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Abstract

The second-order backward-difference (BDF2) method requires solutions at two previous time steps and
is often started with the first-order backward-difference (BDF1) method. The initial time step is typically
taken to be small in order to minimize the effect of the first-order error. However, contrary to expectations,
the solution computed in this way generates a very large error for stiff problems and the error grows as the
initial time step is further reduced. As shown in this note, the problem is originated from the fact that the
variable-coefficient BDF2 method combined with any first- or higher-order one-step method is asymptotically
equivalent to the trapezoidal method and therefore not L-stable. Based on the study presented, it is strongly
recommended that BDF2 method be started with a self-starting second-order implicit Runge-Kutta method,
which guarantees second-order accuracy and L-stability at no additional cost.

1 Introduction

The second-order backward difference (BDF2) method is widely used for solving time-dependent problems in
various practical applications [1, 2, 3, 4, 5, 6, 7]. It is a very efficient and robust method since it is second-order
accurate and L-stable with only a single nonlinear solve per time step [8, 9]. For a general ordinary differential
equation of the form:

du

dt
= f(u, t), (1)

the BDF2 method is given by

3un+1 − 4un + un−1

2∆t
= f(un+1, tn+1), (2)

where ∆t is a constant time step, n indicates the time level (n = 1, 2, · · · ), and tn and un denote the physical
time and the solution at the time level n, respectively. The BDF2 method is, however, not self-starting: the
solution at the first time step needs to be obtained by some other means before the BDF2 method can be
applied. Among various approaches, we consider the use of the first-order backward difference (BDF1) method,
which is indeed very popular for its simplicity [10, 11]. In doing so, one would wish to minimize the effect of
the first-order error by using a very small time step for BDF1. This strategy can be implemented with the
variable-coefficient BDF2 method as follows:

u∗ − u0

∆t∗
= f(u∗, t∗), (3)

1

∆t′
∆t∗ + 2∆t′

∆t∗ +∆t′
u1 −

(
1

∆t∗
+

1

∆t′

)
u∗ +

1

∆t∗
∆t′

∆t∗ +∆t′
u0 = f(u1, t1), (4)

where ∆t = ∆t∗ + ∆t′, u0 is a given initial solution, u∗ is an intermediate solution computed by BDF1, i.e.,
Equation (3), at t = t∗ = ∆t∗, u1 is the solution we seek at t = ∆t. Equation (4) is the variable-coefficient
BDF2 method [9] that maintains second-order accuracy, by varying the coefficients, for two different previous
time-step sizes: ∆t∗ and ∆t′; it reduces to the constant-coefficient form (2) when ∆t∗ = ∆t′ = ∆t. It seems
reasonable to expect better accuracy with a smaller ∆t∗ as it will reduce the effect of the first-order error.
However, it actually generates a larger error for stiff problems. To illustrate this strange behavior, we applied
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(a) Non-stiff problem
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(b) Stiff problem

Figure 1: The reasons that ∆t∗ should be small (Left) and ∆t∗ should be large (Right).

the method to the following model problem (which is a modified version of the model problem (1.1) in Ref.[9])
with ∆t = 0.2:

du

dt
= −K {u− cos(2.5t)}+ 1.1 exp(−0.1t), u0 = 0, (5)

where K is a positive constant. Figure 1(a) shows the results for a non-stiff case with K = 1, where the above
start-up method is denoted by BDF2r with r = ∆t∗/∆t′. As we expected, a better solution is obtained with
a smaller value of ∆t∗ (i.e., smaller r). Note that the case r = 0.99 is nearly equivalent to computing the first
solution entirely by the BDF1 method; the numerical solution is not very accurate due to the first-order error
committed at the first step. This is the reason that we wish to take ∆t∗ to be very small. In contrast, for a
moderately stiff case with K = 100, the method generates a larger error at t = ∆t with a smaller ∆t∗ as can
be clearly seen in Figure 1(b). It is noted that the problem is not related to the instability of the variable-
coefficient BDF2 method discussed in Ref.[12], which is associated with a constant step size ratio while here we
are concerned with the combination with the BDF1 method and only at the first step. Inaccuracy of solution
at the first time level presents a concern about non-physical solutions (e.g., negative pressure) or inaccurate
evaluations of a functional defined as an integral over the entire time. The objective of this note is to show
that the problem stems from the asymptotic equivalence between the variable-coefficient BDF2 combined with
BDF1 and the non-L-stable trapezoidal method.

2 BDF2 with BDF1 is Not L-Stable

Consider a model problem:

du

dt
= λu, (6)

where λ is a constant. The BDF1 start-up method applied to the model problem is given by

u∗ − u0

∆t∗
= λu∗, (7)

1

∆t′
∆t∗ + 2∆t′

∆t∗ +∆t′
u1 −

(
1

∆t∗
+

1

∆t′

)
u∗ +

1

∆t∗
∆t′

∆t∗ +∆t′
u0 = λu1. (8)

It seems little known that this start-up strategy is not L-stable when ∆t∗ is small. A method is called L-stable
if the stability polynomial P (λ∆t), defined as in un+1 = P (λ∆t)un when it is applied to the model equation
(6), has the following two properties: |P | < 1 for Re(λ∆t) < 0 (i.e., A-stable) and |P | → 0 as |λ∆t| → ∞, i.e.,
high-frequency modes are damped rapidly. For stiff problems, it is well known that A-stability is not sufficient
because it can develop large oscillations as typically illustrated with the trapezoidal method (see Ref.[9] or
results below), which is A-stable but not L-stable. We prove that the above start-up method is not L-stable by
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(c) r = 10−5

Figure 2: The BDF1-start-up method is applied at every time step to demonstrate the equivalence with the
trapezoidal method (TR) in the limit r → 0.

showing that the above start-up method is asymptotically equivalent to the trapezoidal method. Let us write
it as a general two-stage method from n to n+ 1:

u∗ − un

∆t∗
= λu∗, (9)

aun+1 + bu∗ + cun

∆t′
= λun+1, (10)

where, again with r = ∆t∗/∆t′,

a =
r + 2

r + 1
, b = −1 + r

r
, c =

1

r(r + 1)
. (11)

By eliminating u∗ from Equation (10), we obtain

aun+1 +
b

1−∆t∗λ
un + cun = ∆t′λun+1, (12)

or

(a−∆t′λ)un+1 +

(
b

1− r∆t′λ
+ c

)
un = 0. (13)

For a small r, we can expand 1
1−r∆t′λ to get

(a−∆t′λ)un+1 + [ b(1 + r∆t′λ) + c ]un = 0, (14)

which becomes by b = −(a+ c),

(a−∆t′λ)un+1 − {a+ (ar + cr)∆t′λ}un = 0. (15)

In the limit r → 0, we have a → 2, cr = 1/(r + 1) → 1, and ∆t′ → ∆t, and therefore

(2−∆tλ)un+1 − (2 + ∆tλ)un = 0, (16)

which is the trapezoidal method:(
1− 1

2
∆tλ

)
un+1 −

(
1 +

1

2
∆tλ

)
un = 0, (17)

and not L-stable: ∣∣∣∣un+1

un

∣∣∣∣ = ∣∣∣∣1 + 1
2∆tλ

1− 1
2∆tλ

∣∣∣∣ → 1 as ∆tλ → ∞. (18)

To confirm the analysis, we solved the test problem (5) with K = 100 by the general two-stage method (9)
and (10) applied at every time step. Solutions obtained with r = 0.99, 0.1, and 10−5 are shown in Figure 2.
The method approaches from the BDF1 method to the trapezoidal method as r is reduced from 0.99 to 10−5.

3

https://doi.org/10.1016/j.jcp.2019.04.070


Download the journal version at https://doi.org/10.1016/j.jcp.2019.04.070

0 0.2 0.4 0.6 0.8 1 1.2

t

-1

-0.5

0

0.5

1

1.5

2

u

BDF2+BDF2r (r = 10−5)
BDF2+BDF2r (r = 0.1)
BDF2+BDF2r (r = 0.99)
BDF2+SDIRK2
Exact

(a) K = 100
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(b) K = 2000

Figure 3: Comparison of star-up methods: SDIRK2 and BDF1 with various r for a stiff problem.

The overlapping solutions in Figure 2(c) confirm the asymptotic equivalence between the BDF2 with the BDF1
start-up and the trapezoidal method. Both exhibit a typical ‘ringing’ instability due to the lack of L-stability,
which causes, for example, an adaptive step-size control to stall [13]. These results imply that the overshoot
observed in the example calculation is originated from the non-L-stable trapezoidal method. As one might have
noticed, Equation (14) indicates that the BDF2 method is equivalent to the trapezoidal method for any first-
or higher-order one-step method because all such will give u∗ → (1+ r∆t′λ)un as r → 0 (even an exact solution
at t = r∆t′).

3 Use SDIRK Instead

The above analysis suggests that the BDF2 method with any start-up method will suffer from the same
problem and the initial time step ∆t∗ should be large enough to avoid the problem. A practical compromise
might be r = 0.1, which yields reasonable accuracy for both non-stiff and stiff problems, at least for the test
case considered here. A more sensible approach is to employ a self-starting second-order L-stable method such
as the second-order singly-diagonal implicit Runge-Kutta (SDIRK) method [14, 15]:

un+α = un + α∆tf(un+α, tn + α∆t), (19)

un+1 = un + (1− α)∆tf(un+α, tn + α∆t) + α∆tf(un+1, tn +∆t), (20)

where α = (2−
√
2)/2. In general, two nonlinear equations need to be solved, but they can be solved sequentially:

first solve Equation (19) for un+α, and then solve Equation (20) for un+1. Therefore, the cost is comparable to
the BDF2 method with the BDF1 start-up, which also requires two nonlinear solves to get u1. We implemented
the SDIRK method as a method for generating the solution at the first time step (the BDF2 is used afterwards).
Figures 3 and 4 show that it produces reasonably accurate solutions, as expected, to the stiff and non-stiff
problems considered in Section 1 and a highly stiff case with K = 2000.

As another example, we consider the following system is taken from Ref.[8]:

du(t)/dt = −2u+ v + 2 sin(t), (21)

dv(t)/dt = 998u− 999v + 999(cos(t)− sin(t)), (22)

whose exact solution is given by

u(t) = κ1 exp(−t) + κ2 exp(−1000t) + sin(t), v(t) = κ1 exp(−t)− 998κ2 exp(−1000t) + cos(t), (23)

κ1 = u(0)− κ2, κ2 = (u(0)− v(0) + 1)/999. (24)

The solution exhibits a rapid transient for the initial condition: u(0) = 2.0 and v(0) = 3.999, but the stiff
component vanishes for u(0) = 2.0 and v(0) = 3.0. Numerical results obtained by the set of methods as in the
previous example are shown in Figure 5, where only the second component of the solution v is plotted. Observe
that the BDF1 start-up with a very small time step r = 10−5 generates a large error even in the non-stiff case.
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Figure 4: Comparison of star-up methods: SDIRK2 and BDF1 with various r for a non-stiff problem.
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(a) u(0) = 2.0 and v(0) = 3.999.

0 1 2 3 4 5 6

t

-1

0

1

2

3

4

S
o
lu
ti
o
n
v

BDF2+BDF2r(r = 10−5)
BDF2+BDF2r(r = 0.1)
BDF2+BDF2r(r = 0.99)
BDF2+SDIRK2
BDF1
Exact

(b) u(0) = 2.0 and v(0) = 3.0

Figure 5: Comparison of star-up methods: SDIRK2 and BDF1 with various r for stiff and non-stiff solutions.

4 Conclusions

As shown, the variable-coefficient BDF2 method started with the BDF1 (or any first- and higher-order)
method with a small initial time step is asymptotically equivalent to the trapezoidal method and therefore not
L-stable. As a consequence, reducing the initial time step results, contrary to expectations, in a very large error
for stiff problems. It is strongly recommended that the second-order SDRIK method be employed to obtain the
solution at the first time step (e.g., as in Ref.[16], for example) because it guarantees second-order accuracy and
L-stability at no additional cost.
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