Preprint accepted in Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2018.06.019

From Hyperbolic Diffusion Scheme to Gradient Method:
Implicit Green-Gauss Gradients for Unstructured Grids

Hiroaki Nishikawa,
National Institute of Aerospace, Hampton, VA 23666

June 18, 2018

Abstract

This paper introduces a new approach to constructing algorithms for gradient computations on unstruc-
tured grids. The proposed approach is to derive a gradient algorithm from a hyperbolic diffusion scheme,
which solves the diffusion equation and equations for the solution gradient, by ignoring the residual compo-
nent for the diffusion equation. The resulting scheme forms a globally coupled linear system of equations for
the gradients with the Green-Gauss gradient formula on the right hand side, which can be solved efficiently
by iterative techniques. Accuracy and iterative performance can be controlled by parameters inherited from
the generating hyperbolic diffusion scheme. Second- or fourth-order gradient accuracy can be obtained on
regular grids, and first-order accuracy, which is sufficient for second-order finite-volume schemes, can be
obtained on irregular grids. Numerical results indicate that the method gives highly accurate gradients es-
pecially for highly-curved high-aspect-ratio grids typical in high-Reynolds-number boundary layer flows over
complex geometries, and can be employed in finite-volume solvers as an efficient alternative to least-squares
or Green-Gauss gradient methods. It is also shown that one of the parameters has a role of dissipation,
and can be tuned to yield a smooth gradient distribution over a discontinuous function, thereby allowing
an implicit finite-volume solver to converge for a discontinuous solution with a mild overshoot. The paper
concludes with a discussion for future developments.

1 Introduction

The performance of finite-volume solvers replies heavily on gradient computation methods, which are required
in the inviscid flux reconstruction, the evaluations of viscous fluxes, and turbulence model source terms, espe-
cially on unstructured grids typical of applications involving complex geometries. Despite great progress made
over the last decades, represented by extensive studies on least-squares gradients in Ref.[1], current state-of-the-
art unstructured-grid finite-volume solvers still encounter robustness issues when dealing with highly-distorted
grids. One of the popular remedies, other than ignoring gradients, is the Green-Gauss method, which is known
to lose consistency on irregular grids, but can be employed for robustness, i.e., for the sake of obtaining nu-
merical solutions [2, 3, 4]. As a result, the solutions obtained would lose second-order accuracy (i.e., reduce
to zeroth- or first-order accuracy) even for smooth flows. Such remedies may also negatively affect approxima-
tions to the viscous terms. For turbulence model source terms, accurate gradients are highly desired because
inaccurate source term evaluations can lead to instability of implicit solvers. These considerations imply that a
robust solver has to pay the price for computing different types of gradient approximations for different terms:
inaccurate but robust gradients for the inviscid terms, and accurate gradients for the viscous terms and the
source terms [2, 5]. Note that the gradients of all variables (e.g., the density, velocity components, and pressure)
are needed in the inviscid part, and those of the velocity components and temperature are needed in the viscous
part, thus implying that at least the velocity gradients need to be computed twice with two different gradient
methods. The need for different gradient algorithms also arises from adapting different discretization methods
for different terms [6, 7, 8, 9]. To achieve truly second-order accurate simulations without performing multiple
gradient computations, a gradient method is sought that maintains consistency and accuracy on unstructured
grids of arbitrary distortion and leads to stable iterative convergence of a flow solver.

Two classes of gradient algorithms have widely been used in unstructured-grid finite-volume codes: Green-
Gauss (GG) [4, 10, 11] and least-squares (LSQ) methods [12, 13, 14, 15, 16]. The basic GG method is formulated
by the midpoint quadrature approximation to the integral definition of the gradient operator with the face-
midpoint solution value evaluated by an average of the solutions in the two cells sharing the face, or a distance-
weighted interpolation [4]. As is well known for cell-centered schemes, the method loses consistency on irregular

https://doi.org/10.1016/j.jcp.2018.06.019

grids, where the interpolation misses the face-midpoint as the line between the centroids of the two cells does not
pass through the face-midpoint (see, e.g., Ref.[17]). Consistency can be recovered by evaluating the face value
by the average of two values linearly interpolated from the cells using the gradients (which are unknowns). It
is consistent and exact for linear functions on arbitrary grids, but it requires iterations to obtain the gradients.
Such implicit gradient methods are described in Ref.[4], but not widely used and their performance on highly
distorted grids is unknown. More importantly, these iterative schemes lack flexibility, i.e., no parameters to
adjust, with which potential issues encountered on highly-distorted grids can be resolved. A node-averaging-
based GG method as described for tetrahedral grids in Ref.[11] is consistent on arbitrary tetrahedral grids and
can be applied to other types of grids [18] at a cost of further increasing the stencil. The LSQ method is a
very popular method for unstructured grids, where the gradients are computed as a solution to a LSQ problem
of fitting a polynomial over solution values in nearby cells. Many variants exist, depending on how the LSQ
problem is weighted, typically by the distances from the cell of interest to its neighbors. The LSQ method is more
flexible than the GG method in that it is designed to be exact for linear functions on any type of grid, and also
can be extended to high-order by fitting high-order polynomials. A drawback is, however, that high-order LSQ
methods require large stencils, thus being less attractive for parallel implementation and for the construction of
effective implicit solvers. Moreover, even the linear LSQ method requires a careful construction of the stencil: a
cell at a corner may have only one neighbor, which leads to an ill-posed LSQ problem, and additional cells need
to be added. Even more critically, it has been shown in Ref.[19] that finite-volume schemes with LSQ gradients
computed over face neighbors only are unstable, especially in three-dimensional tetrahedral grids. This is a
rather disappointing result. To construct a stable finite-volume scheme, the LSQ stencil is required to involve
cells beyond face neighbors (i.e., non-compact), but a robust guiding principle to select a minimal set of extra
cells is still missing although some progress has been reported in Refs.[1, 20]; Or a nonlinear algorithm such as
a gradient limiter may be employed to maintain the stability [21, 22]. A hybrid method that combines the GG
and LSQ methods is described in Ref.[3]. Although impressive results are reported for relatively regular grids,
this approach does not extend the stencil beyond face neighbors and therefore cannot address the stability issue
on tetrahedral grids. Note that Ref.[3] demonstrates stable finite-volume solver convergence with the hybrid
gradient method for quadrilateral and mixed grids, for which a finite-volume solver is known to be stable [19].
In this regard, Ref.[23] proposed a new promising approach called the variational reconstruction (VR) method.
In this method, a globally coupled system of linear equations for gradients is derived by minimizing the solution
jumps at faces. The system is iteratively solved along with a finite-volume flow solver. If one iteration is
performed for the gradients per solver iteration, then the cost per iteration is almost the same as the explicit
methods such as the GG and LSQ methods, or more efficient than LSQ methods with extended stencils beyond
face neighbors. The stability issue is effectively circumvented by the gradient stencil spanning the entire grid
[24, 25]. A further advantage lies in simple extensions to high-order through minimizing the jumps of high-order
polynomials. Inspired by the VR method, we explore a similar implicit gradient methodology, but with a totally
different approach to deriving an implicit gradient system.

In this paper, we propose to derive a gradient method from a discretization of a hyperbolic diffusion system.
In the hyperbolic diffusion method [26], the diffusion equation is converted to a hyperbolic system by adding
extra variables corresponding to the solution gradient, and then the system is discretized by upwind methods.
The discretization represents discrete approximations to the diffusion equation and equations for the gradient
components. A system of gradient equations are then obtained by assuming that the numerical solution is given
and thus ignoring the diffusion residual. In particular, if we consider a cell-centered finite-volume hyperbolic
diffusion scheme, the resulting gradient system becomes a globally-coupled linear system for the cell gradients
with the Green-Gauss gradient method on the right hand side. Unlike the conventional Green-Gauss method,
the resulting method is exact for linear functions on arbitrary grids. Furthermore, the relaxation time associated
with the hyperbolic diffusion formulation and a one-parameter-family of source term quadrature formulas provide
ways to control the gradient algorithm. For example, there is a special definition of the relaxation time that
leads to fourth-order gradient accuracy on a regular grid. In this paper, we illustrate the idea of deriving a
gradient method from a hyperbolic diffusion scheme, and investigate the performance of the derived implicit
Green-Gauss method for various unstructured grids, including highly-distorted grids. Targeting applications
to second-order finite-volume schemes, we focus on gradient algorithms that are exact for linear functions on
arbitrary grids.

The paper is organized as follows. In Section 2, we describe a second-order cell-centered hyperbolic diffusion
scheme. In Section 3, a gradient algorithm is derived from the hyperbolic diffusion scheme. In Section 4, the
gradient method is analyzed for regular grids. In Section 5, three ways to deal with boundaries are discussed. In
Section 6, numerical results are shown and discussed. Finally, in Section 7, we conclude the paper and discuss

future developments.

2 Hyperbolic Diffusion Scheme

In this section, we follow the hyperbolic method [26], and construct a second-order cell-centered finite-volume
discretization for a hyperbolic diffusion system. The resulting residual will serve as the basis for deriving a
gradient method as discussed in the subsequent section.

2.1 Hyperbolic Diffusion System
In the hyperbolic method [26], the steady diffusion equation:

0 = v(Opzu + Oyyu), (1)

where v is a constant diffusion coefficient and u is a scalar solution variable, is discretized in the form of a
first-order system:

1
Oru=v(0up +0yq), Orp =7 (Osu—p), 0rq= 7 (9yu—aq), (2)
T
where 7 is a pseudo time, and T;. is called the relaxation time. The extra variables p and ¢ correspond to the
solution gradient components, and are called the gradient variables. For dimensional consistency [26], we set

L7
T’r‘ = 77 (3)

where L, is a length scale to be discussed later. The system is equivalent, with the pseudo-time derivatives
dropped, to the diffusion equation. Therefore, a consistent discretization for the diffusion equation (1) is obtained
by discretizing the first-order system and then dropping the pseudo-time derivatives. The first-order system is
written in the vector form:

O-u+ 0., f +0yg8 =s, (4)
where
U —vp —vq 0
u=|p |, f=| /T |, g= 0 , s=| —p/T. |. (5)
q 0 —u/T: —q/T;

This system is hyperbolic in 7, and therefore can be discretized by methods for hyperbolic systems, e.g., upwind
methods [26].

Remark: The system (4) is valid for a constant diffusion coefficient. For nonlinear diffusion equations, a
nonlinear hyperbolic formulation must be used, which was first introduced in Ref.[27] for the compressible
Navier-Stokes equations, and later applied to nonlinear diffusion equations [28, 29]. These formulations use the
diffusive fluxes as additional variables, and may be employed to derive algorithms for computing diffusive fluxes
instead of gradients. Such a reconstruction method can be useful for some applications, e.g., problems with
interfaces through which the diffusive flux is continuous [30], and should be explored in future. In this work, we
consider only the linear diffusion equation as it is sufficient to derive a gradient algorithm that is general and
can be applied to any problem or discretization scheme, where gradients need to be computed, including Euler
and Navier-Stokes schemes.

2.2 Residual

We discretize the first-order hyperbolic system (4) by a cell-centered finite-volume discretization on unstruc-
tured grids as shown in Figure 1, where the residual is defined as an approximation to the system (4) integrated
over a computational cell j by the midpoint rule:

Res; = Y _ cﬁjkAjk—/ sdvV, (6)

ke{k;} Vi

Figure 1: Stencil for cell-centered finite-volume discretization.

where {k;} is a set of face neighbors of the cell j, Ajj is the length of the face across j and k, Vj is the area
of the cell j, and the source integration will be discussed later. The numerical flux ®; is given by the upwind
flux (see Ref.[31]):

1 1
i = 5 lEa(ur) +fa(up)] - 5 |Anf (up —ur)
~V(pnr, + Prg) Wn — g
_ 1 7i(uL tur)ie | — 2 (pup — Pop)ite (7)
2 TT 2Lr R L)
1 .
——(ur, + ug)ny, (Png — Pnr)iy

T,
where A,, = 0f, /0u, f, = fn, + gn,, Nj; = (Mg, ty) is the unit vector normal to the face pointing from j to k,
Pnr = (PrL.qr) - Djk, and ppp = (Pr, ¢r) - Rjix. The left and right states are computed as
up =uj + (9, ¢5) - AXjm, ur = ug + Pk, Gi) - AXpm,
PL ="rj, PR = Dk (8)

qr = gy, qr = 4k,

where Axjp, = X — Xj, AXpy = X — Xp, Xy, is the face-midpoint location, and x; and xj are the centroid
coordinates of the cells j and k, respectively. The above face reconstruction corresponds to the first-order
version of Scheme II in Ref.[31], which is an economical version of the hyperbolic diffusion scheme that does
not require gradient reconstruction for the solution u. For the source term discretization, to better control the
gradient algorithm to be derived later, we employ the following formula:

1 R
/ sdV =5 Y {e;s;+ (1= ¢j)si} (AXjm - D) Aji, (9)
Vi 2 ke{k;}

where ¢; is a parameter defined in the cell j. This formula is exact for constant (p,¢) and thus for linear
functions of w.

In the residual (6), the pseudo time derivatives have been dropped, and therefore it is a consistent ap-
proximation to the diffusion equation (1) in the form of the first-order system. To see this, we write out the
components of the residual, Res;:

v
RCSj(l) = — Z |:V(an +an) + f(uR — UL) Ajk7 (10)
ke{k;} "
1 X N X Vi
Resj(2) = |—5~ > (ur +ur)ie + Le(Pag — Prr)ie + {eps + (1= ¢5)pk} (AXjm -)] Aji 7 (11)
T kef{k;} r
= ; ; ; v,
Resj(3) = | =51~ [(ur +ur)fty + Le(Png = Pap)ity +{cjq5 + (1 = ¢j)an} (Axgm - Bjw)] Ajr | 7. (12)
L 7 ke{k;} "

It is clear, since jump quantities will vanish in the grid refinement, that the discretization is a consistent
approximation to the diffusion equation written as a first-order system:

Res;(1)/V; = —v(0xp+0yq)+T.E., (13)
Res;(2)/V; — —Ti(awu_)+ T.E., (14)
Res;(3)/V, — —Ti(ayu—q)+T.E., (15)

where T.FE. denotes a truncation error. Note finally that the residual vanishes for linear functions of u and thus
constant (p, q) for any L, and c;.

As demonstrated in the previous papers, the above hyperbolic scheme has significant advantages over con-
ventional diffusion schemes: superior gradient accuracy on irregular grids and O(1/h) speed-up in iterative con-
vergence, where h is a typical mesh spacing. The speed-up is achieved by the elimination of second-derivatives
and a unique scaling of L,: L, = O(1), e.g., L, = 1/(2m), which was derived to optimize error propagation
[26, 31]. The scheme described above corresponds to DG(POP1)+DG(PO0) in Ref.[22], and Hybrid P1+P0 in
Ref.[32], and is known to achieve second-order accuracy in u and first-order accuracy in p and ¢. It should be
noted that these accuracy orders are exceptional and better than the node-centered counterpart, which gives
first-order accuracy for all variables [31]. See Refs.[28, 29, 31, 33, 34, 35, 36] for further details on the hyperbolic
method.

The hyperbolic method has also been found useful in the derivation of conventional diffusion schemes.
Refs.[37, 38] demonstrate that a robust and accurate scalar diffusion scheme can be derived from a hyperbolic
scheme by discarding the residual components corresponding to the gradients. For example, in the scheme
considered above, a scalar diffusion scheme is obtained if we discard Res;(2) and Res;(3), and instead reconstruct
the gradients from the solution u, e.g., by a LSQ method. The resulting scheme, which consists of Res;(1) and
the LSQ gradients, is a conventional diffusion scheme. In this approach, the relaxation time is defined as
T, = L?/(a?v) where « is a free parameter [37, 38], so that the dissipation coefficient becomes av/L, instead
of v/L,. This dissipation term is called a damping term as it behaves as a high-frequency damping term as
shown in Refs.[37, 38]. The damping term has been found to be essential to robust and accurate computations
on highly irregular grids, where L, is defined by

1)
Ly = 5leji x|, ejn = x = x;, (16)

where |ejj, - ;| is a skewness parameter and has the effect of increasing the damping for highly-skewed grids.
It has also been shown in Refs.[37, 38] that there exists a special value of « that improves the order of accuracy
from second order to fourth order on regular grids, not only for finite-volume methods but also for discontinuous
Galerkin, and spectral-volume methods. See Ref.[39] for the extension to the compressible Navier-Stokes equa-
tions, Ref.[40] for the effects of damping on iterative convergence of implicit viscous solvers, and Refs.[41, 42, 43]
for applications to three-dimensional practical turbulent-flow solvers.

In this paper, we explore the alternative. Namely, we discard Res;(1) by assuming that the solution wu is
given, and solve the remaining residual equations, Res;(2) = 0 and Res;(3) = 0, to compute gradients for a
given solution. This is the new approach to deriving gradient algorithms as further discussed in the next section.

3 Derivation of Gradient Algorithm

To derive a gradient algorithm, we assume that the primal solution w is given at cells by some other means,
e.g., a known function or a numerical solution for any problem. Then, we can ignore Res;(1), and use the rest
of the residual equations to determine p and g¢:

1 R . .
A [(ur +uR)fe + Le(Pnp — Pnp)fe — {¢jp; + (1 — ¢j)pr} DX - D] Ajp = 0, (17)
7 ke{k;}
1 . . .
oV [(ur +ur)fy + Le(Pnp — Pnp)ly — {¢iq5 + (1 = ¢)qr} AXjm - D] Aj, = 0. (18)
7 ke{k;}

These residuals form a globally-coupled linear system for the gradients, which can be expressed at the cell j as

Mg+ Y. Mg, =b;, (19)
ke{k;}
where
1 AZimfe AYimiy n2 g, [Axip, - Dig 0 |
ij = — Z — ! ’ LT Y + Cj ! ! A]'k, (20)
2V Azjmiy, Ayjmh fphy 02 0 AXj, - 1,
T ke{k;} LjmTy YjmTy z Ty Yy L gm - Wik |
1 Al’km’ﬁ,w Aykm’flz [’fli ﬁrﬁy [Aij . ﬁjk 0)
Mjk = — < — R R — L, . R + (1 — Cj)) Ajk, (21)
2V; AZpmTy AYpm Ty gy nz i 0 AXjp - N |
pj Pr] 1 (uj +)iy
g = P gL = 5 bj = W Z ~ Ajk' (22)
q Q| T kethyy | (ug 4wy

The right hand side b; is the GG gradient over the cell j, and the gradients are coupled with neighbors on the
left hand side, meaning that an implicit extension of the GG gradient method has just been derived. In this
paper, the method thus derived is referred to as the implicit Green-Gauss (IGG) method. The IGG method
is similar to the iterative Green-Gauss techniques in Ref.[4] in that both are implicit, but quite different in
that the IGG method is derived from a hyperbolic diffusion scheme, includes a jump term derived from the
dissipation term, and is a more flexible algorithm having adjustable parameters in the source quadrature and
the jump coefficient, which will be discussed further below. The IGG method is also similar to the VR method,
but different in that the IGG method has the GG gradient on the right hand side while the VR method has
a LSQ gradient on the right hand side (see Appendix B). It is emphasized that the diffusion equation has no
influence on the IGG method because the diffusion equation residual has been ignored and is not used at all.
The IGG method is a purely mathematical algorithm for computing gradients for a given function or any kind
of numerical solution.

Note that the gradient system (19) is exact for linear functions: p and ¢ that satisfy the gradient system are
exact for linear w. This means, just like linear LSQ methods, that the gradients are obtained with first-order
accuracy on irregular grids for a given function or a second-order accurate numerical solution (i.e., a numerical
solution obtained by an algorithm that is exact for linear functions). Second-order accuracy may be expected
on regular grids by error cancellation (see Appendix A). Note also that M, can be simplified, by the identity:

Z Am]mﬁx Ay]mﬁm 1 1 Z ijm sk 0 1 V‘] 0 ()
A U A= - : 23
ke{k;} AZjmity AYjmity ke{k;} 0 AXjm - Dk 0V
where n;;, = 0, A, as
G —1/2 0 1 n o Ty
M;; = s 2 Ll o A (24)
0 ¢ —1/2 T kefk;) Nty Ty

The gradient system can be solved efficiently by iterative methods. The block Jacobi iteration can be performed
in the form:

g}’“ =1 - Z Cjkgﬁ + cjk(uj + Uk) s (25)
ke{k)j}
where
_ 4 1 .
Cjr =M 'Myi, cjx = ijlfv > B, (26)
T ke{k;}

or in the relaxed form:

g;.”rl =g/ tw||— Z Cirgr +cin(uj +ur) | — g7 |, (27)
ke{k;}

where w is a relaxation factor, and n is the iteration counter. In this work, we update g; immediately in looping
over cells, which corresponds to the Gauss-Seidel iteration. The relaxation factor w is set to be 1.0 in this work,
but a smaller value can help the method converge when w =1 fails (e.g., for some extremely irregular grids); it
may be adjusted based the residual behavior during the iteration for robustness. Typically, a couple of orders
of magnitude reduction in the linear residual is sufficient to obtain the expected accuracy, except for a special
case where the method yields fourth-order accuracy as we will discuss later.

The IGG method requires to store in each cell the coefficient matrix C;; and the vector cj for all the face
neighbors. This appears a large storage requirement, but it is exactly the same as LSQ methods with extended
neighbors. Considering cells away from boundaries, we find that a LSQ method with face neighbors and their
face neighbors requires 12 and 9 LSQ coeflicient vectors to be stored in a cell on regular quadrilateral (Figure
5(a)) and triangular (Figure 8(a)) grids, respectively. On the other hand, the IGG method, as it depends only
on the face neighbors, requires 4 and 3 matrices Cj; and vectors cji, on regular quadrilateral and triangular
grids, respectively, which are equivalent to 12 and 9 vectors in total. Therefore, the IGG method does not
require any additional storage. In terms of computational cost, this means that the IGG method costs exactly
the same number of vector-scalar multiplications as the LSQ method. The same is true in three dimensions. In
realistic flow simulations, if three different LSQ methods are used for inviscid, viscous, and source terms, the
storage requirement and the cost are tripled. Then, the IGG method, if a single method applies to all terms,
will be three times more efficient.

In the gradient algorithm, we define the parameter L, as

Ly = agleji - A, (28)

where a4 is a constant. There exists a special value of o that will achieve fourth-order accuracy in the gradients
on regular grids. Further discussion will be given in the next section.

For regular skewed grids, such as equilateral-triangular grids or right isosceles triangular grids, the Gauss-
Seidel iteration converges relatively well although it slows down slightly compared with Cartesian grids. In these
skewed grids, interior cells have one perfectly or nearly orthogonal face. A serious convergence difficulty may
be encountered in the case that cells have all skewed faces, e.g., for high-aspect-ratio irregular triangular grids.
To increase the diagonal dominance and improve iterative convergence for these cases, we define c; as follows:

cj =35(s; — 1)% — (55 — 1) + 1, (29)
where
0.755;7”” +0.25s7% if [sTeT — 1] < 1076,
sj = _ (30)
sy otherwise,
s;m" = mkin &k - D[, ST = max €&k - D, (31)

where &, = eji/|e;i|, and |€;, - Nji| is the skewness measure at the face between the cells j and k, which
decreases towards zero as the skewness increases. Equation (30) is designed to yield a very small value of s;

0 0.5 1
Sj

Figure 2: Equation (29): ¢; as a function of the skew-
ness measure s;.

(thus a large ¢;) for cells having all highly-skewed faces. As we will see later in numerical results, it is the
skewness, not the cell-aspect-ratio by itself, that greatly affects the performance of the IGG method; but cells
with all faces skewed arise typically on high aspect ratio grids. Figure 2 shows the variation of the function (29).
In this way, we have ¢; = 1 for Cartesian grids, a slightly large value for cells with both skewed and non-skewed
faces, and a very large value for cells with all highly-skewed faces.

Finally, we emphasize again that the IGG method is a general gradient method applicable to any problem,
where gradient computations are required whether for a given function or for a numerical solution. It can be
directly applied to each variable in a finite-volume scheme for the Euler or Navier-Stokes equations, which will
be discussed in a separate paper. It is also possible to derive a gradient algorithm from a discretization of a
hyperbolic Navier-Stokes system [35, 44, 45]. In this case, since the extra variables used to form a hyperbolic
viscous system are viscous stresses [44] (velocity gradients scaled by the viscosity [35, 45]) and heat fluxes, a
system of equations will be derived not for gradients but for the viscous stresses and heat fluxes. Such an
algorithm may turn out to be useful for problems where gradients are discontinuous but the viscous stresses are
continuous (e.g., multi-phase flows) as briefly discussed in Ref.[30].

4 Regular Quadrilateral Grids

(4,5 +1)
hz
(i,j—1)

Figure 3: Regular quadrilateral grid.

On a quadrilateral grid uniformly spaced in each coordinate direction as in Figure 3, we have ¢; = 1 and the

gradient system decouples as

1/1 1 1/1 Ui41,j — Ui—1,5
3 <2 - %) pio1y + (2 + %) piity <2 - ag) Py = =g (32)

1 1 1 1 1 Uj,j4+1 — Ugj—1
(30 momr (a0 o 5 (5= e = 33)
Y

Each system is strictly diagonally dominant for ay > 0:

1 1/1 1/1 1
§+Oég >§ 5—049 +§ §—Oég zi—ag for 0<Oég<1/2,

1 1/1 1/1 1
(2+Ozg)>—2<2—ag>—2<2—ag>—ag—2 for 01921/2,

and therefore the Gauss-Seidel iteration is guaranteed to converge. Of course, it can be solved alternatively by
an efficient tridiagonal solver. It is easy to see from Equations (32) and (33) that there is a special value of ay:

(34)

1

O[g:

which eliminates the implicit coupling and leads to the gradient system reduced to the central difference formulas:

U; N Uj— i
pij = %7 (36)

Wi g1 — Wij—1
= 37
q 3] th ()

A better choice is
1

ag = 6, (38)

which yields the classical fourth-order compact formula [46] for both p and g¢:

1 2 1 Witl,j — Ui-1,
=Pi-1j + 3 Pij + ZPit1; = : =, 39
6p 1;]+3pd+6p+1’] th ()
1 2 1 Uj, 41 — Ug5—1
S PP A 5.2 Tk e 40
6q7] 1+3q7]+6q7]+1 2hy ()

The superior accuracy, however, comes with an additional cost if iterative methods are used to solve the system.
The tolerance needs to be at least eight orders of magnitude reduction in order to observe fourth-order accuracy.
Another important remark is that the IGG method with oy = 1/6 achieves fourth-order accuracy through the
cells adjacent boundaries (where the classical fourth-order compact formula does not apply) if the boundary
flux is evaluated directly by the boundary value of the solution as discussed in the next section.

The equivalence to the classical compact scheme implies that the IGG method can be considered as a compact
finite-difference scheme extended to unstructured grids. The method can be used to compute a flux divergence
of a conservation law, which can then be integrated in time to generate a time-stepping scheme. Such a scheme
may be explored in future. Here, we apply the modified-wavenumber analysis typical in compact schemes [47]
to the IGG method, and discuss its approximation property. Following the analysis in Ref.[47], we consider a
Fourier mode, u = ugexp(ifx/h;), where ug is the amplitude, and f is the wavenumber ranging from 0 to 7.
The exact derivative d,u is i8/h,u. Substituting p = i’ /h,u, where 3’ is the modified wavenumber, into the
IGG residual (32), and solving for ', we obtain

—2sin(p)

B = (2ag — 1) cos(B) — (24 + 1)’

(41)

which is plotted for several different values of g in Figure 4. Clearly, the gradient is better approximated
with a broader range of wavenumbers with a smaller value of «, and the approximation reaches fourth-order

N
W

[\

Modified wavenumber: 3’
p— (@)

e
W

og =2

0 0.5 1 1.5 2 2.5 3
Wavenumber: (3

Figure 4: Modified wavenumber versus wavenumber. The
black thick line indicates the exact relation: 8’ = §.

accuracy with ag = 1/6. Further decreasing o, leads to more frequencies picked up although the order of
accuracy reduces to second-order. These plots indicate that the gradient approximation will be smoother for
a larger value of o as ' becomes significantly smaller than the exact value § for higher wavenumbers. It is
interesting to note that the parameter oy comes from the dissipation term in the generating hyperbolic diffusion
scheme, and still plays a role of providing dissipation in the gradient algorithm. Later, we will show that the
IGG method can yield a smooth gradient variation for a discontinuous function with a larger oy, and it allows
an implicit finite-volume solver to converge for a discontinuous solution with mild oscillations.

5 Boundary Treatment

As mentioned earlier, the IGG method is a purely mathematical algorithm for computing gradients at cells
for a set of values {u;} given at cell centers. Therefore, there is no physics involved in the gradient computation,
and no boundary conditions are required. The set of values may be given by a known function or by a numerical
scheme solving a target partial differential equation; they enter the right hand side of the gradient system, i.e.,
the vector b; in Equation (22), and serve as an input to the gradient system. Because the vector b; involves
the arithmetic average of the values across a face, the algorithm needs to be modified at a boundary face, where
a face neighbor is not available. The focus here is, therefore, on how to evaluate the averaged value (u; +uy)/2
at a boundary face, where uy, is not available, and modify M;; to preserve the design accuracy.

To derive suitable boundary modifications, it is convenient to re-derive the gradient system from the hyper-
bolic diffusion scheme with the Dirichlet or Neumann condition associated with diffusion problems imposed at a
boundary face. Let us return, for a moment, to the diffusion problem and the hyperbolic scheme as described in
Section 2. In the hyperbolic method, boundary conditions can be imposed strongly [26, 31] or weakly [22, 28].
For cell-centered methods considered here, the latter would be more suitable. Also, the Dirichlet condition is
useful for our purpose, which can be imposed weakly through the numerical flux (7) with the right state ug
defined as

upr = (UbapL7QL)7 (42)

where u;, is the value given by the boundary condition, and (py, qr,) are simply the copy of the left state as the
gradient is not known at a boundary. This completes the residual equations (10)-(12) over a cell adjacent to a
boundary. Then, to derive a gradient system, we ignore the residual equation for the diffusion equation, and

10

build a gradient system with the rest of the residual equations:

o | 2 Am + X] =0 (13)
7 \ke{kinty ke{kb}
1 n

—o | 2o Uk Am + Y A =0, (44)
7 \ke{kinty ke{k?}

where ¢¥if and ¢" are fluxes at interior faces {k}"'} of the cell j, and (bé’- . and w?k are fluxes at boundary faces

{k:;’} of the cell j:

ﬂt = (ur +ur)he + Lr(Png — Pnp)Me — {cjp5 + (1 — ¢5)pr } (AXjm - D), (45)

i = (ur + up)ie — pi(Axjm - k), (46)
;ﬁt = (ur +ur)y + Le(Png — Pup)fy — {¢jq5 + (1 = ¢j)ar} (AXjm - D), (47)
Ui = (up 4wy — ¢ (A - i), (48)

where uj, denotes the boundary value at the k-th boundary face in {k;’} Note that the gradient system (43)
and (44) has nothing to do with the diffusion equation nor the Dirichlet boundary condition. It is just a system
that determines gradients at cells for arbitrarily values of u given at cell centers and at the midpoints of the
boundary faces. The system can be written in the form (19) with

M. — _ J j VI, y e j j A,
73 oV N “ PN ~2 J N J
J ke{kint} ijmny ijmny Ny le 0 Aij Sy
1 AZjmNy AYjmiy AXjp, - Dy, 0
+ oo 2 { A)] Az, (49)
7 ke{kt} Azjmiy Ayjmiy, 0 AXjpp - D
1 (uj + uk)ﬁw 1 (’ILj + Ub)ﬁx
bi=g 2 Ajt 5 D Ajps (50)
J P) ~ 3) N
ke{kint} (uj + ug)ny, ke k) (uj + up)fty

and M, = 0 for k € {k?} This is the method derived naturally from the hyperbolic scheme, and in this paper
this boundary procedure is referred to as B0. This procedure requires the boundary value wu; to be available.
If the gradients are sought for a given function u(x,y), the boundary value can be directly computed by the
function. However, for numerical solutions, the solution values are always available only at cell centers. If
boundary values are available, e.g., from a no-slip condition in solving the Navier-Stokes equations, then u;, can
be specified, but that is not always the case (e.g., no values are specified in a supersonic outflow condition).

In the case that no boundary values are available, we can set

Up = ur, (51)
which gives
1 Azjmite Ayjmite ny o gy AX i, - g, 0
Mj; = 57 > oS- .) L, o, |ty A
J ke{k;"f} ijmny ijmny Mgy oy 0 Aij n;g
1 Azjmfly Ayjmiy AXjp, - A, 0
T o5 > {—2 . .] + Ajp, (52)
7 hefrty AZjmity AYjmiy 0 AXjpy - Djg

11

1 (uj + up)nyg 1 iy
b; = — Z R Aji + v Z Ajr, (53)

V; .
T eeqrinty | (uj + uk)iy T ke(kty [Uity

and M, = 0for k € {k’?} This procedure is referred to as B1. It is still exact for linear functions, and therefore
second /first-order accuracy is maintained on regular/irregular grids. This procedure is useful especially when
the IGG method is used to compute gradients required for the solution reconstruction in a finite-volume scheme.
Note that physical boundary conditions in a problem that the finite-volume scheme is trying to solve need to be
satisfied by the finite-volume scheme, not by the gradient method. Therefore, the gradient method is applicable
as long as numerical solutions are available at cell centers. If solution values are available as a physical boundary
condition (e.g., inflow condition), the gradient method can incorporate them, although it is not necessary, by
the BO procedure or the B2 procedure discussed below. However, such is not always possible: e.g., no solution
variables are specified at a supersonic outflow. The procedure Bl is useful because it does not require any
boundary solution information. Taking u, = uy, simply means that the gradients will be computed based on a
set of values {u;} given at cell centers only, without any reference to the values at the boundary. Therefore, the
procedure B1 can be applied to finite-volume schemes for any physical boundary conditions. It is possible that
the resulting gradients may be under-estimated if the value u changes extremely rapidly from the cell center
to the boundary face within a cell (e.g., a cell adjacent to a viscous wall in a highly under-resolved boundary
layer) because the algorithm does not see the true boundary value. However, such an under-estimated gradient
may be considered as more accurate or consistent. For example, finite-volume solutions for a high-Reynolds-
number boundary-layer flow are known to converge to a slip flow on highly under-resolved mesh [48]; thus an
under-estimated gradient is more consistent with the nearly-inviscid slip-flow solution.

If the boundary values are available, we can also directly evaluate the boundary fluxes qﬁ? . and w;?k, which
corresponds to setting

up = up = Up, (54)

which leads to

1 AT imNe AyYimhg N2 Agh AXip - g 0
Mﬂsz{ BN e P ;
J ke (kint) Ay AYjmhy | Mgy Ty 0 AXjm - Dy
1 AXip, - Mg 0]
AN I | A (55)
7 ke{k?} 0 Ay - R |
1 (uj + ur) g 1 Up Ty
b; = — Z Ajp+ — Z Ajr, (56)
(o . 7 Vi A
ke{kint} (uj + up)fy ke{kt} | UbTly

and M, =0 for k € {ké’} This procedure is referred to as B2. It will be shown in numerical experiments that
fourth-order accuracy is achieved only with this boundary procedure on regular quadrilateral grids.

Finally, it is possible to derive a gradient system from the hyperbolic diffusion scheme incorporating the
Neumann condition that specifies the gradient normal to the boundary [22, 28]. The resulting system may be
useful if one wishes to impose the Neumann condition (e.g., adiabatic wall) not only in the finite-volume scheme
but also in the gradient computation [49]. Here, such a constrained gradient computation is not considered here
because physical boundary conditions for the finite-volume scheme do not need to be imposed on the gradient
computation and also it is not clear if imposing them on the gradient brings significant benefits for extra work
and storage to keep different gradient systems for different variables in a target system of partial differential
equations with different types of boundary conditions applied to different variables.

6 Numerical Results

First, we investigate the IGG method for computing gradients for a known function with various types of
unstructured grids, and compare it with other gradient methods. The investigation focuses on gradient accuracy
and iterative convergence behavior for the IGG method. Then, we study its performance as an alternative to
the GG or LSQ methods in an implicit finite-volume solver for the advection-diffusion and Burgers’ equations.

12

6.1 Gradient of Functions

In this section, we investigate the performance of the IGG method for computing gradients for a known
function on various types of unstructured grids. Our target gradient scheme is the IGG method with oy =1/6
and the boundary closure B2 (i.e., boundary flux evaluated by the given function value), which is denoted by
IGG. For IGG and VR iterations, we set the tolerance to be eight orders of magnitude residual reduction in the
Lq norm for regular quadrilateral grids and three orders for all other grids. Errors are measured in the vector
L1 norm separately for interior and boundary cells. The boundary cells are defined as those having at least one
boundary face. Note that the gradients are considered as point values defined at the cell centroid. Results are
compared with those obtained by the GG method, a LSQ method, and the VR method. The VR method used
in this study is described in Appendix B. The LSQ method is a weighted non-compact LSQ method with face
neighbors and their face neighbors as described in Appendix C.

6.1.1 Isotropic grids

We consider the following function:
u(z,y) = sin(mzx) sin(ry), (57)

defined in a unit square domain, and compute its gradients by the IGG method and others on uniform quadri-
lateral grids and irregular triangular grids.

Cartesian grids: Results for the quadrilateral grids are presented in Figure 5. Figure 5(a) shows the coarsest
grid and the contours of the function (57). Iterative convergence results are shown in Figure 5(b), where the
maximum of the two residuals for p and ¢ normalized by the initial residuals are plotted versus the iteration
number. The IGG method with two other boundary closures are also considered for this problem: IGG-B0 and
IGG-B1. As can be seen from the figure, both the IGG and VR methods converge very rapidly and the IGG
method converges slightly faster. Convergence results for the IGG-B0 and IGG-B1 methods are almost identical
to those in the figure for IGG, and therefore are not shown.

Error convergence results are given in Figures 5(c) and 5(d) for the interior cells. As expected, the IGG
method yields fourth-order accuracy. On the other hand, the IGG-B0O and IGG-B1 methods give third-order
accuracy. All other methods yield second-order accuracy as expected on regular grids. Results for the bound-
ary cells are shown in Figures 5(e) and 5(f). All methods, except the LSQ method and the IGG method, are
second-order accurate. The LSQ method gives results close to first-order accuracy, which is typical since the
LSQ stencil is not regular at boundary cells and therefore error cancellations cannot be expected. Remarkably,
the IGG method gives fourth-order accuracy in the boundary cells, where the classical fourth-order scheme does
not apply. In effect, the IGG method automatically forms a fourth-order accurate scheme at these cells when
closed by the B2 boundary procedure.

Irregular triangular grids: We consider fully irregular triangular grids for the same function. The coarsest
grid is shown in Figure 6(a). As in the previous case, the IGG and VR methods converge rapidly as shown in
Figure 6(b). Error convergence results are given in Figure 6(c¢)-6(f). All methods except the GG method yield
first-order accurate gradients as expected. Note that the best we can expect is first-order accuracy on irregular
grids for methods that are exact linear functions. The GG method is inconsistent as it is not exact for linear
functions on these grids, which can be clearly seen in the results.

6.1.2 High-aspect-ratio grids

In this section, we consider high-aspect-ratio grids in a domain (z,y) € [0, 1] x [0, 0.0005] and the following
function:

u(z,y) = sin(mrz) sin(40007y), (58)

which models a typical boundary layer problem, where the solution variation is predominant in the direction
of small grid spacing and an anisotropic grid is specifically tailored to represent the solution anisotropy. Four
types of grids are considered: regular quadrilateral, regular triangular, isosceles triangular, and irregular trian-
gular grids.

13

Regular quadrilateral grids: The coarsest grid and the function contours are shown in Figure 7(a). Results are
very similar to those for the Cartesian grids discussed in the previous section: rapid iterative convergence as
in Figure 7(b); fourth-order accuracy by the IGG method, third-order accuracy by the IGG-BO and IGG-B1
methods, second-order accuracy by all others in the interior cells as shown in Figures 7(c¢) and 7(d); second-order
accuracy for all in the boundary cells as in Figures 7(e) and 7(f), except the IGG method, which is fourth-order
accurate even in the boundary cells.

Regular triangular grids: Figure 8 shows the results for regular triangular grid with the coarsest grid shown in
Figure 8(a). The IGG and VR methods converge rapidly as shown in Figure 8(b); with the VR method being
slightly faster. Error convergence results shown Figures 8(c)-8(f) indicate that all methods yield first-order
accuracy both in the interior and boundary cells. Exceptions are that the LSQ method is second-order in dyu,
and the IGG method give nearly second-order accuracy in the interior cells.

Isosceles triangular grids: Results are shown in Figure 9 for isosceles triangular grids, which are generated
from equilateral triangular grids by rescaling the y-coordinates, with the coarsest grid shown in Figure 9(a).
Figure 9(b) shows that the IGG and VR methods converge quickly, and that the VR method converges faster.
As can be expected from the fact that these grids are irregular involving two different types of cell stencils, all
methods are first-order accurate. An exception is that the IGG method is close to second-order in the interior
cells.

Irregular triangular grids: A series of fully irregular triangular grids are considered. The coarsest grid is
shown in Figure 10(a). These grids are highly-skewed in all faces of a cell. This is the case where the IGG
method with ¢; = 1 encountered a significant slow down in iterative convergence. The convergence is greatly
improved with the formula (29), but it is slower than the VR method as can be seen in Figure 10(b). Error
convergence results in Figures 10(c)-10(f) show that the GG method is inconsistent, which is expected, and all
others yield first-order accuracy.

6.1.3 Highly curved grids

In this section, we investigate the gradient methods for highly-curved thin grids, known as high-I" grids in
Ref.[1]. It is well known that accuracy of gradients significantly deteriorates on high-I" grids [2]. To study the
performance of the IGG method, we consider three types of such grids: quadrilateral, triangular, and irregular
triangular grids with the following function:

u(z,y) = sin(1007r + 7 /6) + 0.5sin(6), (59)

where r is the radial distance from the origin and 6 is the angle taken counterclockwise with respect to the
positive z-axis.

Quadrilateral grids: — Curved quadrilateral grids are generated from Cartesian grids by mapping a square
domain to a thin curved domain. In these grids, the nodes are aligned straight from a node on the inner
boundary to the corresponding node at the outer boundary. The domain and the function contours are shown
in Figure 11(a). Figure 11(b) shows a close view of the grid. For these grids, the IGG method converges very
rapidly, but VR method is very slow to converge as shown in Figure 11(c). Error convergence results in Figures
11(d)-11(g) reveal that the VR method is very inaccurate and the LSQ method also gives large errors although
nearly first-order accuracy is observed. The IGG method, on the other hand, yields much lower errors with
first-order error convergence. The GG method also gives accurate results.

Triangular grids: Curved triangular grids are generated from regular triangular grids by the same mapping
as before. Again, the nodes are aligned straight from a node on the inner boundary to the corresponding node
at the outer boundary. The domain and the function contours are shown in Figure 12(a). The close view of
the grid is shown in Figure 12(b). As shown in Figure 12(c), the IGG method took more iterations to converge
compared with the previous cases. The VR method took orders of magnitude more iterations than the IGG
method, and slows down further for fine grids. Error convergence results shown in Figures 12(d)-12(g) show
that the VR method is inaccurate, the LSQ method is slightly better, the GG method is inconsistent in the
interior cells, and the IGG method maintains first-order accuracy for all cells.

14

Irregular triangular grids: Curved irregular triangular grids are generated from irregular triangular grids
by the same mapping as before. In these grids, the nodes are perturbed randomly, and therefore the nodes
are not aligned straight from a node on the inner boundary to the corresponding node at the outer boundary.
The domain and the function contours are shown in Figure 13(a), and the close view is shown in Figure 13(b).
Figure 13(c) shows that the IGG method took more iterations to converge compared with the previous case,
and the VR method converges as slowly as in the previous case. Error convergence results are similar to those
in the previous case. The GG method exhibits inconsistency again, and now even in the boundary cells.

6.1.4 Discontinuous functions

Consider a discontinuous function:

1.0 2 <0.5,
u= (60)
—-1.0 z>0.5,

in a unit square domain (see Figure 14(a)). It can be considered as a limit: lim,_,o+ — tanh(z/€), and the
derivative 0,u has the limit
2
dyu = lim ,M, (61)
e—0T €

which leads to the Dirac delta function with a minus sign. The y-derivative is zero and not considered here. This
example is relevant to applications containing shock waves, for which a finite-volume scheme is often reverted
to first order with gradients ignored for stability and better solution quality. We applied gradient algorithms to
the discontinuous function to compute the gradient on a Cartesian grid. Results are shown in Figure 14. The
GG method gives a very sharp gradient approximation with a finite peak as shown in Figure 14(b). Figure 14(c)
shows that the LSQ method produces a slightly smeared approximation and exhibits a variation in y near the
boundary. The VR method gives a more smeared derivative as in Figure 14(d), resembling the derivative of the
hyperbolic tangent with a finite e. The IGG method was tested with different values of ag: 1/6, 1, and 2. As
discusses in Section 4, the parameter o controls L,, which comes from the dissipation term in the generating
hyperbolic diffusion scheme, and the Fourier analysis suggests that high-frequency components will be greatly
damped for large a. It is expected therefore that a larger value of o, provides an dissipative effect in the
gradients. This behavior is clearly seen in the results shown in Figures 14(e), 14(f), and 14(g) for oy, = 1/6,
ag =1, and ay = 2, respectively. In the next section, we will show that the smoothed gradients computed by
the VR and IGG methods allows an implicit finite-volume solver to converge for a discontinuous solution and
produces solutions with little oscillations.

6.2 Implicit Finite-Volume Solver

In this section, we investigate the IGG method as an alternative to the LSQ or GG gradients in a second-order
finite-volume scheme for a conservation law:

0.f + 0yg = s, (62)
where s is a forcing function. The fluxes are
f=au—vou, g=bu—rviyu, for advection diffusion equation, (63)
u?
f= 5 8=U for Burgers’ equation, (64)

where (a,b) = (1.23,2.57) and v is a constant. A second-order cell-centered finite-volume discretization is given
by

Resj = Z ¢jkAjk — .Sj‘/j. (65)
ke{k;}

The numerical flux ¢, is given by the upwind flux for the advective term and the alpha-damping flux [38] for
the diffusive term:

rva

b3t = 5 Un(un) + Fulur)] = 5 (lanl + %) (um), (66)

15

where f, = fn, +gny, a, = 0f,/0u, a =4/3, L = %|ejk- -1, and
ur = u;j + Vu; - AXjm, up = U + Vug - AXpom. (67)

The gradients Vu; and Vuy, are typically computed by the LSQ or GG methods, and here we apply the VR
and IGG methods as alternatives. The residual equations are solved by an implicit solver,

UMt = U* + AU, (68)
ORes B &
50 AU = —Res(U"), (69)

where k is the iteration counter, U* is the global vector of the solution u at the k-th iteration, and the Jacobian
ORes/0U is the exact differentiation of the residual Res with zero gradients. The linear system above is relaxed
by the Gauss-Seidel method until the linear residual is reduced by an order of magnitude in the L; norm, with
the maximum of 800 relaxations. The implicit solver is taken to be converged when the residuals are reduced
by six orders of magnitude in the L; norm. In the rest of the paper, this implicit solver is referred to as the
conservation-law implicit solver not to be confused with the implicit gradient solvers. Boundary conditions are
implemented weakly through a numerical flux. Note that the numerical flux is formulated such that it naturally
implements a characteristic boundary condition for the advection-dominated cases and Burgers’ equation: by
upwinding, the exact boundary value will not be used if the characteristic is going out of the domain. Further
details on the discretization, the boundary condition implementation, and the construction of the implicit solver
can be found in Ref.[40]. In all the gradient methods, the exact boundary value is not used; therefore, gradients
are computed based only on the numerical solutions available at cells. This implementation corresponds to
the boundary procedure Bl in the IGG method. For the parameter oy, we set ay = 1 unless otherwise
stated; the special value oy = 1/6 is not used since fourth-order accuracy cannot be expected on unstructured
grids. At each conservation-law implicit solver iteration, the IGG and VR iteration is performed once for
all problems. In the VR and IGG methods, the iteration begins with zero gradients at k£ = 0, and continues
without reinitialization until the conservation-law implicit solver converges.

6.2.1 Advection-diffusion

First, we consider solving the linear advection-diffusion equation with v = 1072v/a2 + b2 in a square domain
for the exact solution [50]:

9.2
u(z,y) = cos(2mwn) exp (Wfizw 5) , (70)

where £ = ax+by, n = br—ay. For this problem, the forcing term s is zero. The grids are the irregular triangular
grids used in Section 6.1.1. These grids are relevant to practical unstructured-grid applications, e.g., a far-field
grid. The coarsest grid and the solution contours are shown in Figure 15(a). The conservation-law implicit
solver converged for all gradient methods: GG, LSQ, VR, and IGG; see Figure 15(b) for convergence histories
for the finest grid. The conservation-law implicit solver was found to diverge with the GG gradients, and was
made to converge by increasing the damping coefficient in Equation (66) to o = 5. Tt is, however, the slowest
to converge as seen in the figure. Figure 15(c) shows the same residual convergence in term of the CPU time; it
demonstrates that the use of the VR and IGG methods does not greatly increase the computing time. Figures
15(d), 15(e), and 15(f) show error convergence results in the interior cells for u, dyu, and Jyu, respectively.
Inconsistency of the GG method leads to less than first-order error convergence in u. Other methods achieved
expected orders of accuracy: second-order in u, and first-order in the gradients. Similar results are obtained in
the boundary cells as shown in Figures 15(g), 15(h), and 15(i); the GG method gives first-order accuracy in u
here.

Next, we consider the curved grids in Section 6.1.3: quadrilateral grids relevant to, for example, prismatic
boundary layer grids, and irregular triangular grids relevant to fully unstructured anisotropic adaptation in
boundary layers. The function (59) is set to be the exact solution by the method for manufactured solutions
with the forcing term s; computed numerically. The diffusion coefficient is given by v = 107°v/a2 + b2.

For the quadrilateral grids, the conservation-law solution contours are shown in Figure 16(a). The conservation-
law solver convergence histories are shown in Figure 16(b). The results are shown only for the second coarsest
grid since the effect of high-curvature is more significant on coarser grids. The convergence was very rapid with

16

the LSQ method, and slowest with the IGG method. It is observed that the VR method leads to significant slow
down in the later stage. The corresponding CPU time comparison is shown in Figure 16(c). For this problem,
the LSQ and VR methods lead to the fastest and slowest computing times, respectively. Despite the slower
convergence than the LSQ method, the IGG method gives the lowest level of errors as can be seen in Figures
16(d), 16(e), and 16(f) for the interior cells. The VR and LSQ gradients are very inaccurate, which are almost
inconsistent, and the solution u is nearly first-order accurate. The GG gradients are more accurate, but the
conservation-law solution is again first-order accurate. In contrast, with the IGG method, the solution v and
the gradient are all second-order accurate. Results in the boundary cells are shown in Figures 16(g), 16(h), and
16(i). Again, the IGG method gives the most accurate results, but the solution w and the gradients are both
first-order accurate.

For the triangular grids, Figure 17(a) shows the conservation-law solution contours, and Figure 17(b) shows
the convergence histories for the second coarsest grid. Here, for the GG gradients, the conservation-law implicit
solver diverged with o = 4/3 and conservation-law convergence could only be obtained by increasing the damping
coefficient to a = 80. It can be seen that the conservation-law implicit solver slows down significantly with the
VR gradient. Figure 17(c) shows the residual history versus the CPU time. The fastest conservation-law implicit
solver convergence is obtained with the LSQ method, and the second fastest with the IGG method. The VR
and GG gradients resulted in significantly slower convergence. Error convergence results, as shown in Figures
17(d), 17(e), and 17(f) for interior cells, show that second-order accuracy is achieved for the solution u in all
methods except the GG method, which again gives first-order accuracy with inconsistent gradients. The LSQ
and VR gradients resulted in large errors, but the conservation-law solution is very accurate. The IGG gradients
produced the most accurate gradients, but the solution is not the most accurate. Results for the boundary cells
are given in Figures 17(g), 17(h), and 17(i). As can be seen, the solution u is asymptotically first-order accurate
for all methods. The IGG gradients are very accurate compared with others, but the accuracy of all the gradient
methods deteriorates for finer grids.

To demonstrate the IGG method for highly irregular grids, we consider grids in an annular domain defined
by the inner and outer circles of radii 0.5 and 3.0, respectively, for the solution,

u(z,y) = exp (5(z° +y°)) (71)

which is made the exact solution by the method of manufactured solutions. A series of four grids have been
generated with random diagonal swapping to increase irregularity and create severe skewness. The coarsest
grid is shown in Figure 18(a), where the exact solution contours are over-plotted. The conservation-law implicit
solver has been found to diverge on all grids with the GG method (which is likely to be inconsistent everywhere),
and therefore only the results for other methods are shown. Figures 18(b) and 18(c) show iterative convergence
results for the finest grid. The conservation-law implicit solver converged with the IGG, VR, and LSQ methods.
A slight slow-down is observed for the VR method. Error convergence results are shown in Figures 18(d)-18(i).
Second-order accuracy is observed for the solution and somewhat surprisingly for the gradients as well. No
noticeable differences are seen among the three gradient methods.

Finally, these results demonstrate that the conservation-law implicit solver is stable with the VR and IGG
gradients as expected. The implicit solver was found unstable with the LSQ gradients when a larger weight
was used m = 0.5 (see Appendix C); this is the reason that a small weight m = 0.25 was used in the numerical
study.

6.2.2 Burgers’ equation with a discontinuous solution

To investigate effects of gradient algorithms in the presence of discontinuities, we consider solving Burgers’
equation with s = 0 for an exact discontinuous solution similar to the function (60) with the left and right
states given by 2.0 and —2.0, respectively. The problem was solved on a 32x32 Cartesian grid. All gradient
methods were tested without a limiter, and the conservation-law implicit solver diverged with the GG gradient
method. Therefore, results are shown only for the IGG, VR, and LSQ methods. The parameter oy in the
IGG method is set to be 25.0 for this problem. As shown in Figure 19(a), the conservation-law implicit solver
converged with all the three gradient methods. The conservation-law solution plots are given in Figure 19(b)
for IGG, Figure 19(d) for VR, and Figure 19(f) for LSQ. The gradient d,u is plotted in Figures 19(c) for IGG,
19(e) for VR, and 19(g) for LSQ. The solution involves over/under-shoots near the discontinuity in all cases,
but is more accurate with the IGG method, which generates a much smoother gradient variation across the
discontinuity. The results indicate that the IGG method can be tuned to smooth the gradient, in a manner
somewhat similar to a gradient limiter, thereby allowing the conservation-law implicit solver to converge and

17

produce a solution with little oscillations. A similar approach has been proposed for the LSQ method in Ref.[51],
where the LSQ weights are adaptively computed based on a local solution to develop a shock-capturing finite-
volume scheme. Note, however, that monotonicity is not guaranteed for the IGG method because it is still a
linear algorithm and such cannot lead to monotone second-order solutions by Godunov’s order barrier theorem
[52]. To guarantee monotonicity, the parameter o, needs to be chosen adaptively based on a local solution
variation or a conventional limiter [53] needs to be applied to the gradients at the reconstruction stage. The
latter approach has been demonstrated for the VR gradients in Ref.[24]. The development of monotonicity
preserving schemes with the IGG method is left as future work.

Next, to demonstrate that the method is applicable to unstructured grids, we consider the same discontinuous
solution problem for an unstructured triangular grid with 512 elements. Again, no limiters are used. This time,
the conservation-law implicit solver diverged with the GG, LSQ, and VR gradient methods. Figure 20(a) shows
that the conservation-law implicit solver converged with the IGG method (o, = 25). As expected, the numerical
solution is not completely monotone as shown in Figure 20(b). The gradient has a small variation across the
discontinuity, but shows relatively large peaks near the boundaries. See Figure 20(c). This test case shows that
the the IGG method is more robust than other gradient methods. To ensure monotonicity, as mentioned earlier,
an adaptive oy or a conventional limiter is required and such is left as future work.

Finally, although the iterative convergence with the IGG method is not always the fastest, the convergence is
rapid at least over the first one or two orders of residual reduction. This property is important and encouraging
for the Jacobian-Free Newton-Krylov methods and multigrid methods, where the current conservation-law
implicit solver can be employed as a variable preconditioner and a smoother, respectively. In all these methods,
the conservation-law implicit implicit solver is used only to reduce the residual by an order of magnitude or at
a fixed number of iteration. Therefore, slow convergence for lower tolerance is not a major concern. Further
details will be discussed in a separate paper.

7 Concluding Remarks

A new approach was proposed to constructing a gradient algorithm for unstructured grids, which is to
derive a linear system of equations for gradients from a hyperbolic diffusion scheme. The resulting gradient
system is implicit with the gradients coupled with face-neighbors on the left hand side, and the classical Green-
Gauss gradient formula on the right hand side, which can be solved efficiently by the Gauss-Seidel iteration.
The algorithm is adjustable with parameters inherited from the generating hyperbolic diffusion scheme. These
parameters can be tuned to improve the gradient accuracy or to improve iterative convergence on highly skewed
and distorted irregular grids as well as for discontinuous solutions. It has been demonstrated that second- or
fourth-order gradient accuracy can be obtained on regular grids, and first-order accuracy, which is sufficient
for second-order finite-volume schemes, can be obtained on irregular grids. The new gradient algorithm has
been demonstrated for gradient computations on various types of regular and irregular grids. Fourth-order
accuracy has been demonstrated for regular quadrilateral grids, and superior accuracy has been demonstrated
especially for highly-curved high-aspect-ratio grids. The algorithm has been demonstrated as an alternative to
least-squares or Green-Gauss gradients in a second-order finite-volume scheme. For a discontinuous solution,
it has been shown that the method can be tuned to produce a smoothed gradient, allowing an implicit finite-
volume solver to converge without a gradient limiter even on an unstructured grid, where the solver diverged
with other gradient methods.

Future work includes applications to realistic fluid-dynamics simulations, and in particular flows with shock
waves. For such applications, the parameter oy may need to be adjusted to smooth the gradient only in the
vicinity of a shock wave. The relationship of oy to a monotonicity property remains to be discovered. In a
practical point of view, a simpler approach is to apply a conventional limiter directly to the gradients in the
reconstruction stage as it has been done for the VR gradients in Ref.[24]. Extensions to three dimensions
are possible, but it must be performed carefully for non-simplex faces in order to preserve exactness for linear
functions. For example, a quadrilateral face must be split into two triangular faces, and the numerical flux
must be computed at centroids of the two triangular faces [54]. Extensions to grids of polyhedral elements are
also possible by constructing a finite-volume discretization of the hyperbolic diffusion system on a polyhedral
grid, and then discarding the residual component for the diffusion equation. To further improve convergence
of an implicit finite-volume solver, a tightly-coupled solver may be developed, where the solution and the
gradients are solved simultaneously by combining finite-volume residuals and the gradient system residuals into
a single set of equations. The proposed gradient algorithm can be considered as a compact scheme extended to
unstructured grids. It can be applied to fluxes in a conservation law to approximate the flux divergence, which

18

is then integrated in time to generate a time-accurate scheme. Such a scheme may found to be useful, especially
when it is successfully extended to high-order. High-oder extensions are possible through the derivation of a
gradient and higher-order derivative system from a high-order hyperbolic diffusion scheme: construct a high-
order residual and discard the component for the diffusion equation. The high-order hyperbolic discontinuous
Galerkin method [22, 29, 55], which generates residual equations for the gradient variables and their derivatives,
is a promising example of a higher order extension.

Acknowledgments

The author acknowledges support by NASA under Contract No. SOLARC17C0004, and would like to thank
Jeff White at NASA Langley Research Center for valuable comments and discussions. The author would also
like to thank reviewers for useful and constructive comments and suggestions.

References

[1] B. Diskin and J. L. Thomas. Accuracy of gradient reconstruction on grids with high aspect ratio. NIA
Report No. 2008-12, 2008.

[2] D. J. Mavriplis. Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes.
In Proc. of 16th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2003-3986, Orlando,
Florida, 2003.

[3] E. Shima, K. Kitamura, and T. Haga. Green-Gauss/weighted-least-squares hybrid gradient reconstruction
for arbitrary polyhedra unstructured grids. AIAA J., 51(11):2740-2747, 2013.

[4] F. Moukalled, L. Mangani, and M. Darwish. The finite volume method in computational fluid dynamics:
An introduction with OpenFOAM and matlab. Fluid Mechanics and Its Applications, Volume 13. Springer
International Publishing, 2015.

[5] Georg May and Antony Jameson. Unstructured algorithms for inviscid and viscous flows embedded in a
unified solver architecture. In Proc. of 43rd AIAA Aerospace Sciences Meeting and Exhibit, ATAA Paper
2005-318, Reno, Nevada, 2005.

[6] N. T. Frink. Tetrahedral unstructured Navier-Stokes method for turbulent flows. ATAA J., 36(11):1975—
1982, 1998.

[7] Boris Diskin, James L. Thomas, C. Rumsey, and A. Schwoppe. Grid convergence for turbulent flows
(invited). In Proc. of 53rd AIAA Aerospace Sciences Meeting, ATAA Paper 2015-1746, Kissimmee, Florida,
January 2015.

[8] M. E. Braaten and S. D. Connel. Three-dimensional unstructured adaptive multigrid scheme for the
Navier-Stokes equations. ATAA J., 34(2):281-290, February 1996.

[9] Y. Kergaravat, F. Jacon, N. Okong’o, and D. Knight. A fully-implicit 2D Navier-Stokes algorithm for
unstructured grids. Int. J. Comput. Fluid Dyn., 9:179-196, 1998.

[10] T. J. Barth. Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes.
ATAA Paper 91-0721, 1991.

[11] N. T. Frink. Aerodynamic analysis of complex configurations using unstructured grids. AIAA Paper
91-3292, 1991.

[12] T. J. Barth and D. C. Jesperson. The design and application of upwind schemes on unstructured meshes.
ATAA Paper 89-0366, 1989.

[13] W. K. Anderson and D. L. Bonhaus. An implicit upwind algorithm for computing turbulent flows on
unstructured grids. Comput. Fluids, 23:1-21, 1994.

[14] M. Delanaye and J. A. Essers. Quadratic-reconstruction finite volume scheme for compressible flows on
unstructured adaptive grids. AIAA J., 35(4):631-639, 1997.

19

[15]

[16]

[17]

[18]

[21]

[22]

A. Haselbacher and J. Blazek. Accurate and efficient discretization of Navier-Stokes equations on mixed
grids. ATAA J., 38(11):2094-2102, 2000.

Carl Ollivier-Gooch, Amir Nejat, and Krzysztof Michalak. Obtaining and verifying high-order unstructured
finite volume solutions to the euler equations. AIAA J., 47(9):2015-2120, 20009.

Emre Sozer, Christoph Brehm, and Cetin C. Kiris. Gradient calculation methods on arbitrary polyhedral
unstructured meshes for cell-centered cfd solvers. In Proc. of 52nd AIAA Aerospace Sciences Meeting,
ATAA Paper 2014-1440, National Harbor, Maryland, 2014.

Mohagna J. Pandya, Neal T. Frink, Eijiang Ding, and Edward B. Parlette. Toward verification of USM3D
extensions for mixed element grids. In 31st AIAA Applied Aerodynamics Conference, AIAA Paper 2013-
2541, San Diego, CA, 2013.

F. Haider, J.-P. Croisille, and B. Courbet. Stability analysis of the cell centered finite-volume MUSCL
method on unstructured grids. Numerische Mathematik, 113(4):555-600, 2009.

A. Schwéppe and B. Diskin. Accuracy of the cell-centered grid metric in the DLR TAU-code. In A. Dillmann,
G. Heller, H. P. Kreplin, W. Nitsche W., and I. Peltzer, editors, New Results in Numerical and Experimental
Fluid Mechanics VIII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 121,
pages 429-437. Springer, 2013.

Hong Luo, Yidong Xia, Seth Spiegel, Robert Nourgaliev, and Zonglin Jiang. A reconstructed discontinuous
Galerkin method based on a hierarchical WENO reconstruction for compressible flows on tetrahedral grids.
J. Comput. Phys., 236(1):477 — 492, 2013.

Jialin Lou, Xiaodong Liu, Hong Luo, and Hiroaki Nishikawa. Reconstructed discontinuous Galerkin meth-
ods for hyperbolic diffusion equations on unstructured grids. In 55th AIAA Aerospace Sciences Meeting,
ATAA Paper 2017-0310, Grapevine, Texas, 2017.

Q. Wang, Y.-X. Ren, J. Pan, and W. Li. Compact high order finite volume method on unstructured grids
III: Variational reconstruction. J. Comput. Phys., 337:1-26, 2017.

Lingquan Li, Xiaodong Liu, Jialin Lou, Hong Luo, Hiroaki Nishikawa, and Yuxin Ren. A finite volume
method based on variational reconstruction for compressible flows on arbitrary grids. In 23rd ATIAA Com-
putational Fluid Dynamics Conference, AIAA Paper 2017-3097, Denver, Colorado, 2017.

Lingquan Li, Xiaodong Liu, Jialin Lou, Hong Luo, Hiroaki Nishikawa, and Yuxin Ren. A discontinuous
Galerkin method based on variational reconstruction for compressible flows on arbitrary grids. In 56th
AIAA Aerospace Sciences Meeting, ATAA Paper 2018-0831, Kissimmee, Florida, 2018.

H. Nishikawa. A first-order system approach for diffusion equation. I: Second order residual distribution
schemes. J. Comput. Phys., 227:315-352, 2007.

H. Nishikawa. New-generation hyperbolic Navier-Stokes schemes: O(1/h) speed-up and accurate vis-
cous/heat fluxes. In Proc. of 20th AIAA Computational Fluid Dynamics Conference, ATAA Paper 2011-
3043, Honolulu, Hawaii, 2011.

H. Nishikawa and Y. Nakashima. Dimensional scaling and numerical similarity in hyperbolic method for
diffusion. J. Comput. Phys., 355:121-143, 2018.

Jialin Lou, Lingquan Li, Hong Luo, and Hiroaki Nishikawa. First-order hyperbolic system based recon-
structed discontinuous Galerkin methods for nonlinear diffusion equations on unstructured grids. In 56th
AITAA Aerospace Sciences Meeting, ATAA Paper 2018-2094, Kissimmee, Florida, 2018.

H. Nishikawa. On hyperbolic method for diffusion with discontinuous coefficients. J. Comput. Phys.,
367:102-108, 2018.

H. Nishikawa. First-, second-, and third-order finite-volume schemes for diffusion. J. Comput. Phys.,
256:791-805, 2014.

E. Lee, H. T. Ahn, and H. Luo. Cell-centered high-order hyperbolic finite volume method for diffusion
equation on unstructured grids. J. Comput. Phys., 355:464—-491, 2018.

20

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Yi Liu and Hiroaki Nishikawa. Third-order inviscid and second-order hyperbolic Navier-Stokes solvers
for three-dimensional inviscid and viscous flows. In J6th AIAA Fluid Dynamics Conference, ATAA Paper
2016-3969, Washington, D.C., 2016.

Hubert Baty and Hiroaki Nishikawa. Hyperbolic method for magnetic reconnection process in steady state
magnetohydrodynamics. Mon. Not. R. Astron. Soc., 459:624—637, 2016.

Y. Nakashima, N. Watanabe, and H. Nishikawa. Hyperbolic Navier-Stokes solver for three-dimensional
flows. In 54th AIAA Aerospace Sciences Meeting, ATAA Paper 2016-1101, San Diego, CA, 2016.

H. Nishikawa and P. L. Roe. Third-order active-flux scheme for advection diffusion: Hyperbolic diffusion,
boundary condition, and Newton solver. Computers and Fluids, 125:71-81, 2016.

H. Nishikawa. Beyond interface gradient: A general principle for constructing diffusion schemes. In Proc.
of 40th AIAA Fluid Dynamics Conference and Exhibit, ATAA Paper 2010-5093, Chicago, 2010.

H. Nishikawa. Robust and accurate viscous discretization via upwind scheme - I: Basic principle. Comput.
Fluids, 49(1):62-86, October 2011.

H. Nishikawa. Two ways to extend diffusion schemes to Navier-Stokes schemes: Gradient formula or
upwinding. In 20th AIAA Computational Fluid Dynamics Conference, ATAA Paper 2011-3044, Honolulu,
Hawaii, 2011.

H. Nishikawa, Y. Nakashima, and N. Watanabe. Effects of high-frequency damping on iterative convergence
of implicit viscous solver. J. Comput. Phys., 348:66-81, 2017.

Y. Nakashima, N. Watanabe, and H. Nishikawa. Development of an effective implicit solver for general-
purpose unstructured CFD software. In The 28th Computational Fluid Dynamics Symposium, CO8-1,
Tokyo, Japan, 2014.

Alireza Jalali and Carl Ollivier-Gooch. Higher-order unstructured finite volume RANS solution of turbulent
compressible flows. Comput. Fluids, 143:32-47, 2017.

Jeffery A. White, Robert Baurle, Bradley J. Passe, Seth C. Spiegel, and Hiroaki Nishikawa. Geometrically
flexible and efficient flow analysis of high speed vehicles via domain decomposition, part 1, unstructured-
grid solver for high speed flows. In JANNAF /8th Combustion 36th Airbreathing Propulsion, 36th Exhaust
Plume and Signatures, 30th Propulsion Systems Hazards, Joint Subcommittee Meeting, Programmatic and
Industrial Base Meeting, Newport News, VA, 2017.

H. Nishikawa. First, second, and third order finite-volume schemes for Navier-Stokes equations. In Proc. of
7th AIAA Theoretical Fluid Mechanics Conference, AIAA Aviation and Aeronautics Forum and Ezxposition
2014, ATAA Paper 2014-2091, Atlanta, GA, 2014.

H. Nishikawa. Alternative formulations for first-, second-, and third-order hyperbolic Navier-Stokes schemes.
In Proc. of 22nd AIAA Computational Fluid Dynamics Conference, ATAA Paper 2015-2451, Dallas, TX,
2015.

Richard S. Hirsh. Higher order accurate difference solutions of fluid mechanics problems by a compact
differencing technique. J. Comput. Phys., 19:90-109, 1975.

S. K. Lele. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103:16-42,
1993.

Jan Nordstrom, Sofia FEriksson, and Peter Eliasson. Weak and strong wall boundary procedures and
convergence to steady-state of the Navier-Stokes equations. J. Comput. Phys., 231:4867-4884, 2012.

A. Haselbacher. On constrained reconstruction operators. In Proc. of 44th AIAA Aerospace Sciences
Meeting and Ezxhibit, ATAA Paper 2006-1274, Reno, Nevada, 2006.

H. Nishikawa and P. L. Roe. On high-order fluctuation-splitting schemes for Navier-Stokes equations. In
C. Groth and D. W. Zingg, editors, Computational Fluid Dynamics 2004, pages 799-804. Springer-Verlag,
2004.

21

[51]

[52]

[53]

[54]

J. C. Mandal and J. Subramanian. On the link between weighted least-squares and limiters used in
higher-order reconstructions for finite volume computations of hyperbolic equations. Appl. Numer. Math.,
58:705-725, 2008.

S. K. Godunov. A difference method for numerical calculation of discontinuous solutions of the equations
of hydrodynamics. Mat. Sb. (N.S.), 47(89)(3):271-306, 1959.

V. Venkatakrishnan. Convergence to steady state solutions of the euler equations on unstructured grids
with limiters. J. Comput. Phys., 118:120-130, 1995.

A. Katz and V. Sankaran. Discretization methodology for high aspect ratio prismatic grids. In Proc. of
20th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2011-3378, Hawaii, 2011.

Jialin Lou, Lingquan Li, Hong Luo, and Hiroaki Nishikawa. Reconstructed discontinuous Galerkin methods
for linear advection-diffusion equations based on first-order hyperbolic system. J. Comput. Phys., 369:103—
124, 2018.

22

IC I

u: 0 02505 075 1

107 — O GG Grido1
—5— IGG Grid02
10" —&— IGG Grido3
E N —— IGG Grido4
102L — -+ — VR Grido1
E & & ~ - — VRGrido2
£ 0oL ~ —/ — VRGrido3
E107E ~ —& — VRGd04
o E
€ 0% S
=107 Oy
S, .f)
S 10°F
o 10°F ©
g o8
107 = bg\
3 Cg\g
10°F OB,
'9: oy
10 5 10 15 20 25
Iteration

(b) Iterative convergence.

/.._q\ 0 [— —
=i =
E 2e)
o -2 ys
o]
= 3
& S 1GG
= = 1GG-B0
— = 1GG-B1
2 8 LSQ
T -6 K VR
. - GG
~ == = Slope ‘l ~ - = Slope 1
~— _g! = Slope 3 “‘é’ — Slope 2
= LELL Slopc 3 = wann Sl(]p(? 3
N Slope 4 =
S - Slope %] - Slope 4
S , s
-2 -1 0 -2 -1
Logyy(hett) Logyp(heff)
(c) Error convergence, 0, u, interior cells. (d) Error convergence, dyu, interior cells.
= 0 -~ 3
Y >
E o)
[
=
:
2 ﬁIGG g IGG
2 0 IGG-BO | ﬁ e
g =A IGGBL O iy
O e o IGG-B1
= 5Q T LSQ
VR VR
— =)
S -6 “oa ~ N/-66
gty - = Slope 1 = - Slope 1
[} «
5._) m— Slope 2 5'_) — Slope 2
3 = Slope 4 Q - Slope 4
S -5 | , RS , . .
-2 -1.5 -1 -0.5 -2 -1.5 -1 -0.5
Logio(heff) Logio(heff)

(e) Error convergence, d;u, boundary cells.

Figure 5: Gradients calculated by various methods for the function u(z,y) = sin(rz) sin(my) on regular quadri-

(f) Error convergence, dyu, boundary cells.

lateral grids. IGG denotes the IGG method with the boundary closure B2.

23

u_exact: 0.0999981 0433325 0.766652 100

—O— I1GG Grido1
AN — 58— IGG Grido2
),5“' —&— 1GG Grid03
Z —&— IGG Grido4
g1’k \ ° "2
i I -G - ri
SURDRSER = F — —/~ — VRGrido3
Kl DR e I ~ > — VRGrido4
et (NARERT c | LN "
N R —_
VAV Z7va] 3 8
12| 74N = N,
KA B0k S
By i n F
A};jéi 4 s" (] o ®\
15§A§m N = I @
AN NN I
uwnnxmmsa%‘ i N
R NN 10° B
/] AN E)
e b b b b b sl
2 4 6 8 10 12
Iteration
(a) Function contours and coarsest grid. (b) Tterative convergence.
= 0O < O
Bl L ey by 4 e e— ==T
i =
T _0.5! \V \Y A% V < 0.5} V \ v /
G ' LH :
= 0
g -1y = -l -7
= = v
= 5] -
a-1.5¢ g -1.5¢} -
IS g .l
oo -2 o 21 et
g - = o IGG
LSQ
— L g L
% 2.5 = 2.5 VR
= E 1
5‘3 —3 r === Slope 1 :3'_'-) -3 - Slope 1
3 — Slope 2 S — Slope 2
~ -3.5 -3.5
-2.5 -2 -1.5 -2.5 -2 -1.5
Logy(heff) Logyo(hefl)
(c) Error convergence, d,u, interior cells. (d) Error convergence, dyu, interior cells.

_0.5 r —F =T e _05 r k4 —
LT e gk 4 e R

) o

o 1y o2 T e
Z o~ = -~

S 3 g -

= =

5 =15 [é ~1.5:

Z K o

— ', = -

R - L5Q N 2t L LSQ
= P 1({? = Mg VR

— -GG i Aelel

gﬁ - Slope 1 § - = Slope 1

~ -2.5 ‘ ' ‘ =2.5

-2.5 -2 -1.5 -2.5 -2 =1.5
Logy(heff) Logy (heff)
(e) Error convergence, d,u, boundary cells. (f) Error convergence, dyu, boundary cells.
Figure 6: Gradients calculated by various methods for the function u(z,y) = sin(nz)sin(7y) on irregular

isotropic triangular grids. IGG denotes the IGG method with the boundary closure B2.

24

IGG Grid01
M IGG Grido2
IGG Grid03
IGG Grid04
VR Grid01
VR Grid02
£ ; VR Grid03
=10° . 3 VR Grid04
o & D
< 4
< 10°
©
= 3
@
Q
[+
o8
@\%\
8,
5
0 I RO R |
0 X 1 20 25
Iteration
(a) Function contours and coarsest grid. (b) Iterative convergence.
=) — 4
: S 3|
o -2 =
= = 25
= 1GG 3
Tlx =
e ﬁmm g 1% Eggm
£ =4 IGGBl
= = 1GG-B1
S LsQ o 0O
5 VR = g
j4b] ac Q 1 VR
- 1 q - GG
q —6 - opel :_::-/ F —-SIODEI
— —giope i = =2 — Slope 2
= =enn Slope = e :
'_\tr; - SloEe 4 % g%()pe .
Q k-l _3 L - ope 4
N g - - - . . .
—4.5 =3 -2.5 -2 -3.5 -3 -2.5 -2
L{ng()(heff) Loglg(heﬂ")
c¢) Error convergence, d,u, interior cells. d) Error convergence, 0yu, interior cells.
y
0 4

IGG
IGG-BO

ﬁlGG

IGGB1 IGG-B0
LSQ
VR

IGG-B1
LSQ)
VR

|
N

Logio(Ly error norm of d,u)

Logyy(L, error norm of d,u)

-6 =E6 - LGG
== = Slope 1 - Slope 1
—SIODE 2 _2 —Slope 2
1 == Slppe 4 == Slope 4
i - - :
—3.5 -3 -2.5 -2 =3.5 -3 -2.5 -2
Logyo(hefl) Logiy(heff)
(e) Error convergence, d;u, boundary cells. (f) Error convergence, dyu, boundary cells.

Figure 7: Gradients calculated by various methods for the function u(z,y) = sin(mz)sin(40007y) on high-
aspect-ratio regular quadrilateral grids. IGG denotes the IGG method with the boundary closure B2.

25

u_exact: -0.857143 -0.142857 0.571429

10,

0.0005 —O&— IGG Grido1
—5— GG Grid02
] —A—— IGG Grid03
| & & —— GG Grido4
s X3 -~ -G — VRGrido1
10" L S ~ -0 — VRGrido2
g F % — /- — VR Grido3
s VR Grido4
= [G
s |
- 3 .
» 107
Q F
=
e o s
YANAwAwAPA 10°F 3
0 7\\II\\\\I\II\IQ\\\II\\\I\\III\\
0 X 1 5 10 15 20 25 30
Iteration
(a) Function contours and coarsest grid. (b) Tterative convergence.
Pt 4
I~
= O Sy
® 0.5 3
- = 3
g 1
O —
g -1.5¢ o 2
= Qo
Q 2 o
=5 1GG @
= LSQ)
}.3 _2'5 VR R]‘
= Sy =
= -3¢ - = Slope 1 ol
g’ —Slope 2 3
~ -3.5 0
~3.5 -3 -2.5 -3.5 -3 -2.5
Logm (heff) LOQ‘]() (heﬂ')
(c) Error convergence, d;u, interior cells. (d) Error convergence, dyu, interior cells.
—_— 4 [
= 0 3
S S 3.5
o o~ A
) @]
-~ =
£ -0.5 5 3
— -
3 & 2:5
Qo b
= 5
5] _1 L ~ 2 |
S b
= S 15!
~ -1.5 “ ‘ ‘ 1
«3.5 -3 -2.5 -
Logy(heff) Logyo(heff)
(e) Error convergence, d,u, boundary cells. (f) Error convergence, dyu, boundary cells.

Figure 8: Gradients calculated by various methods for the function u(x,y) = sin(nz)sin(40007y) on high-
aspect-ratio regular triangular grids. IGG denotes the IGG method with the boundary closure B2.

26

10°,

—©— IGG Grido1
—&— IGG Grido2
- S —A—— IGG Grid03
& —&— IGG Grid04
L , d ~ -G — VRGrido1
u_exact: -0.9 -0.4 0.1 0.6 101 B ~ - — VRGrido2
| £ [9 ~ —4 — VRGrido3
s VR Grido4
- e [&
0.00051 AN 3 | @
= A)"'\A‘ / 210t
V.. ATAYAY.. 2 |
PN i
10°F
AVAV V“A'AVA"' F 5
0 0.5 [P EPUETENEN SATANITE STRTRVAVE IAVETI SRR W
X 5 10 20 25 30
Iteration
(a) Function contours and coarsest grid. (b) Tterative convergence.

0

LSQ

Logyo(L; error norm of d9,u)
Logo(Ly error norm of d,u)

-2(GG
?—z‘ﬂop(’ 1 15 - Slope 1
— SlOpe 2 — Slope 2
-2.5 1 : .
-3.5 -3 -2.5 -3.5 -3 -2.5
Logy(heff) Logyo(heff)
(c) Error convergence, d,u, interior cells. (d) Error convergence, dyu, interior cells.
0 4
3.5

|
e
w

w

N
%

L()gm(Ll error norm of d,u)

Logy0(L; error norm of 9,u)

LSQ
VR 2t :
LGG o 4
- Slope 1 ﬁ? - Slope 1
-1.5 1.5
-3.5 -3 -2.5 -3.5 -3 -2.5
Logy(heff) Logyo(heff)
(e) Error convergence, d;u, boundary cells. (f) Error convergence, dyu, boundary cells.

Figure 9: Gradients calculated by various methods for the function u(x,y) = sin(nz)sin(40007y) on high-
aspect-ratio isosceles triangular grids. IGG denotes the IGG method with the boundary closure B2.

27

T N

u_exact: -0.855631 -0.141971 0.57169

0.0005

NNV
vANNNY)

4V

[\

NS

N

RER

(a) Function contours and coarsest grid.

0

i
o
)

IGG Grid01
IGG Grid02
IGG Grid03
IGG Grid04
VR Grid01
VR Grid02
VR Grid03
VR Grid04

Residual norm
P PRI

o eC o

-
o
i
T
Rl

Iteration

(b) Tterative convergence.
”~

, VV,V‘@‘

-~

w

-1 2.5
_ -1.5
B
-2.5 15 ffff

Logyo(Ly error norm of J,u)

Logio(L1 error norm of d,u)
(9]

-3 - Slope 1 = = Slope 1
— Slope 2 — Slope 2
-3.5 1
-4.5 -4 -3.5 -4.5 -4 -3.5
L()gm (heﬁ“) L()gm (heff)
(c) Error convergence, 0, u, interior cells. (d) Error convergence, dyu, interior cells.

= 0 = 3
S oY
“= _0.5 B 2.5}

S -1 S 2

5 2

= -1.5 g 1.5¢

. .~ GG = - IGG

3 g LSQ ~ LSQ
= 22 VR Z 1t VR

] LGG = -GG

3 - Slope 1 “3 - Slope 1
N -2.5 l 0.5

-4.5 -4 -3.5 -4.5 -4 —~3:5
Logyo(heff) Logip(heff)

(e) Error convergence, d,u, boundary cells.

(f) Error convergence, dyu, boundary cells.

Figure 10: Gradients calculated by various methods for the function u(z,y) = sin(wz)sin(40007y) on high-
aspect-ratio irregular triangular grids. IGG denotes the IGG method with the boundary closure B2.

28

—O— IGG Grido1
—&— |GG Grid02
—&—— IGG Grid03
—<— GG Grido4
— =3 — VRGrid01

G VR Grid02
— —/~ — VR Grid03
— ~ — VR Grid0o4

1.002
u_exact: 1.0071 1.18774 1.36838 N

—_
o
°

~
e

Residual norm

-
o
[

0.994

-
o
&

[= N ummanu
>

/ \ 0.992

oyl Lol | L Lo
10' 10° 10°
Iteration

0_9277|“7|“| P IR |

(a) Function and coarsest grid. (b) Close view of the grid. (c) Iterative convergence.

2

N
%
1
)
\
1)
\
1

[
1
1}

Logyo(L error norm of d,u)
|
—

Logyp(Ly error norm of d,u)

IGG 2
LSQ £
B
LGG -3 2GG
- Slope 1 - = Slope 1
4l | I—Slope 2 41 — Slope 2
-3.5 -3 -2.5 -3.5 -3 -2.5
Logyo(heff) Logo(heff)
(d) Error convergence, du, interior cells. (e) Error convergence, Oyu, interior cells.
2

ok

Logio(L, error norm of d,u)

Logyp(Ly error norm of 0, u)

0
IGG
1 LSQ
=45 -1t VE
GG Al
_2 - = Slope 1 - Slope 1
— Slope 2 —2 r — Slope 2
-3.5 -3 -2.5 -3.5 -3 -2.5
Logyo(hefl) Logio(heff)
(f) Error convergence, d,u, boundary cells. (8) Error convergence, dyu, boundary cells.

Figure 11: Gradients calculated by various methods for the function u(x,y) = sin(1007r 4+ 7/6) + 0.5sin(d) on
high-aspect-ratio curved regular quadrilateral grids. IGG denotes the IGG method with the boundary closure
B2.

29

—— IGG Grid01

1.002 —8— GG Grid02
[u_exact: 1.0071 1.12753 1.24796 1.36838 : —4A— IGG Grid03
[r —&— |GG Grid04
1 1+ - — VR Grid01
N O VR Grid02
[A £107E ~ A -~ VRGridoa
i 0.998 - 5 F — —&- — VRGrido4
098 i e
> 0 \ Fhos - §
096 / \; E .g 102 5
H / \\ 0.994 o« F
osal / \\\ .
P/ \ 0.992
/ \ 10°E O N
ogzil"“l‘ T IR I | TR R | IR | TR IR |) 70‘””““ HH2“””";;“‘””'4“‘
YC 04 0.2 0 0.2 0.4 01 -005 0 0.05 0.1 10 10 10 10 10
x X lteration
(a) Function and coarsest grid. (b) Close view of the grid. (c) Tterative convergence.
— 3
= =
s ¢ i
S S, g=—2"°
o LS| o -
—
=) =
— —
= 1 g 1
Q L a
s =
= Qo
o 0.5 &
o =N He16G g 0
D
1SQ . LSQ
g Oy VR ~ VR
~— GG = -1 GG
= - Slope 1 ’5—; = = Slope 1
% -0.5¢ m— Slope 2 “3 — Slope 2
~ : - = - -
-3.5 -3 -2.5 -3.5 -3 -2.5
Logyo(heff) Logy(heff)
(d) Error convergence, d,u, interior cells. (e) Error convergence, dyu, interior cells.
/:\ 2 [— 3
B =
o) ="
= o
S) © 2.5
=
= 1.5t =
S z
= g 2
H =
o s
o
jab} | b
o1 érjsq i 1 LSQ
= . +=+ VR ~ . VR
B v GG == GG
= - = Slope 1 = Slope 1
U‘J —- O
g’h — Slope 2 L-QJ 1 —Slope 2
= 1.5 : ' : :
-3.5 -3 -2.5 -3.5 -3 -2.5
Logyy (heff) Logyp(heff)
f) Error convergence, Oyu, boundary cells. Error convergence, 0yu, boundary cells.
g y g g y y

Figure 12: Gradients calculated by various methods for the function u(x,y) = sin(1007r 4+ 7/6) + 0.5sin(d) on
high-aspect-ratio curved regular triangular grids. IGG denotes the IGG method with the boundary closure B2.

30

0.94

092

(a) Function and coarsest grid.

1.002

u_exact: 1.0071 1.18774 1.36838

0.994

IGG Grid01
IGG Grid02
IGG Grid03
IGG Grid04
VR Grid01
VR Grid02
VR Grid03
VR Grid04

10°3-8¢

e

Residual norm
=

10°E

(b) Close view of the grid.

P | Ll Ll
10° 10° 10

Iteration

L |
10° 10'

(c) Iterative convergence.

= 2. = 2.5
oy S
5 1.5} 5 2

g 1 S 1.5

5 S

= 0.5 5 1

D LSQ :]i §LSQ
%) VR - VR
— Or GG = 0.5 Aele
= - = Slope 1 e - = Slape
g —Sloim 2 § —;iaimé
=) 5 0 : :

-3.5 -3 -2.5 -3.5 -3 -2.5
Logy(heff) Logyo(heff)

(d) Error convergence, dyu, interior cells.

(e) Error convergence, dyu, interior cells.

=y _
o 2t 2.5
L CQW
S} 3
= - s <
S 1.5 g 2
B =
3 _ =
5
5 il Sse Iy o &
= P el o7 GG e X7 =
S V - = Slope 1 - ngpo 1
— 9 Q
QUJ Slope 2 "3 —Slopoi 2
~ 0.5 | ' 1
-3.5 -3 -2.5 -3.5 -3 -2.5
Logyy(heft) Logyo(heft)

(f) Error convergence, d,u, boundary cells.

(g) Error convergence, dyu, boundary cells.

Figure 13: Gradients calculated by various methods for the function u(x,y) = sin(1007r 4+ 7/6) + 0.5sin(d) on
high-aspect-ratio curved irregular triangular grids. IGG denotes the IGG method with the boundary closure
B2.

31

T

u: -09-06-03 0 03 0.6 09

0 0.2 0.4 0.6 0.8 1

X

(a) Discontinuous function.

-3.87879
-7.75758
-11.6364
-15.5152
-19.3939

-3.87879
-7.75758
-11.6364
-15.5152
-19.3939

-3.87879
-7.75758
-11.6364
-15.5152
-19.3939

P ,
-3.87879 -3.87879 -3.87879
-7.75758 - -7.75758 - -7.75758
-11.6364 -11.6364 -11.6364
-15.5152 -15.5152 -15.5152
-19.3939 -19.3939 -19.3939

0.4
X 0.6

(e) IGG with a =1/6. (f) IGG with a = 1. (g) IGG with oo = 2.

Figure 14: Gradients calculated by GG, LSQ, VR, and IGG methods for a discontinuous function.

32

u_exact: -0.729438

-0.00883908 0.71176

v
SN

(a) Exact solution contours and coars-

i g
i
l/“f’.v“}%&n

IS
Lo ﬂﬂb‘

Residual norm

IGG Grid4
VR Grid4
LSQ Grid4
GG Grid4

T I
40

20 30
Iteration

IGG Grid4
o - VR Grid4
e 7 [— LSQ Grid4
E i GG Grid4
o E
c i
© E
S F
S P
» E
) F
[+ 5
E, R L
0 200 . 400
wall time

est grid. (b) Iterative convergence for Grid 4. (c) Residual convergence in CPU time.
—_ = "“v - E\ = v V v
= &) LA - 3 oL N P e SR, e S K
% -1.5 S 0 gV S v
— e P-S
B g -0. g -0.5
g 2 g 0.5 ',or g
= ’Qf a--< - z o,'
£ 5 1 5 -~
:D 3 3 /” 1GG e
i = 150 5 - ém : = 1GG
= VR S 8Q = s
s o s & - W das o
g Yo & | A f
— Slo]E £) ” - 3 b - Slope 1
- N e SN P g
-2.5 -2 -1.5 -1 -2.5 -2 -1.5 -1 -2.5 -2 -1.5 -1
Logyo(heff) Logyo(heff) Logg(heff)
(d) Error in u, interior cells. (e) Error in 9 u, interior cells. (f) Error in dyu, interior cells.
-1 s ,-:-‘_‘,\ 0.5 —_ 0.5
<15 < s - >
"§ Ls 0 V -V V V LS o' v v _____ V.- v
: -2 = =
% -2.5 é -0.5 ',o"‘ é
Qo = [
5 -3 5 g =
GG S E - o
= 3. VR ~J e L3Q ~
% 2GG —-1.5 ’." VR =1
) -4 - = Slope =l » GG —
~ —Sloim é g ,-’ Eslape 1 §
-4.5 o =2
-2.5 -2 -1.5 -1 -2.5 -2 -1.5 -1 -2.5 -2 =1.5 -1
Log(heff) Logyp(heff) Logyp(heff)

(g) Error in u, boundary cells. (h) Error in d,u, boundary cells. (i) Error in dyu, boundary cells.

Figure 15: Finite-volume solutions and iterative convergence with various gradient methods on irregular isotropic
triangular grids. IGG denotes the IGG method with the boundary closure B1 (no boundary values are used).

33

[u_exact: 1.0071 1.18774 1.36838

0.98 -

0.96 -

1 1 1 1 J
0.2 -0.4 -0.2 0

X

(a) Solution contours and coarsest
grid.

LSQ
+—+VR
GG
- Slope 1
— Slope 2

Logip(Ly error norm of)
Logyp(Ly error norm of 8, u)

-3.5 -3

Logyo(heff)

-2.5

(d) Error in u, interior cells.

IGG
LSQ
+—+VR
g
- Slope 1
— Slope 2

Logyo(Ly error norm of u)

Logyy(Ly error norm of 9,u)

-3
Logyo(hefl)

-2.5

(g) Error in u, boundary cells.

IGG Grid2
VR Grid2
LSQ Grid2
GG Grid2

10‘7;““|lx“‘| L1

7015 20
Iteration

(b) Iterative convergence.

2
1
0
-1
2
3 e
-3.5 -3 -2.5
Logyo(heff)

(e) Error in d,u, interior cells.

1GG

I
o
n

LSQ
e
=) LGG
- Slope 1
-1.5
-3.5 -3 -2.5
Logyg(heff)

(h) Error in d,u, boundary cells.

IGG Grid2
VR Grid2
LSQ Grid2
GG Grid2

002 004 006
wall time

(c) Residual convergence in CPU time.

Logyo(Ly error norm of d,u)

Logy(L, error norm of d,u)

= 7. GG
- Slope 1
— Slope 2
=3
-3.5 -3 -2.5
Logyo(heff)

(f) Error in dyu, interior cells.

2.5
2
1.5
1
0.5
0
-0.5
-1

1GG
LSQ
e
GG
- Slope 1
-3.5 -3 -2.5
Logyo(hefl)

(i) Error in d,u, boundary cells.

Figure 16: Finite-volume solutions and iterative convergence with various gradient methods on curved quadri-
lateral grids. IGG denotes the IGG method with the boundary closure B1 (no boundary values are used).

34

r u_exact: 1.0071 1.18774 1.36838

0.98

0.96 -

0.92 _| _I 1 1 J

(a) Solution contours and coarsest
grid.
0

Logyp(Ly error norm of u)

-2
é[ec
LSQ
3 Hvr
GG
- Slope 1
— SlOpe 2
-4
35 3 =35
Logg(heff)

(d) Error in u, interior cells.

IGG
L5Q
VR

I
w

Logyo(Ly error norm of u)

=
GG
= Slope 1
— Slope 2
=
-3.5 -3 -2.5
Logg(hefl)

(g) Error in u, boundary cells.

10%
F IGG Grid2
101 VR Grid2
LSQ Grid2
€. .2 GG Grid2
5 10
o
® 10°
3
k=]
[}
[}]
m E
107
10-6| P B ‘l‘——‘—“l“”‘l
100 200 300 400
lteration

(b) Iterative convergence.

= 2
5 1.5 G/JEF@::@E_,
o "
= e
2 1
§ 0.5
5 F PRy é
3 LSQ
\':1/ 0 = vr
= LGG
g Eslope 1
~ -0.5
-3.5 -3 -2.5
Logp(heff)
(e) Error in d,u, interior cells.
= 2
B
E 1 : 5 ,i‘
'§ -----
:§ dE
3 » é[ee
3 £ LSQ
= 0.5 ,/" =vr
= r GG
g - = Slope 1
N
-3.5 -3 -2.5
Log(heff)

(h) Error in d,u, boundary cells.

10%
: IGG Grid2
S VR Grid2
........... LSQ Grid2
€., GG Grid2
5 10
c
T 107
g E
2 .t
8 107
c !
10'55- ;
10k § e L
i 1.5 2
wall time

(c) Residual convergence in CPU time.

4

A
N,
N,

=
(%]

ot
ul

GG
1SQ

Logo(Ly error norm of d,u
=

e TR
0 Eglfpo 1
-3.5 -3 -2.5
Logg(hefl)

(f) Error in Oyu, interior cells.

2.5
=
ém
5 2
g
215 .
: - "ﬂ
—
Q -
= -
g 1 e
o P IGG
~ —— LSQ
\—5/ 0.5 ’-’ VR
> A GG
Q - = Slope 1
S o
-3.5 -3 -2.5
Logy(hefl)

(i) Error in dyu, boundary cells.

Figure 17: Finite-volume solutions and iterative convergence with various gradient methods on curved triangular
grids. IGG denotes the IGG method with the boundary closure B1 (no boundary values are used).

35

10° 10°
IGG Grid4 N IGG Grid4
DTl D VR Grid4 107 VR Grid4
--------- LSQ Grida : LSQ Grida
£ E10®
= =
<] e |
c Ci0°
®1 ®
=) =
o B0
Z: :
o c10°F
1 N 10'5i ~
N E
6 5 1 N hy 1 7L 1
10 0 700 1% 0 100
. teration wall time
(a) Exact solution contours and coars-
est grid. (b) Iterative convergence for Grid 4. (c) Residual convergence in CPU time.
. < -0.5 I
=-15¢ Y /f’" %“ 1
Yy [/. »
c 2 e = /’e e -1 >
5 £ 27 2 /
£ 3 = ’ = -
2 -2.5p s 5
& = 1.5 = 1.5
g s g
= 7 5 2 // 5
+ 16G - - /
~ -3.5 15Q = é;b - -2t C IGG
= MR ~ 150 ~ - LSQ
S 4 GG =4 25 L Hﬂ = VR
S AT =aSlope 1 =2, = GG
~ _S]Z,i: 2 g: ESl(’]m 1 % —2. 5 - Slope 1
45 = =
" =9 =1.5 | -0.5 -2 -1.5 -1 -0.5 -2 -1.5 -1 -0.5
Logp(heff) Logyp(heff) Logyg(heff)
(d) Error in w, interior cells. (e) Error in d,u, interior cells. (f) Error in yu, interior cells.
-1
-0.5 -0.5
-2
| -1
-
-3 """ ,o,
» .

=1.5

IGG 1GG

Logio(Ly error norm of w)
Logio(Ly error norm of d,u)
A
(%]
.
\

Logip(Ly error norm of 8,.u)

LSQ IS IGG
-4 MR 5 = VRQ 5 : Ean
GG - By " =
Eﬁlope 1 - = Slope 1 Eg’lg\o 1
— Slope 2 — Slope 2 _:%]N; 2
-5 -2.5 -2.5
-2 -1.5 -1 -0.5 -2 -1.5 -1 -0.5 -2 -1.5 -1 -0.5
Logyo(heff) Logyy(heff) Logp(heff)
(g) Error in u, boundary cells. (h) Error in d,u, boundary cells. (i) Error in dyu, boundary cells.

Figure 18: Finite-volume solutions and iterative convergence with various gradient methods on irregular trian-
gular grids in an annular domain. IGG denotes the IGG method with the boundary closure B1 (no boundary
values are used).

36

Residual norm

0 850 100

Iteration
(a) Convergence history.
[T - 18 i T . ;
U -1.20718 -0.448023 0.311137 1.0703 E_ p: -15.4608 -9.83955 -4.21829 EL
X X

(b) IGG: Solution wu.

u: -1.20718 -0.448023 0.311137 1.0703 E_ p: -15.4608 -9.83955 -4.21829 EL
X X

(d) VR: Solution u.

] i T .|
1 i B
u: -1.20718 -0.448023 0.311137 1.0703 p: -15.4608 -9.83955 -4.21829
X X

(f) LSQ: Solution w. (g) LSQ: Gradient 9, u.

Figure 19: Finite-volume solutions and iterative convergence with various gradient methods on a regular grid
for a discontinuous solution of Burgers’ equation. The IGG method uses the boundary closure Bl (no boundary
values are used). 37

100;

-
<
.

IGG

—_
<,
S

Residual norm

10'5;‘.“|“.‘|““|‘
0 50 100 150

lteration

(a) Convergence history.

z
[-EL
Y
X

u: -1.20718 -0.448023 0.311137 1.0703

v
p: -20.5198 -14.8975 -9.27521 -3.65293 Elx

(b) IGG: Solution w. (c) IGG: Gradient J,u.
Figure 20: Finite-volume solution and iterative convergence with the IGG method on an unstructured triangular

grid for a discontinuous solution of Burgers’ equation. The IGG method uses the boundary closure Bl (no
boundary values are used).

38

Appendix A: Gradient Accuracy on Regular and Irregular Grids

Consider a set of function values {u;} given at points in a one-dimensional grid. Let G; denote a gradient
algorithm applied at a point = x; that is exact for linear functions. Then, if {u;} is given by a linear function
u(x) = a + bz, where a and b are constants, we have

Gj({ui}) =b. (A1)
For a quadratic function u(z) = a + bz + cz?, where c is another constant, we have
Gi{u;}) =b+¢, (A.2)

where £ is an error term proportional to c¢. If the gradient algorithm is exact for quadratic functions, it will
produce £ = 2czx; and the gradient is obtained exactly. However, linearly-exact gradient algorithms cannot
produce 2cx;, and therefore the gradient is expected to have a first-order error:

Gi({u;}) =b+O(h), (A.3)

where h is a representative mesh spacing. Consider, for example, a central-difference-type formula on a non-
uniform grid:

Uj+1 — Uj—1 A4
hr +hr ’ (A4)
where ;1 —2; = hg and x; — ;1 = hr. This formula is clearly exact for linear functions. Without loss of
generality, let us take z; = 0, so that the exact gradient is b for the quadratic function u(x) = a + bz + ca?
and also for higher-order functions. Applying the central-difference-type formula to the quadratic function, we
obtain

2 2
Ujt1 — Uj—1 h% —h
J J b c R L

. A5
hr +hr hr +hr ()

The second term is an O(h) error. It shows that the central-difference-type formula can be exact for quadratic
functions on uniform grids, hy, = hr = h:

Gl ol A6
This is the error cancellation property typically observed on uniform grids. For more general functions, the
leading error term comes from a cubic term and is of O(h?). However, such an error cancellation does not
always occur. Consider the following gradient formula:

h (uj1 — ug) — W (uj—1 — uy) (A7)
hrhr(hg + hr) ’ '

which is exact for quadratic functions on irregular grids: if applied to u(x) = a + bz + cx?, it gives

P (U =) — Mgl —) _ (A8)
hrhr(hr + hr)

For a cubic function, u(z) = a + bz + cx? + da3, it gives

hi (ujy1 —uj) — h(uj—1 — uy)
= . A.
hihn(hin+) b+dhrhg (A.9)

The term dhphg is an error term. Clearly, this error term does not cancel on uniform grids, and therefore
the formula is second-order accurate on both irregular and regular grids. In general, a gradient algorithm is
p-th order accurate if it is exact for polynomials of degree p, and exhibits higher-order accuracy on uniform
grids when an error cancellation occurs. The argument extends straightforwardly to higher dimensions and
unstructured grids.

39

Appendix B: Variational Reconstruction for Linear Functions

Consider a linear polynomial defined over a cell j:
Pj(xvy):uj +uxj(x7xj)+uyj(y7yj)a (Bl)

where u; is a given cell-averaged solution value, (x;,%;) is the centroid coordinates of the cell, and u,;, u, ; are
the coefficients we wish to determine. The polynomials are defined independently at cells, and therefore they do
not match over the face that divides two adjacent cells, creating a jump. In the VR method [23], we determine
Uy ; and Uy ; by minimizing the following global functional:

1
T = — [AVvTA B.2
> gp [aviav. (B2)

fe{r}

J

where {F'} denotes a set of faces on a given grid (excluding boundary faces), f is a face shared by the cells j
and k, Ly is a length scale to be defined at the face, Av is a weighted jump vector,

Av =WAu, Au= (Au,Aux,Auy)T = (UR — UL, Ug) — Ug j, Uy, — uyj)T (B.3)

)

with u;, and ug linearly interpolated to the face from cells j and k, respectively, and the digaonal matrix W
serves to weight the components of Au:

W = diag (1, wyL,, wyLy,), (B.4)

where L, and L, are length scales, and w, and w, are weights. If the integral over the face is evaluated by the
midpoint rule, we obtain

1 AVTAvAf 1 T
I=; > —, > Au"QAu, Q=
Je{F} Je{F}

where Ay is the face area and the jumps are evaluated at the face midpoint. The polynomial coefficients
g; = (ugj, uyj) are determined by the stationary condition:

T _ 3 (QaAu>TAu=O, (B.6)

WIWA;

” (B.5)

08; fe{F;} &i
where {F}} is a set of faces of the cell j. To write the equation in a practical form, we express the vector Au as
Au = Mjmgj - Mkmgk + (uj - uk)élv (B7)
where §; = (1,0,0)T, and
AZjm AYjm T — T Ym — Yj AZpm AYkm Ton — Tk Ym — Yk
M, =| 1 0 | = 1 0 M= | 1 0 | = 1 0 (B.8)
0 1 0 1 0 1 0 1
After some algebra, we finally obtain from Equation (B.6)
Ajigj — Z Ajrgr = by, (B.9)
ke{k;}
where
2 272
A Axjm + waz Amijyjm
Aj = > MLQM,=) 7 s .| (B.10)
kelhy} kefhyy F L AT AYim Ayg, +wyly
272
A ijmA‘rkm + szz ijmAykm
Ay = ML .QMy, = ff , (B.11)
f Axk:mij?n ijmAykm + wiLi
A (ug — uj)Axjp,
b, = Z ff (B.12)
we(ryy 7L (uk — ug) Ay,

40

This shows that the right hand side is a LSQ-type gradient; more precisely it is in a similar form to the right
hand side of a LSQ method. In this paper, we set (Lg, Ly) = (Azjk, Ayjx), Ly = Ay, and w, = w, = 1.
These choices are different from those in Ref.[23], but have been found to perform much better especially for
high-aspect-ratio grids considered in this paper. Theoretically, it can be easily shown by the Taylor expansion
that w, = wy = V/3/6 gives fourth-order accuracy for regular quadrilateral grids in the interior cells. The
resulting fourth-order method is equivalent to the classical fourth-order compact formula [46] as was shown for
the IGG method in Equation (40).

Appendix C: Linear Least-Squares Method

LSQ methods are very popular and well described in the literature (e.g., see Refs[12, 16]). Here, we describe
a linear LSQ method used in this paper. Consider fitting a linear polynomial over neighbor solution values
around a cell j:

up = uj + ugj(x —xj) +uy;(y —y;), k€ {k;}, (C.1)

where {k;} denotes a set of neighbors of the cell j (not necessarily face neighbors only), and uy is a solution
value at a cell k. The number of neighbors in {k;} is denoted by ny. To determine wu,; and Uy ;, there must
be at least two neighbors. As there are typically more than two neighbors, the set of equations (C.1) forms an
overdetermined problem, which can be formulated as a set of weighted equations:

WBg; = Wz, (C.2)

where g; = (umj,uyj), W = diag(wj1,wjo, - ,Wjn,) is a diagonal weighting matrix, B is an nj x 2 matrix
with the k-th row is given by [z1 — 2, yx — y;], and z is an nj-dimensional vector of (ux —u;). It can be solved
in the least-squares sense by forming a normal equation:

where
2 A2 2 , .
A = B'WB= Y VikBTi ROk (C.4)
ke{k;} w]zkijkijk w]zkA%Q'k
2
wiy, (uk — ;) Azjk
b = B'W2z= Y [! , (C.5)
ke{k;} wgzk(“k_“j)ijk

and Azj, = 2 — x; and Ay, = yr — y;. The weight wjy, is defined as the m-th power of the inverse distance:

1
Wik = T Tjk =/ Am?k + Aygz'k- (C.6)

7k

In this paper, we set m = 0.25 and define {k;} as a set of face neighbors and their face neighbors.

41

	Introduction
	Hyperbolic Diffusion Scheme
	Hyperbolic Diffusion System
	Residual

	Derivation of Gradient Algorithm
	Regular Quadrilateral Grids
	Boundary Treatment
	Numerical Results
	Gradient of Functions
	Isotropic grids
	High-aspect-ratio grids
	Highly curved grids
	Discontinuous functions

	Implicit Finite-Volume Solver
	Advection-diffusion
	Burgers' equation with a discontinuous solution

	Concluding Remarks
	Acknowledgments

