g 10

(L
1 T

E
 n

or
m

)

TE−B, UB, 2nd, Burgers

 

 

One point
Two point
Two point(c)
General
Slope 1
Slope 2

Figure B.26: DE(left) and TE(right) at bound-
ary nodes for the second-order scheme for Burgers’
equation, uniformly spaced boundary grid (UB).
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Figure B.27: DE(left) and TE(right) at inte-
rior nodes for the second-order scheme for Burg-
ers’ equation, non-uniformly spaced boundary grid
(NUB).
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Figure B.28: DE(left) and TE(right) at bound-
ary nodes for the second-order scheme for Burg-
ers’ equation, non-uniformly spaced boundary grid
(NUB).
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Figure B.29: DE(left) and TE(right) at interior
nodes for the second-order scheme for Burgers’
equation, irregular boundary grid (IRRG).
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Figure B.30: DE(left) and TE(right) at bound-
ary nodes for the second-order scheme for Burgers’
equation, irregular boundary grid (IRRG).
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Figure B.31: DE(left) and TE(right) at interior
nodes for the third-order scheme for Burgers’ equa-
tion, uniformly spaced boundary grid (UB).
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Figure B.32: DE(left) and TE(right) at bound-
ary nodes for the third-order scheme for Burgers’
equation, uniformly spaced boundary grid (UB).
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Figure B.33: DE(left) and TE(right) at interior
nodes for the third-order scheme for Burgers’ equa-
tion, non-uniformly spaced boundary grid (NUB).
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Figure B.34: DE(left) and TE(right) at bound-
ary nodes for the third-order scheme for Burg-
ers’ equation, non-uniformly spaced boundary grid
(NUB).
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Figure B.35: DE(left) and TE(right) at interior
nodes for the third-order scheme for Burgers’ equa-
tion, irregular boundary grid (IRRG).
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Figure B.36: DE(left) and TE(right) at bound-
ary nodes for the third-order scheme for Burgers’
equation, irregular boundary grid (IRRG).
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Figure B.37: DE(left) and TE(right) at interior
nodes for the third-order scheme for the curved
boundary problem: Linear approximation to the
surface normal vector.
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Figure B.38: DE(left) and TE(right) at bound-
ary nodes for the third-order scheme for the
curved boundary problem: Linear approximation
to the surface normal vector.
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Figure B.39: DE(left) and TE(right) at interior
nodes for the third-order scheme for the curved
boundary problem: Exact surface normal vector.
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Figure B.40: DE(left) and TE(right) at bound-
ary nodes for the third-order scheme for the
curved boundary problem: Exact surface normal
vector.
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Figure B.41: DE(left) and TE(right) at interior
nodes for the third-order scheme for the curved
boundary problem: Quadratic approximation to
the surface normal vector.
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Figure B.42: DE(left) and TE(right) at bound-
ary nodes for the third-order scheme for the
curved boundary problem: Quadratic approxima-
tion to the surface normal vector.
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Figure B.43: DE(left) and TE(right) at interior
nodes for the third-order scheme for the curved
boundary problem: Cubic approximation to the
surface normal vector.
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Figure B.44: DE(left) and TE(right) at bound-
ary nodes for the third-order scheme for the
curved boundary problem: Cubic approximation
to the surface normal vector.
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