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Abstract

In this paper, we derive a family of source term quadrature formulas for preserving third-order accuracy
of the node-centered edge-based discretization for conservation laws with source terms on arbitrary simplex
grids. A three-parameter family of source term quadrature formulas is derived, and as a subset, a one-
parameter family of economical formulas is identified that does not require second derivatives of the source
term. Among the economical formulas, a unique formula is then derived that does not require gradients of
the source term at neighbor nodes, thus leading to a significantly smaller discretization stencil for source
terms. All the formulas derived in this paper do not require a boundary closure, and therefore can be
directly applied at boundary nodes. Numerical results are presented to demonstrate third-order accuracy at
interior and boundary nodes for one-dimensional grids and linear triangular/tetrahedral grids over straight
and curved geometries.

1 Introduction

Node-centered edge-based discretization methods are widely used in practical Computational Fluid Dynamics
(CFD) solvers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The approach has recently been shown to achieve third-
order accuracy for first-order systems of conservation laws on arbitrary triangular [13, 14, 15] and tetrahedral
grids [16, 17, 18] with quadratic least-squares (LSQ) gradients and linearly-extrapolated fluxes. The third-
order edge-based discretization scheme is extremely efficient in that the spatial residual can be computed over
a single loop over edges with a single numerical flux evaluation per edge. Another striking feature of this
scheme is the ability to deliver third-order accurate solutions on linear triangular/tetrahedral grids even for
curved geometries [16, 19]. Therefore, the third-order edge-based method does not require generating high-
order grids. Although high-order surface normal vectors are still needed at boundary nodes to provide formal
third-order accuracy for some boundary conditions (e.g., slip wall), the scheme requires only normal vectors at
nodes on solid bodies. Practical three-dimensional computations indicate that third-order accuracy is observed
without high-order normals for some realistic geometries [16]. A high-order surface representation is required
for evaluating integral quantities such as drag, but it is a matter of post-processing and thus does not affect
the solution algorithm and the linear computational grid. Because of these attractive low-cost features, the
third-order edge-based method has become a subject of great interest to CFD developers and practitioners; see
Refs.[16, 17, 18, 20, 21, 22] for recent developments.

The third-order edge-based discretization scheme relies on a special error elimination mechanism. On a
regular grid, the truncation error of this scheme has a leading second-order error term proportional to the
derivatives of the target equation, which thus vanishes and leads to third-order accuracy. This is a well-known
mechanism, often called the residual property, common to low-cost high-order methods such as the residual-
compact method [23] and the residual-distribution method [24]. In these methods, any additional term added
to the target equation must be carefully discretized in order to preserve the residual property and guarantee
the design accuracy. This paper focuses on source terms, which arise, for example, in reaction equations, the
method of manufactured solutions, and implicit time-stepping schemes [25]. General compatible discretization
formulas for source terms are derived and demonstrated by numerical experiments.
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In node-centered edge-based methods, source terms are typically evaluated directly at nodes. This placement
of the source terms does not generate any truncation error in the Taylor expansion of the residual. To achieve
third-order accuracy, the source term discretization must generate a second-order truncation error in the form
compatible with that of other terms. Two techniques are currently available to meet the compatibility condition.
One is an extended Galerkin source discretization formula [25, 26], and the other is a divergence formulation [27].
In the latter, a source term is cast in the form of a conservation law and thus allows a straightforward source
term discretization by the third-order edge-based discretization. The compatibility condition is automatically
met since all terms are discretized by the same algorithm. Both approaches have been successfully employed
in the construction of third-order edge-based schemes. However, a major drawback of these approaches is
the requirement for computations and storage of second derivatives of the source term. The additional cost
associated with the source term discretizations can be substantial in three dimensions and even more so in
unsteady computations where second derivatives need to be stored for all variables at all physical times required
to approximate the physical time derivative. For example, in the three-dimensional Euler or Navier-Stokes
equations, even with a symmetry assumption, six second derivatives are required for each of five variables at
four time-levels with the third-order backward difference formula. In order to generate a truly efficient third-
order edge-based scheme for practical three-dimensional unsteady computations, therefore, it is desirable to
eliminate the second derivatives from the algorithm. This paper presents a new approach to deriving source
term quadrature formulas that do not require second derivatives at all.

A detailed analysis on compatible source discretizations in two and three dimensions has not been reported
in the literature. In Refs.[25, 26, 28], a one-dimensional truncation analysis is given, but it discusses mainly
the elimination of first-order error terms and does not discuss the compatible discretization on regular grids in
details for the third-order edge-based scheme considered here. In Ref.[27], the compatibility issue is discussed,
but discretization details are not provided because the issue is resolved in the differential equation level to make
the compatible discretization trivial. In this paper, we provide a detailed account for the compatible source
term discretizations, and derive general formulas, demonstrating that previously reported formulas are only a
small subset of a general three-parameter family of formulas. In particular, we derive a special subset that does
not require second derivatives of source terms. These formulas completely eliminate the additional expense of
computations and storage of second derivatives, and dramatically reduce the cost of the third-order edge-based
scheme. Furthermore, a unique formula is identified, which does not require any derivative at the neighbor
nodes, leading to a source term discretization with a significantly smaller stencil.

The paper is organized as follows. In Section 2, the third-order edge-based discretization is described for
a general conservation law. In Section 3, the requirements for compatible source discretizations are discussed.
In Section 4, previously reported formulas are reviewed. In Sections 5, new source quadrature formulas are
derived. In Section 6, source discretizations at boundary nodes are discussed. In Section 7, numerical results
are presented. Finally, the paper concludes with remarks.

2 Third-Order Edge-Based Discretization

Consider a scalar conservation law with a source term:

divf = s, (2.1)

where f is a flux vector function of the solution u, and s is a source term. It is a steady conservation law, but
directly relevant to unsteady equations, where physical time derivatives can be discretized in time and treated
as a source term as is often done for implicit time-stepping schemes (see, e.g., Ref.[25]). Note also that all
discussions are applicable to each component of a more general system of equations. For systems of equations,
the flux f is a tensor and the source term is a vector s.

The target conservation law is discretized on a triangular/tetrahedral grid by the node-centered edge-based
method, where a dual control volume is defined around each node by connecting the edge midpoints and the
element centroids (and the centroids of the element faces in three dimensions). The discretization at a node j
is given by

0 = −
∑

k∈{kj}

φjk(njk) +

∫

Vj

s dV, (2.2)

where Vj is the measure of the dual control volume around the node j, {kj} is a set of neighbor nodes of the node
j, φjk is a numerical flux, and njk is the directed area vector, which is a sum of the directed-areas corresponding
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to the dual faces associated with all elements sharing the edge [j, k]. In two dimensions, the directed area vector
is defined as a sum of two face normal vectors nℓ

jk and nr
jk as illustrated in Figure 1. In three dimensions, it

is defined as a sum of the surface normal vectors of the triangular dual faces as illustrated in Figure 2. The
discretization of the source term, which is the main subject of the paper, will be discussed later. The numerical
flux is computed at the edge midpoint as

φjk(njk) =
1

2
[fR + fL] · njk − 1

2
|an| (uR − uL) |njk|, an =

(
∂f

∂u

)
· njk

|njk|
, (2.3)

where the subscripts L and R indicate values at the ”left” and ”right” sides of the edge midpoint, which are
linearly reconstructed from values at nodes j and k, respectively:

fL = fj +
1

2
∇̂fj ·∆xjk = fj +

1

2

(
∂f

∂u

)

j

∇̂uj ·∆xjk,

fR = fk − 1

2
∇̂fk ·∆xjk = fk − 1

2

(
∂f

∂u

)

k

∇̂uk ·∆xjk,

(2.4)

uL = uj +
1

2
∇̂uj ·∆xjk, uR = uk − 1

2
∇̂uk ·∆xjk, (2.5)

where the hat indicates that the gradients are evaluated numerically, and ∆xjk denotes the edge vector pointing
from the node j to the node k. The nodal gradients are computed by a quadratic LSQ fit, which is implemented
in two steps as described in Ref.[29]. The LSQ stencils extend to the neighbors of the neighbors, but each step
involves only the edge neighbors and therefore it is simple to implement in a parallel code. On regular grids,
on the other hand, we use only the edge neighbors (six neighbors in two dimensions, and fourteen neighbors in
three dimensions), and thus the LSQ stencil is compact, at least at the interior nodes. In any case, the nodal
gradients are computed in the form: e.g., in three dimensions,

∇̂uj =

⎡

⎢⎢⎢⎣

∂̂xuj

∂̂yuj

∂̂zuj

⎤

⎥⎥⎥⎦
=

∑

k∈{kLSQ
j }

⎡

⎢⎢⎣

cxjk

cyjk

czjk

⎤

⎥⎥⎦ (uk − uj), (2.6)

where (cxjk, c
y
jk, c

z
jk) are LSQ coefficients (i.e., coefficients of uk−uj in the solution of a quadratic LSQ problem),

and {kLSQ
j } is a set of neighbors involved in the LSQ fit. See Ref.[29] for details. Note that the edge-based

discretization does not require computations nor storage for second derivatives of the fluxes and solutions, and
therefore only the LSQ coefficients relevant to the gradient need to be stored [29].

The edge-based discretization described above is known to be third-order accurate when s = 0 on arbitrary
triangular and tetrahedral grids [13, 14, 15]. Third-order accuracy can be achieved by other numerical fluxes
with different dissipation coefficients because the dissipation term does not contribute to the leading truncation
error: it cancels out over a regular grid [30] (see Appendix A), and vanishes for quadratic solutions [19] on
irregular grids. Note that the second-order edge-based scheme, which uses linear LSQ gradients and no flux
extrapolation, is second-order accurate only on such simplex-element grids: it is formally first-order accurate
on other types of elements unless certain regularity conditions are satisfied (see Ref.[31] and Appendix B in
Ref.[32]). The third-order edge-based scheme is highly economical because it requires only a single numerical
flux per edge in both two and three dimensions; see discussions in Ref.[16]. To preserve third-order accuracy
for s ̸= 0, the source term integral needs to be discretized carefully in a compatible manner, which is discussed
in the next section.

3 Compatible Source Discretization for Third-Order Accuracy

As discussed in Refs.[19, 29], in the case s = 0, the third-order edge-based scheme has the second order
truncation error on arbitrary triangular/tetrahedral grids: substitute a smooth exact solution into the residual
and expand it to yield

1

Vj

∑

k∈{kj}

φjk(njk) = div fj + Ch2, (3.1)

3



k

j

n
r
jk

n
ℓ
jk

Figure 1: Dual control volume faces on a triangular
grid.
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Figure 2: Dual control volume faces on a tetrahe-
dral grid.

where div fj = 0 for the exact solution, C is a constant depending on the geometry and third-derivatives of the
flux, and h is a representative mesh spacing. For irregular grids, the truncation error is one order lower than
the discretization error for a first-order system of conservation laws [31, 33], and therefore the second-order
truncation error in Equation (3.1) indicates that the edge-based scheme can potentially achieve third-order
discretization error. However, on regular grids, where the stencil composed of edge-connected neighbors is
identical at all interior nodes, the truncation error order matches the discretization error order; therefore,
the second-order truncation error must vanish. It vanishes by a special mechanism. In two dimensions, the
truncation error can be factored on a regular triangular grid as (see Appendix A for the derivation)

1

Vj

∑

k∈{kj}

φjk(njk) = div fj −
1

24Vj
[Qxx +Qyy +Qxy] (div f)j +O(h3), (3.2)

where Qxx, Qyy, and Qxy are second-derivative operators defined by

Qxx =
∑

k∈{kj}

nx∆x3∂xx, Qyy =
∑

k∈{kj}

ny∆y3∂yy, Qxy =
∑

k∈{kj}

3nx∆x2∆y ∂xy. (3.3)

Note that we have dropped subscripts in the components: njk = (nx, ny) and ∆xjk = (∆x,∆y). For example,
on a triangular grid composed of right isosceles triangles as in Figure 3, the truncation error reduces to

1

Vj

∑

k∈{kj}

φjk(njk) = div fj −
h2

12
[∂xx + ∂yy + ∂xy] (div f)j +O(h3), (3.4)

where h corresponds to the length of the two equal sides of the right isosceles triangles (see Refs.[27, 29, 30]). As
can be seen clearly, the second-order error terms are all proportional to the derivatives of the target equation.
Therefore, they vanish for exact solutions that satisfy div f = 0. As a result, the leading truncation error
becomes third-order:

1

Vj

∑

k∈{kj}

φjk(njk) = O(h3). (3.5)

This is the mechanism by which the edge-based scheme achieves third-order accuracy following an algorithm
similar to a second-order algorithm. Similarly, in three dimensions, the second-order truncation error can be
factored on a regular tetrahedral grid as (see Appendix A for the derivation)

1

Vj

∑

k∈{kj}

φjk(njk)= div fj−
1

24Vj
[Qxx+Qyy+Qzz+Qxy+Qyz+Qzx] (div f)j +O(h3), (3.6)
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where

Qxx =
∑

k∈{kj}

nx∆x3∂xx, Qyy =
∑

k∈{kj}

ny∆y3∂yy, Qzz =
∑

k∈{kj}

nz∆z3∂zz, (3.7)

Qxy =
∑

k∈{kj}

6nz∆x∆y∆z ∂xy, Qyz =
∑

k∈{kj}

6nx∆x∆y∆z ∂yz, Qzx =
∑

k∈{kj}

6ny∆x∆y∆z∂zx, (3.8)

where njk = (nx, ny, nz) and ∆xjk = (∆x,∆y,∆z). For example, on a regular tetrahedral grid constructed by
dividing a hexahedral element into six tetrahedra [34] (see Figure 4), the truncation error reduces to

1

Vj

∑

k∈{kj}

φjk(njk)= div fj−
h2

12
[∂xx + ∂yy+ ∂zz− ∂xy− ∂yz+ ∂zx] (div f)j +O(h3). (3.9)

Again, the second-order error terms vanish for exact solutions that satisfy div f = 0, thus leading to a third-order
truncation error.

In the case s ̸= 0, the source term discretization must have a leading second-order truncation error on
arbitrary grids, and to achieve a similar error cancellation on regular grids, the second-order truncation term
must have a specific form that ensures

1

Vj

∑

k∈{kj}

φjk(njk)−
1

Vj

∫

Vj

s dV = div fj− sj −
1

24Vj
[Qxx +Qyy +Qxy] (div fj−sj) +O(h3), (3.10)

in two dimensions, and

1

Vj

∑

k∈{kj}

φjk(njk)−
1

Vj

∫

Vj

s dV

= div fj− sj −
1

24Vj
[Qxx+Qyy+Qzz+Qxy+Qyz+Qzx] (div fj−sj) +O(h3), (3.11)

in three dimensions, so that the second-order error terms vanish for exact solutions that satisfy div fj−sj = 0.
This is the compatibility condition that has to be satisfied to achieve third-order accuracy for equations with
source terms. It is known [27, 28] that the point quadrature, which is typically used in second-order edge-based
schemes,

1

Vj

∫

Vj

s dV = sj , (3.12)

does not meet the compatibility condition. This is because it does not generate any error term, e.g., in two
dimensions,

1

Vj

∑

k∈{kj}

φjk(njk)−
1

Vj

∫

Vj

s dV = div fj− sj −
1

24Vj
[Qxx +Qyy +Qxy] (div fj) +O(h3), (3.13)

and therefore the second-order error cannot vanish for div f−s = 0.
It follows that third-order accuracy requires two conditions: (1) second-order leading truncation error on

irregular grids, and (2) the compatibility condition on regular grids. It is important to note that the elimination
of the first-order truncation error is not sufficient to achieve third-order discretization errors.

4 Previously Reported Formulas

There exist two approaches to deriving compatible source discretizations. One approach is based on a
truncation error analysis. In Refs.[25, 26, 28], a one-dimensional truncation error analysis is performed and a
source discretization formula is derived by eliminating a first-order truncation error. The formula is applied to
a two-dimensional scheme in the form of an extended Galerkin source discretization:

∫

Vj

s dV =
∑

k∈{kj}

1

2
(sL + sR)Vjk, (4.1)
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Figure 3: Regular triangular grid. Figure 4: Regular tetrahedral grid.

where

Vjk =
1

4
(∆xjk · njk), sL = sj −

1

2
∂̂jksj −

1

8
∂̂2
jksj , sR = sk − 1

2
∂̂jksk − 1

8
∂̂2
jksk, ∂̂jk ≡ ∆xjk · (∂̂x, ∂̂y),(4.2)

and the quantity Vjk may be called a partial volume since we have

Vj =
∑

k∈{kj}

Vjk. (4.3)

Note that the formula requires not only first derivatives but also second derivatives of the source term. The
derivatives can be obtained analytically (if possible) for a given source term function or by a quadratic LSQ
method. The first derivatives ∂̂xsj and ∂̂ysj can be computed as in Equation (2.6) from discrete nodal values

of the source term. The second derivatives ∂̂xxsj , ∂̂xysj , and ∂̂yysj can be computed by applying the quadratic

LSQ method to the LSQ gradients, ∂̂xsj and ∂̂ysj . This approach will greatly enlarge the stencil of the source
discretization. Alternatively, one may store quadratic LSQ coefficients for the second derivatives in addition
to cxjk, c

y
jk, and czjk [29], and compute the second derivatives in a similar manner to Equation (2.6). This is a

typical approach in quadratic LSQ methods; it requires a large amount of memory to store a total of six/nine
LSQ coefficients in two/three dimensions. The above formula has been successfully used in two-dimensional
computations [25]. However, it has never been applied to three-dimensional tetrahedral grids. We have found
theoretically and numerically that the above formula is valid only in two dimensions, and does not provide
third-order accuracy on tetrahedral grids (and also on one-dimensional grids) as we will discuss later.

The other approach is a divergence formulation of source terms [27]. In this approach, the source term is
written in the divergence form in the neighborhood of a node j, where the residual is defined. The core idea is
to find an approximate form of the source term resembling the conservation law, so that it can be discretized in
the same way as the conservation law to yield the same form of truncation error and thus meet the compatibility
condition. In two dimensions, the divergence formulation is given by

s = ∂xf
s + ∂yg

s, (4.4)

where

fs =
1

2
(x− xj)s−

1

4
(x− xj)

2∂xs+
1

12
(x− xj)

3∂xxs, (4.5)

gs =
1

2
(y − yj)s−

1

4
(y − yj)

2∂ys+
1

12
(y − yj)

3∂yys. (4.6)

In this paper, this formulation is referred to as the symmetric divergence formulation. It can be shown by
differentiation that

∂xf
s + ∂yg

s = s+
1

12
(x− xj)

3∂xxxs+
1

12
(y − yj)

3∂yyys, (4.7)
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which shows that the symmetric divergence formulation is a third-order approximation to the source term,
and therefore it will not degrade third-order accuracy. The source term written in the divergence form can be
discretized straightforwardly by the same algorithm that is used to discretize the conservation law, and therefore
the compatibility condition is guaranteed. Note that this approach also requires second derivatives of the source
term in the flux extrapolation step, which uses the gradient of the fluxes fs and gs; but third-order derivative
terms in the flux gradients can be ignored without degrading third-order accuracy [27]. A simple version, called
the one-component divergence formulation [27], uses only the x-component of the source fluxes:

fs = (x− xj)s−
1

2
(x− xj)

2∂xs+
1

6
(x− xj)

3∂xxs, (4.8)

gs = 0, (4.9)

which also gives a third-order approximation to the source term:

∂xf
s + ∂yg

s = s+
1

6
(y − yj)

3∂yyys. (4.10)

This version requires only two second derivatives, ∂xxs and ∂xys, in the discretization. The divergence formu-
lations can be extended easily to three dimensions:

s = ∂xf
s + ∂yg

s + ∂zh
s, (4.11)

where

fs =
1

3
(x− xj)s−

1

6
(x− xj)

2∂xs+
1

18
(x− xj)

3∂xxs, (4.12)

gs =
1

3
(y − yj)s−

1

6
(y − yj)

2∂ys+
1

18
(y − yj)

3∂yys, (4.13)

hs =
1

3
(z − zj)s−

1

6
(z − zj)

2∂zs+
1

18
(z − zj)

3∂zzs, (4.14)

or

fs = (x− xj)s−
1

2
(x− xj)

2∂xs+
1

6
(x− xj)

3∂xxs, (4.15)

gs = 0, (4.16)

hs = 0. (4.17)

In three dimensions, the one-component divergence formulation uses only three second derivatives, (∂xxs, ∂xys, ∂xzs),
while six second derivatives are required in the symmetric divergence formulation even with the symmetry as-
sumption (e.g., ∂xys = ∂yxs). These divergence formulations of source terms have been successfully applied to
various applications, including the Euler and Navier-Stokes computations by the third-order edge-based scheme
in both two and three dimensions [16, 19, 35].

A special divergence formulation exists for a vector of source terms s = (sx, sy, sz) satisfying the curl-free
condition:

curl s = 0. (4.18)

If we define a source flux tensor in the neighborhood of a node j as

fs =
s⊗∆x− (s ·∆x)I

2

=
1

2

⎡

⎢⎢⎣

−sy(y − yj)− sz(z − zj) sx(y − yj) sx(z − zj)

sy(x− xj) −sx(x− xj)− sz(z − zj) sy(z − zj)

sz(x− xj) sz(y − yj) −sy(y − yj)− sx(x− xj)

⎤

⎥⎥⎦ , (4.19)

7



where ⊗ denotes the dyadic product, I is the 3×3 identity matrix, and ∆x = (x− xj , y − yj , z − zj), then, we
find

divfs =
1

2
[ div(s⊗∆x)− grad(s ·∆x) ]

=
1

2
[ (grad s)∆x+ s div∆x− {grad s)∆x+ (grad∆x)s+ s× curl∆x+∆x× curl s} ]

=
1

2
[ s div∆x− (grad∆x)s− s× curl∆x−∆x× curl s ]

=
1

2
[ 3s− s−∆x× curl s ]

= s− ∆x× curl s

2

= s. (4.20)

Therefore, the curl-free source term vector s can be expressed exactly as

s = divfs. (4.21)

Then, we can discretize divfs by the third-order edge-based scheme to generate a compatible discretization of
the source term s. This approach does not require second derivatives of the source term because the flux fs has
no source-term derivatives. This approach has been demonstrated in two dimensions for third-order hyperbolic
diffusion and advection-diffusion schemes [29, 36], and also for a third-order hyperbolic Navier-Stokes scheme
[37], where source terms are equivalent to the gradients of solution variables and thus curl-free. The special
source flux tensor, Equation (4.19), is a three-dimensional generalization of these two-dimensional formulations.

For general source terms, these reported approaches require computations and storage of second derivatives.
Although the one-component divergence formulation requires fewer second derivatives, it still takes substantial
resources to compute and store second derivatives, especially for three-dimensional unsteady applications. The
special divergence formulation, Equation (4.21), does not require second derivatives, but its applicability is
limited to a particular class of source terms and also it involves the gradients of the source term at the neighbor
nodes, which extends the discretization stencil considerably. In the next section, we propose a new approach,
and derive a family of formulas that do not require second derivatives at all. Then, a unique formula will be
derived from the family that does not even require the gradients of the source terms at the neighbor nodes.

5 Accuracy-Preserving Source Term Quadrature

Generalizing the extended Galerkin formula [25, 26, 28], we seek a general accuracy-preserving source term
quadrature in the form:

∫

Vj

s dV =
∑

k∈{kj}

1

2
(sL + sR)Vjk, (5.1)

where

Vjk =
1

2D
(∆xjk · njk), (5.2)

sL = aLsj + bL∂̂jksj + cL∂̂
2
jksj , (5.3)

sR = aRsk + bR∂̂jksk + cR∂̂
2
jksk, (5.4)

and aim to determine the coefficients (aL, bL, cL, aR, bR, cR) to achieve third-order accuracy. Again, the hat
indicates that the derivatives are evaluated numerically, e.g., by a quadratic LSQ method or analytically for
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a given source term function. The constant D is defined as D = 2 in two dimensions and D = 3 in three
dimensions, which allows us to unify the expression for the partial volume Vjk, satisfying

Vj =
∑

k∈{kj}

Vjk, (5.5)

in both two and three dimensions. The derivative operator ∂̂jk is defined as Equation (4.2) in two dimensions,
and as

∂̂jk = ∆xjk · (∂̂x, ∂̂y, ∂̂z), (5.6)

in three dimensions, and similarly for those without a hat that denote derivative operators in Taylor expansions.
Note that the source quadrature (5.1) includes the point quadrature, which can be obtained with aL = 2, bL =
cL = aR = bR = cR = 0. For third-order accuracy, it suffices to assume that the source term is a quadratic
function. Then, the source term value at the neighbor k is expanded as

sk = sj + ∂jksj +
1

2
∂2
jksj , (5.7)

the gradients at k and j are exact for quadratic functions and thus

∂̂jksk = ∂jksj + ∂2
jksj , (5.8)

∂̂jksj = ∂jksj , (5.9)

and the quadratic term is a global constant for quadratic functions,

∂̂2
jksk = ∂̂2

jksj = ∂2
jksk = ∂2

jksj . (5.10)

Substituting these expressions into Equation (5.1), we obtain the Taylor expansion up to the second-order error:

∑

k∈{kj}

1

2
(sL + sR)Vjk=

∑

k∈{kj}

(
aL + aR

2
sj +

aR + bL + bR
2

∂jksj +
2(bR + cR + cL) + aR

4
∂2
jksj

)
Vjk

=
aL + aR

2
sjVj +

aR + bL + bR
2

∑

k∈{kj}

∂jksjVjk +
2(bR + cR + cL) + aR

4

∑

k∈{kj}

∂2
jksjVjk.(5.11)

∑

k∈{kj}

1

2
(sL + sR)Vjk=

aL + aR
2

sjVj +
aR + bL + bR

2

∑

k∈{kj}

∂jksjVjk +
2(bR + cR + cL) + aR

4

∑

k∈{kj}

∂2
jksjVjk

For consistency, we must have

aL + aR = 2. (5.12)

For third-order accuracy, the truncation error is expected to be O(h2) on irregular grids, and therefore we
require vanishing coefficient of the first-order error term:

aR + bL + bR = 0. (5.13)

These two conditions are not sufficient to guarantee third-order accuracy as numerically demonstrated later.
Another condition is required on the second-order error term. This term must not vanish but needs to yield a
compatible second-order error term on regular grids. Expanding the second-order term on a regular grid, we
obtain

∑

k∈{kj}

1

2
(sL + sR)Vjk = sjVj +

2(bR + cR + cL) + aR
4

(
D + 2

6D

)
Qs, (5.14)
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1

Vj

∑

k∈{kj}

1

2
(sL + sR)Vjk = sj +

2(bR + cR + cL) + aR
4

(
1

3Vj

)
[Qxx +Qyy +Qxy] sj (5.15)

where the conditions (5.12) and (5.13) have been assumed, and Qs is a second-order error term that can be
factored (see Appendix A for the derivation): in two dimensions,

Qs = [Qxx +Qxy +Qyy] sj , (5.16)

and in three dimensions,

Qs = [Qxx+Qyy+Qzz+Qxy+Qyz+Qzx] sj . (5.17)

Remarkably, the terms in the square brackets are identical to those in Equations (3.2) and Equation (3.6), in
two and three dimensions, respectively. Therefore, the compatibility condition (3.10) or (3.11) requires

(
D + 2

24D

)
(2cL + 2bR + 2cR + aR) = − 1

24
, (5.18)

or

aR = −2(bR + cR + cL)−
D

D + 2
. (5.19)

The quadrature formula (5.1) achieves third-order accuracy on arbitrary simplex grids if the coefficients satisfy
the three conditions:

aL + aR = 2, aR + bL + bR = 0, aR = −2(bR + cR + cL)−
D

D + 2
. (5.20)

These conditions form an underdetermined system for the unknowns: aL, bL, cL, aR, bR, and cR. In effect,
since there are three conditions for six unknowns, these conditions define a three-parameter family of accuracy
preserving source term quadrature formulas. Various formulas can be generated by imposing three additional
conditions. For example, the symmetry conditions:

aL = aR, bL = bR, cL = cR, (5.21)

lead to

aL = aR = 1, bL = bR = −1

2
, cL = cR = − D

4(D + 2)
. (5.22)

In this paper, this formula is referred to as the symmetric formula. For D = 2, the symmetric formula reproduces
the formula (4.2) proposed by Katz in Refs.[25, 26, 28]. For this reason, in two dimensions only, it is referred
to as Katz. Note that the above symmetric formula is unique, and no other symmetric formulas can provide
third-order accuracy. This proves that the Katz formula (4.2) is valid only in two dimensions, and cannot
provide third-order accuracy on tetrahedral grids (also on one-dimensional grids) as mentioned earlier. The
incompatibility of the Katz formula (4.2) for tetrahedral and one-dimensional grids has been confirmed by
numerical experiments.

It is also possible to derive a one-sided formula, which depends only on the quantities at the node j by
setting

aR = bR = cR = 0, (5.23)

resulting in

aL = 2, bL = 0, cL = − D

2(D + 2)
, aR = bR = cR = 0. (5.24)

This formula yields a source term discretization with a compact stencil if the second derivatives can be computed
with a neighbor-only stencil. This is possible, but requires computing the LSQ fit with a compact stencil and
storing the LSQ coefficients for the second derivatives. A more economical formula is obtained by requiring

aL = 1, cL = cR = 0, (5.25)

10



Grid type aL bL cL aR bR cR

Regular Regular simplex
3D + 4

D + 2
0 0 − D

D + 2
0 0

Compact Arbitrary simplex
3D + 4

D + 2

D

D + 2
0 − D

D + 2
0 0

Economical(1) Arbitrary simplex 1 − 1

D + 2
0 1 −D + 1

D + 2
0

One-sided Arbitrary simplex 2 0 − D

2(D + 2)
0 0 0

Symmetric Arbitrary simplex 1 −1

2
− D

4(D + 2)
1 −1

2
− D

4(D + 2)

Table 1: Summary of accuracy-preserving source term quadrature formulas. D = 2 for triangular grids, and
D = 3 for tetrahedral grids (and D = 1 for one-dimensional grids). Top one is for the regular grid, the next two
do not require second derivatives of the source term; the bottom two require the second derivatives. The value in
the parenthesis for Economical indicates the chosen value of aL to generate the formula from the one-parameter
family of formulas satisfying cL = cR = 0.

which leads to

aL = aR = 1, bL = − 1

D + 2
, bR = −D + 1

D + 2
, cL = cR = 0. (5.26)

This formula does not require second derivatives of the source term. It brings a substantial saving in computa-
tional cost, especially in three dimensions, since there is no need to compute and store nine (or six if symmetry
is enforced) second derivatives. In fact, the above formula is just one example of a one-parameter family of
economical formulas satisfying cL = cR = 0 (no second derivatives). A special formula that does not require
any derivative at the neighbors can be derived from this family by imposing bR = 0 instead of aL = 1:

bR = cL = cR = 0, (5.27)

which yields

aL =
3D + 4

D + 2
, aR = − D

D + 2
, bL =

D

D + 2
, bR = cL = cR = 0. (5.28)

This source term discretization depends only on the neighbors if the quadratic fit is performed at j with a
compact stencil including neighbors only or if the solution gradient is stored as a part of the solution vector,
e.g., in hyperbolic diffusion schemes [16, 18, 29]. Therefore, it allows the exact linearization, in the case s is a
function of the solution, with a minimum bandwidth in the construction of implicit solvers or discrete adjoint
equations. For this reason, this formula is referred to as the compact formula. The compact formula has a close
connection with a formula on a regular grid. On a regular grid, the first order error term vanishes independently
of aR + bL + bR (see Appendix A), and therefore the second condition in Equation (5.20) is redundant. Hence,
we can seek a formula with no derivatives (see Equation (5.4)) by imposing

bL = bR = cL = cR = 0. (5.29)

In this way, we obtain a formula for regular grids, which was previously known only in two dimensions [27],

aL =
3D + 4

D + 2
, aR = − D

D + 2
, bL = bR = cL = cR = 0. (5.30)

No source derivatives are needed on regular grids. Comparing with Equation (5.28), we find that the compact
formula (5.28) can be considered as a simple extension of this regular formula to irregular grids. All formulas
discussed are summarized in Table 1.
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Figure 5: Interior stencil of the edge-based dis-
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Figure 6: Interior stencil made a boundary stencil
by moving the node b to the node j.

Remark: The formula for regular grids can yield third-order accuracy on special non-regular grids, where
the first-order truncation error vanishes identically. See Appendix B.

Remark: Formulas in one dimension can be derived in a similar manner. For example, below is the com-
pact formula in one dimension:

∫

Vj

s dV =
∑

k∈{kj}

1

2
(sL + sR)Vjk, sL =

7

3
sj +

1

3
(xk − xj)∂̂xsj , sR = −1

3
sk. (5.31)

where Vj is the dual control volume Vj = (xj+1 − xj−1)/2, {kj} = {j − 1, j + 1}, Vjk = |xk − xj |/2, and the

derivative ∂̂xsj is computed such that it is exact for quadratic functions. In fact, all the formulas presented in
Table 1 are valid for one-dimensional grids with D = 1. In one dimension, the quadratic fit is possible with
a compact stencil, and therefore the above formula yields a compact source discretization for one-dimensional
third-order node-centered schemes. Our primary focus in this paper is on two and three dimensions, but
numerical results will be shown later to demonstrate the new formulas in one dimension.

6 Source Term Discretization at Boundary Nodes

At a boundary node, the third-order edge-based discretization needs to be closed by the accuracy-preserving
boundary flux quadrature formula [19] to guarantee third-order accuracy with a weak boundary condition. How-
ever, the family of source quadrature formulas derived in this paper do not require any boundary contribution.
To show this, we use the edge-collapsing approach [19]. As demonstrated in Ref.[19], the accuracy-preserving
boundary flux quadrature formula can be derived from the edge-based scheme at an interior node by collapsing
an edge. The source term discretization derived at a boundary node in exactly the same manner preserves
third-order accuracy for conservation laws with source terms. Consider a stencil shown in Figure 5. The source
discretization (5.1) at a node j is given as a sum over the neighbors {b, 2, 3, 4, 5}:

∫

Vj

s dV =
5∑

k=b,2

1

2
sjkVjk, (6.1)
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where sjk = (sL + sR)/2 across the node j and the neighbor k. By splitting Vj2 and Vj5 into two parts (see
Figure 5):

Vj2 = Vj2(n
ℓ
j2) + Vj2(n

r
j2) =

1

4
(∆xj2 · nℓ

j2) +
1

4
(∆xj2 · nr

j2), (6.2)

Vj5 = Vj5(n
ℓ
j5) + Vj5(n

r
j5) =

1

4
(∆xj5 · nℓ

j5) +
1

4
(∆xj5 · nr

j5), (6.3)

we obtain

∫

Vj

s dV =
4∑

k=3

1

2
sjkVjk +

1

2
sj2Vj2(n

ℓ
j2) +

1

2
sj2Vj2(n

r
j2) +

1

2
sj5Vj5(n

ℓ
j5) +

1

2
sj5Vj5(n

r
j5) +

1

2
sjbVjb. (6.4)

To derive a formula for a boundary node, we collapse the edge [j, b] with the node j fixed and create a boundary
stencil shown in Figure 6. In the limit, we have

∆xj2 · nr
j2 → 1

3
∆xj2 · nR

B → 0, ∆xj5 · nℓ
j5 → 1

3
∆xj5 · nL

B → 0, ∆xjb → 0, (6.5)

and thus,

Vj2(n
r
j2) → 0, Vj5(n

ℓ
j5) → 0, Vjb → 0. (6.6)

Therefore, all contributions associated with the boundary vanish, and we are left with

∫

Vj

s dV =
4∑

k=3

1

2
sjkVjk +

1

2
sj2Vj2(n

ℓ
j2) +

1

2
sj5Vj5(n

r
j5). (6.7)

Hence, we only need to make a loop over edges, and do not need to close the source term residual by boundary
contributions.

The vanishing boundary contribution is due to the vanishing partial volume Vjk in the collapsed stencil:
Vj2(nr

j2) = Vj5(nℓ
j5) = Vjb = 0. The same is true in three dimensions, and thus the derivation is omitted. As a

result, in three dimensions also, only the edge loop is needed, and no boundary closure is necessary for source
quadrature formulas derived in this paper to preserve third-order accuracy at boundary nodes.

On the other hand, the formulas derived from the divergence formulations require the boundary closure, in
principle, because boundary contributions do not vanish all together in the edge-collapsing process. To show
this, consider the source quadrature formula obtained by discretizing the symmetric divergence formulation by
the third-order edge-based scheme in the stencil in Figure 5 (see Ref.[27]):

∫

Vj

s dV =
5∑

k=b,2

1

2
(sL + sR), (6.8)

where

sL = sjVjk, (6.9)

sR = (sk − ∂̂jksk +
1

2
∆xjk∆yjk∂̂xysk)Vjk +

1

12

[
∆x2

jk∂̂xxsk(∆xjknx) +∆y2jk∂̂yysk(∆yjkny)
]
, (6.10)

and nx and ny are the x- and y-components of the directed area vector njk, respectively. The terms proportional
to Vjk will vanish in the collapsed stencil, and therefore do not require the boundary closure. However, the
last term in sR does not vanish in general; it vanishes only if ∆xjknx = 0 and ∆yjkny = 0, e.g., at boundaries
with x =constant or y =constant such as those on a rectangular domain. Also, the one-component divergence
formulation gives a formula in the same form with

sL =
1

2
sj(∆xjknx), (6.11)

sR =
1

2

[
sk − ∂̂jksk +

1

3
∆x2

jk∂̂xxsk +
1

2
∆xjk∆yjk∂̂xysk

]
(∆xjknx). (6.12)
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All terms remain in the collapsed stencil unless ∆xjknx = 0, and therefore it requires the boundary closure
in general. If the boundary closure is ignored, there are O(h2) errors in the symmetric formula, and O(1)
errors in the one-component formula. Numerical experiments show that the former can be tolerated for third-
order accuracy but the latter leads to severe accuracy deterioration and thus requires the boundary closure
with the accuracy-preserving boundary flux quadrature formula [19]. In all previous works utilizing the one-
component formula, the boundary closure has actually been implemented [19, 35, 37]. It is straightforward
to show that in three dimensions, the divergence formulations also require the boundary flux closure; if the
boundary contributions are ignored, the symmetric and one-component formulations yields O(h2) and O(1)
errors, respectively.

7 Numerical Results

Third-order accuracy of the edge-based scheme is demonstrated for source terms generated by the method of
manufactured solutions as well as for equations with solution-dependent source terms. All problems are steady
problems. Applications to unsteady problems will be discussed elsewhere. For all problems, the residual is
fully converged by an implicit solver with ten orders of magnitude reduction from an initial residual. The focus
here is the order of error convergence achieved by various source discretization formulas, and therefore iterative
convergence histories are irrelevant and will not be discussed. Effects on iterative convergence are more relevant
to unsteady schemes where the source term is a function of solutions, and will be addressed in the future study
for unsteady problems.

In the results presented here, the formula derived from the one-component divergence formulation with source
fluxes (4.8) and (4.9) is referred to as Div(x), and the one derived from the symmetric divergence formulation
with source fluxes (4.5) and (4.6) is referred to as Div(sym). The point quadrature (3.12) is referred to as
Point. Other formulas are referred to as indicated in Table 1. Note that the symmetric formula with D = 2 is
equivalent to the Katz formula (4.2). All solution gradients are computed by the unweighted quadratic LSQ fit.
For two-dimensional regular grids, the quadratic LSQ fit is performed with neighbors only at interior nodes; at
boundary nodes, an extra node is added along the direction normal to the boundary (two extra nodes at corner
nodes) in order to avoid ill-conditioning of the LSQ matrix caused by having not enough nodes to fit a quadratic
function. For irregular grids, the quadratic fit uses the neighbors of the neighbors also, but it is implemented in
two steps, where each step involves edge neighbors only, as described in Ref.[29]. First and second derivatives
of the source term arising from manufactured solutions are derived analytically and evaluated directly at each
node.

(a) Regular grid. (b) Irregular grid.

Figure 7: Exact solution on regular and irregular one-dimensional grids with 32 nodes.
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(a) Interior nodes.
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(b) Outflow boundary node (x = 1).

Figure 8: Error convergence results for the advection equation on regular one-dimensional grids.
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(b) Outflow boundary node (x = 1).

Figure 9: Error convergence results for the advection equation on irregular one-dimensional grids.
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7.1 One Dimension

For the sake of completeness, one-dimensional results are presented for the advection equation:

a∂xu = s(x), x ∈ (0, 1], (7.1)

where a = 1.0, and the source term is defined as s(x) = −a exp(x)/(1 − exp(1)), so that the exact solution is
given by

u(x) =
1− exp(x)

1− exp(1)
. (7.2)

The advection equation is discretized by the edge-based scheme with the upwind flux (2.3) on a one-dimensional
grid defined by the nodes [x0 = 0.0, x1, x2, · · · , xN = 1.0] with the nodal gradients are computed by a quadratic
fit with two neighbor nodes. Both regular and irregular grids are used with N = 31, 63, 127, 255, 511. The
irregular grids have been generated from the regular grids by applying random perturbations to the nodal
coordinates except the two boundary nodes. Figure 7 shows the solution on the coarsest grids. The derivatives
of the source terms are derived analytically and evaluated at each node. The solution is specified at the inflow
boundary x = x0, and a weak condition is applied at the outflow boundary x = xN . The weak condition is
implemented through the upwind numerical flux. The resulting discrete equations are solved by an implicit
solver. See Ref.[22] for details on the weak boundary condition and the implicit solver implementations. The
discretization errors are examined at interior nodes and at the outflow boundary node, separately, for all formulas
in Table 1 with D = 1 and the point quadrature as well as the Katz formula (i.e., aL = aR = 1, bL = bR =
−1/2, cL = cR = −1/8) for comparison. The discretization errors are measured in the L1 norm separately for
interior and boundary nodes, and the effective mesh spacing is computed as the L1 norm of the dual control
volumes.

Results obtained for regular grids are shown in Figure 8. As expected, all formulas except Point and Katz
yield third-order accuracy at interior nodes (see Figure 8(a)). At the outflow boundary node, as shown in
Figure 8(b), not only Point and Katz but also the regular formula fails to yield third-order accuracy because
the stencil is not regular at the boundary node. All other formulas, which have been derived for irregular grids,
successfully achieve third-order accuracy at the boundary node. Results for irregular grids are shown in Figure
9. As expected, all but Point, Katz, and Regular achieve third-order accuracy at both interior and boundary
nodes. These numerical results confirm that the derived formulas in Table 1 are valid for one-dimensional grids
with D = 1.

7.2 Two Dimensions

In two dimensions, we consider three examples of conservation laws in the form of Equation (2.1). The first
example is a linear advection equation with f = (au, bu) and a source term,

s = ac cos(cx) sin(dy) + bd sin(cx) cos(dy) + (a+ b) exp(x+ y), (7.3)

where (a, b) = (2.73, 1.31) and c = 2.51π and d = 3.48π for the exact solution given by

u(x, y) = sin(cx) sin(dy) + exp(x+ y). (7.4)

As a nonlinear example, we consider Burgers’ equation with f = (u2/2, u) and a source term,

s = cos(x− y) sin(x− y)− cos(x− y), (7.5)

for the exact solution

u(x, y) = 2 + sin(x− y). (7.6)

Yet another example is a linear advection-diffusion equation written as a first-order conservation law with the
flux tensor:

f =

⎡

⎢⎢⎣

a− νp b− νq

−u 0

0 −u

⎤

⎥⎥⎦ , (7.7)
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(a) Regular grid. (b) Irregular grid.

Figure 10: Regular and irregular triangular grids with 33×33 nodes.

and the source term vector:

s =

⎡

⎢⎢⎣

0

−p

−q

⎤

⎥⎥⎦ , (7.8)

for the boundary-layer-type exact solution [38, 39]:

u(x, y) =

[
1− exp

(
(x− 1)aν

)] [
1− exp

(
(y − 1) bν

)]
[
1− exp

(
−a

ν

)] [
1− exp

(
− b

ν

)] , (7.9)

which serves as a non-manufactured-solution example. This system has a set of curl-free source terms, i.e.,
∂xq−∂yp = 0, and will be used to compare the new formulas with the special divergence formulation: Equation
(4.21) with the source flux (4.19). In all cases, the numerical flux is computed by the upwind flux (2.3) and
the corresponding vector version for the advection-diffusion system [29].

7.2.1 Square domain

We solve the linear advection and Burgers’ equations in a square domain. The top and right boundaries
correspond to outflow boundaries. Solutions at theses boundaries are determined by solving the residual equa-
tions. The residuals at boundary nodes are computed with the accuracy-preserving boundary flux quadrature
formula [19], and the outflow boundary condition is imposed weakly with a ghost state set by the solution
at the boundary node j: ub = uj , where the subscript b denotes the ghost state. See Refs.[16, 19] for more
details on the implementation of weak boundary conditions. Note that the accuracy-preserving boundary flux
quadrature is necessary for the conservation law since the third-order edge-based scheme does not necessarily
tolerate lower-order accuracy at boundary nodes [19] unlike finite-difference schemes that allow lower-order ac-
curacy at boundaries [40]. However, as mentioned in Section 6, the source discretization formulas derived from
the divergence formulations do not require any boundary flux closure for the boundaries in the square domain.
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(a) Interior nodes.
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(b) Outflow boundary nodes.

Figure 11: Error convergence results for the advection equation on regular triangular grids.
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(b) Outflow boundary nodes.

Figure 12: Error convergence results for the advection equation on irregular triangular grids.
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(b) Outflow boundary nodes.

Figure 13: Error convergence results for Burgers’ equation on regular triangular grids.
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(a) Interior nodes.
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(b) Outflow boundary nodes.

Figure 14: Error convergence results for Burgers’ equation on irregular triangular grids.
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Figure 15: Truncation and discretization error convergence on irregular grids for an in-
compatible formula (F1) defined by aL = aR = 1, bL = −1, bR = cL = cR = 0, which
satisfies the consistency and zero first-order error conditions but does not satisfy the com-
patibility condition, and for a compatible formula (’Compact’ in Table 1). DE and TE
denote discretization and truncation errors, respectively.

Therefore, the boundary flux closure is not applied in any of the formulas tested here; effects of the boundary
closure for source terms will be discussed later in the next section. Computations are performed for regular
and irregular grids of 33×33, 65×65, 129×129, and 257×257 nodes. The coarsest grids are shown in Figure 10.
Irregular grids are generated from regular grids by random nodal perturbations at interior nodes and diagonal
swappings, leading to random numbers of neighbors in contrast to regular grids where each stencil has exactly
six neighbors everywhere inside the domain. Discretization errors are measured in the L1 norm, and the effective
mesh spacing is computed as the L1 norm of the square root of the dual control volume Vj for all problems.

Results for the regular grids are shown in Figure 11. At interior nodes, all formulas except for the point
quadrature (3.12) yield third-order accuracy as expected; see Figure 11(a). Note that the errors are less than
second-order accurate with the point quadrature; such severe deterioration has been observed for the third-
order edge-based scheme with incompatible boundary flux quadrature formulas in Ref.[19]. Discretization error
convergence computed at the right outflow boundary is shown in Figure 11(b). Here, the regular formula fails to
deliver third-order accuracy because the stencil is no longer regular at boundary nodes. The degraded accuracy
at boundary nodes do not affect the errors in the interior nodes due to the upwind nature of the advection
equation as discussed in details in Ref.[19].

Results for the irregular grids are shown in Figure 12. As expected, both the point quadrature and the regular
formula fail to achieve third-order accuracy. All other formulas successfully delivers third-order accuracy. It is
observed that error magnitudes obtained with the point quadrature and the regular formula are close to those
obtained with other formulas, but the order of convergence deteriorates on fine grids. The large difference in
the error level between the regular and irregular grids for the point quadrature seems to relate to the stencil
size of the LSQ fit; the error level on the regular grids is much smaller if the LSQ fit includes neighbors of the
neighbors, instead of the neighbors only.

For the same regular and irregular grids, similar results have been obtained for Burgers’ equation as shown
in Figures 13 and 14. It is noted that the compatible source discretizations not only yield third-order accuracy,
but also give significantly lower errors in comparison to the errors of solutions with the incompatible formulas,
i.e., the point quadrature and the regular formula, even on irregular grids in contrast to the irregular-grid results
in the linear case.

To demonstrate that the elimination of the first-order error is not sufficient to achieve third-order accuracy,
we consider the linear advection problem, and computed the truncation and discretization errors with an in-
compatible formula: aL = aR = 1, bL = −1, bR = cL = cR = 0 on irregular grids. This formula, referred
to as F1, satisfies the consistency condition (5.12) and the zero first-order truncation error condition (5.13),
but does not satisfy the compatibility condition (5.19). The truncation errors are computed at interior nodes
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(a) Irregular grid. (b) Solution contours.

Figure 16: Irregular grid with 33×33 nodes and exact solution contours.

-2.5 -2 -1.5 -1 -0.5

Log10(heff)

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

L
o
g
10
(
L
1
er
ro
r
n
or
m

)

Point
Regular
Div(x)
Div(x)+BF
Div(sym)
Katz
Economical(1)
Compact
One-sided
Slope2
Slope3

(a) Interior nodes.
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(b) Outflow boundary nodes.

Figure 17: Error convergence results for Burgers’ equation on irregular triangular grids with a curved out-
flow boundary. Div(x)+BF is the one-component divergence formulation with the boundary flux closure; no
boundary flux contributions are added to others.

on each grid by computing the residuals with the exact solution values given at nodes. The L1 norm of the
residuals is used as a measure of the truncation error. The same is performed with the compatible formula
’Compact’, and the results are shown in Figure 15. Observe that the truncation errors are second-order with
both formulas, but the formula F1 yields second-order discretization errors while the compatible formula gives
third-order discretization errors. The results show that the second-order truncation error does not guarantee
third-order accuracy on irregular grids.
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7.2.2 Curved boundary

To investigate the effect of curved boundaries, we consider a problem in a curved domain. The domain is
bounded by two co-centric circles of radii 0.25 and 1.0, and x- and y-axes. We consider Burgers’ equation with
the same exact solution as before. Irregular grids are generated with 33×33, 65×65, 129×129, and 257×257
nodes. The outer circular boundary is taken as outflow, and a weak boundary condition is applied as described
in the previous section. Note that the nodal distribution at the outflow boundary is perturbed, and thus the
grids are fully irregular through the outflow boundary. A representative grid and solution contours are shown
in Figure 16. It is emphasized that the third-order edge-based scheme is already known to achieve third-order
accuracy at curved boundaries with straight edges. It still requires quadratically-accurate normal vectors at
boundary nodes for boundary conditions involving boundary normals, but the outflow condition here does
not require the boundary normals in the definition of the right state that goes into the numerical flux at a
boundary node. Note also that a curved boundary representation is required for evaluating integral quantities
to higher-order, but it is a matter of post-processing and only requires a high-order boundary representation
(not a high-order grid over the entire domain). See Ref.[19] for details on the treatment of curved boundaries.
Here, we focus on the effect of source term discretizations on the order of convergence at a curved boundary.

Numerical results are shown in Figure 17. For this problem, the one-component divergence formulation
is applied also with the accuracy-preserving boundary flux quadrature formula [19], indicated Div(x)-BF. At
interior nodes, all formulas except the point quadrature and the regular formula yield third-order accuracy as
expected. See Figure 17(a). On the other hand, at boundary nodes, the one-component divergence formulation
without the boundary closure loses third-order accuracy while it gives third-order accuracy with the boundary
closure. It confirms the necessity of the boundary closure for the one-component form. Here again, we observe
errors worse than first-order accuracy in the case of no boundary closure. Somewhat surprisingly, the symmetric
divergence formula without the boundary closure yields third-order accuracy at boundary nodes. It indicates
that the errors of O(h2) in the source discretization are tolerated for third-order accuracy. For all other formulas,
the results confirm that the boundary closure is not needed to deliver third-order accuracy at boundary nodes.

(a) Regular equilateral triangular grid with 33×33 nodes.
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(b) Error convergence results for interior nodes.

Figure 18: Grid and error convergence results for the equilateral-triangular-grid test.

7.2.3 Equilateral Triangular Grids

Some representative formulas have been tested for the linear advection problem on regular equilateral-
triangular grids with 33×33, 65×65, 129×129, and 257×257 nodes. Figure 18(a) shows the coarsest grid.
The top and right boundaries are treated as outflow as before. The regular and compact formulas are tested
and compared with the Galerkin source discretization (aL = aR = 1 and bL = bR = cL = cR = 0). Error
convergence results for interior nodes are shown in Figure 18(b). Both the regular and compact formulas give
third-order accuracy while the Galerkin discretization does not. Very similar results have been obtained at
outflow boundaries, and therefore not shown.

22



These results show that the Galerkin source discretization is not compatible with the third-order edge-based
scheme. The first author stated in Ref.[27] that it is known that the Galerkin source discretization gives a
compatible discretization on regular equilateral-triangular grids, citing Ref.[13], but he did not perform any
numerical experiment to confirm the statement and these results force him to admit that the statement is false.

7.2.4 Advection-Diffusion

To compare the new source formulas and the special divergence formulation, Equation (4.21) with the source
flux (4.19), we consider the advection-diffusion system defined by the flux (7.7) and the source term (7.8) in
a square domain with the irregular triangular grids used in Section 7.2.1. The exact solution is a boundary-
layer-type solution (7.9). For the parameters (a, b) = (2.73,−1.31) and

√
a2 + b2/ν = 5, the exact solution

exhibits thick boundary layers towards x = 1 and y = 0 as shown in Figure 19(a) for a 17×17 grid. The
advection-diffusion system is discretized by the edge-based scheme as described in details in Ref.[29]; one of the
two schemes proposed in Ref.[29] called Scheme-II is used. Note that this scheme is known to yield the same
order of accuracy in all variables (u, p = ∂xu, q = ∂yu) on irregular grids [19, 29]. The solution and a gradient
variable corresponding to the tangential gradient are specified at boundary nodes: (u, p) specified at y = 0 and
y = 1, and (u, q) specified at x = 0 and x = 1. The tangential gradient can be taken as known since it can be
obtained from the solution along the boundary given as a boundary condition. At corner nodes, both p and q
are specified. The remaining variable, which represents the gradient normal to the boundary is computed by the
numerical scheme with a weak boundary condition implemented with the accuracy-preserving boundary flux
quadrature [19]. For the source term, s = (−p,−q), we consider the point quadrature, Compact, and the special
divergence formulation (4.19). In the case of the special divergence formulation, the source terms are discretized
by the edge-based scheme with an upwind flux (see Ref.[29]), and with the accuracy-preserving boundary flux
quadrature. Further details can be found in Ref.[29].

Error convergence results are shown in Figure 19(b), where the special divergence formulation is indicated as
Special-Div. For the solution u, third-order accuracy is achieved by Special-Div and Compact, but second-order
accuracy is observed for Point. Similar results are obtained for the variable q at the bottom boundary, which
corresponds to the normal gradient. These results confirm that the source term discretization has a significant
impact on the third-order edge-based scheme for equations with solution-dependent source terms. It is also
noted that the newly derived formula, Compact, is an efficient alternative to the special divergence formulation
because it does not require the boundary closure and also does not depend on the LSQ gradients at neighbor
nodes.

(a) Solution contours on a coarse 17×17-node grid.
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(b) Error convergence.

Figure 19: Error convergence results for the advection-diffusion problem.
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(a) Irregular tetrahedral grid (40×40×40). (b) Sections of the irregular tetrahedral grid.

Figure 20: Irregular grid and representative sections.

7.3 Three Dimensions

In three dimensions, the accuracy-preserving formulas are verified for the Euler equations defined by the flux
tensor:

f =

⎡

⎢⎢⎣

ρv

ρv⊗v + pI

ρvH

⎤

⎥⎥⎦ , (7.10)

where⊗ denotes the dyadic product, I is the 3×3 identity matrix, ρ is the density, v = (u, v, w) is the velocity
vector, p is the pressure, and H = (γp/(γ − 1) + ρv2/2)/ρ is the specific total enthalpy with γ = 1.4 (air). The
system is nondimensionalized by free stream values as described in Ref.[2], and closed by the ideal gas law:

p = ρT/γ, (7.11)

where T is the temperature. The source term vector s is defined such that the following functions are the exact
solutions:

u/M∞ = 6.0 + sin(π(x+ 0.6y + 0.4z)), (7.12)

v/M∞ = 2.0 + sin(π(0.6x+ y + 0.4z)), (7.13)

w/M∞ = 2.0 + sin(π(0.6x+ 0.4y + z)), (7.14)

p/M∞ = 2.0 + sin(π(0.8x+ 0.6y + 0.4z)), (7.15)

T/M∞ = 2.0 + sin(π(0.6x+ 0.4y + 0.4z)), (7.16)

where M∞ = 1.2. The parameters have been chosen such that the flow is rendered supersonic and a weak
boundary condition can be implemented by a simple extrapolation.

The accuracy-preserving source discretization formulas have been implemented and verified in NASA’s
FUN3D code [2], which is a well-validated three-dimensional unstructured-grid solver developed by NASA
Langley Research Center, and where the third-order edge-based scheme is already implemented for the Eu-
ler equations [16]. The numerical flux is the Roe flux [41] with linearly-extrapolated left and right fluxes as
in Equation (2.4). All results have been obtained with the same third-order edge-based inviscid scheme, so
that any difference in the results will be due to the effects of source term discretizations. In three dimen-
sions, we consider the following formulas: Div(x), Div(sym), Symmetric, Economical(1), and Compact from
Table 1. No boundary closure is implemented for these formulas. Results obtained by the Katz formula (i.e.,
aL = aR = 1, bL = bR = −1/2, cL = cR = −1/8) are omitted below, but it has been confirmed numerically that
it does not yield third-order accuracy on tetrahedral grids as expected from the analysis in Section 5.
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(a) Density, ρ.
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(b) Velocity, u.
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(c) Velocity, v.
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(d) Velocity, w.
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(e) Pressure, p.

Figure 21: Error convergence results for interior nodes in the three-dimensional Euler test case.
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Figure 22: Error convergence results for boundary nodes in the three-dimensional Euler test case.

The domain is a curved cube as shown in Figure 20(a). Irregular tetrahedral grids have been generated from
regular tetrahedral grids of n3 nodes, where n = 40, 50, 60, 70, 80, 90, in a cubic domain by nodal perturbations
and a mapping onto the curved domain. The curved boundary facing the positive x-direction is taken as outflow,
and a weak supersonic boundary condition is applied with a ghost state set by the solution at the boundary
node j: ub = uj . At boundary nodes, the accuracy-preserving boundary flux quadrature is applied to the flux
balance [19]. It is emphasized, again, that third-order accuracy on linear tetrahedral grids for curved geometries
has already been demonstrated in Ref.[16]; here we focus on the effects of the source term discretization on
third-order accuracy. See Ref.[16] for more details on the implementation of the weak boundary condition and
third-order accuracy on curved geometries. The discretization errors in the primitive variables are measured in
the L2 norm separately for interior and boundary nodes. The effective mesh spacing is computed, separately
for the interior and boundary nodes, as the L2 norm of the cubic root of the dual control volumes.

Error convergence results for interior nodes are shown in Figure 21. As can be seen, third-order accuracy
is completely lost with the point source evaluation. On the other hand, third-order accuracy is obtained with
all other source discretization formulas: Div(x), Div(sym), Symmetric, Economical(1), and Compact, achieving
nearly the same error levels. Figure 22 shows the error convergence results for boundary nodes. Again, the point
source evaluation cannot achieve third-order accuracy. Also, the one-component divergence formulation, Div(x),
leads to accuracy deterioration because no boundary closure is implemented. However, as in two dimensions,
the symmetric divergence formulation, Div(sym), achieves third-order accuracy even with O(h2) committed
by not implementing the boundary closure. It indicates that O(h2) is tolerated also in three dimensions. All
other formulas, Symmetric, Economical(1), and Compact, successfully achieve third-order accuracy without any
boundary contribution.
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8 Concluding Remarks

A new approach was proposed to deriving accuracy-preserving source term discretizations for the third-order
edge-based discretization in one, two, and three dimensions. Requirements for third-order accuracy have been
identified and a family of source quadrature formulas has been derived. In all dimensions, a one-parameter
family of formulas has been discovered that does not require second derivatives of source terms. An important
finding is that there exists a unique formula in the one-parameter family, which does not require gradients at
neighbor nodes also. In this case, the source term discretization stencil matches the LSQ stencil, and can be
compact if the LSQ fit is performed within a compact stencil. It has also been shown that the new formulas
do not require boundary closure in discretizations at boundary nodes, and therefore can be easily applied at
boundary nodes. Numerical results have been presented to demonstrate third-order accuracy in one, two, and
three dimensions, including domains with curved boundaries.
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Appendix A: Truncation Errors on Regular Grids

We derive the truncation errors of the third-order edge-based scheme and the source term discretization
on regular simplex (triangular and tetrahedral) grids. Regular grids are defined as those having an identical
compact stencil (i.e., the stencil composed of edge-connected neighbors) at all interior nodes. The stencil is
symmetric with respect to the central node and invariant under translation, i.e., for any edge-connected interior
nodes j and k, the stencil at j translated along the edge [jk] coincides with the stencil at k. Examples of regular
simplex grids are shown in Figures 3, 4, 10(a), and 18(a). Note that regular simplex grids remain regular under
any linear transformation (scaling, rotation, translation). Applying such transformations, one can obtain highly
anisotropic and/or highly skewed regular grids.

A.1 Truncation error for the conservation law

Consider the Taylor expansions of the fluxes f satisfying divf = 0 and LSQ gradients at edge-connected
nodes j and k. The expansions are computed at node j:

fk = fj + ∂jkfj +
1

2
∂2
jkfj +

1

6
∂3
jkfj +O(h4), (A.1)

∇̂fk = ∇fk + E(∇̂fk) = ∇fj + ∂jk(∇fj) +
1

2
∂2
jk(∇fj) + E(∇̂fj) +O(h3), (A.2)

∇̂fj = ∇fj + E(∇̂fj) +O(h3). (A.3)

where E(∇̂fk) and E(∇̂fj) denote the tensors of the local truncation errors of the nodal gradients at k and j,
respectively. The truncation errors have magnitude of O(h2), as the third-order edge-based scheme requires
nodal gradients to be exact for quadratic fluxes. Note that the truncation errors of the nodal gradients take the
same form at all nodes on regular grids, and thus the leading term of the Taylor expansion of E(∇̂fk) around j
matches E(∇̂fj) as implied in Equation (A.2). Substituting them into the left and right fluxes (2.4), we obtain

fL = fj +
1

2
∇̂fj ·∆xjk = fj +

1

2
∂jkfj +

1

2
E(∇̂fj) ·∆xjk +O(h4), (A.4)

fR = fk − 1

2
∇̂fk ·∆xjk = fj +

1

2
∂jkfj −

1

12
∂3
jkfj −

1

2
E(∇̂fj) ·∆xjk +O(h4). (A.5)

Therefore, the average flux in the numerical flux (2.3) becomes

1

2
(fL + fR) = fj +

1

2
∂jkfj −

1

24
∂3
jkfj +O(h4). (A.6)

The dissipation term, |an|(uR − uL)|njk|, will locally generate an O(h2) contribution to the overall truncation
error of the edge-based scheme. However, it cancels out when summed over the edges by symmetry of regular
stencils [30]. To see this, consider the Taylor expansion of |an|(uR − uL)|njk|:

|an|(uR − uL)|njk| = −|an|j
(

1

12
∂3
jkuj + E(∇̂uj) ·∆xjk

)
|njk|+O(h3+D), (A.7)

where D = 2 in two dimensions and D = 3 in three dimensions. The terms in the parenthesis are of O(h3),
and proportional to cubic products of the components of ∆xjk. On regular grids, each edge in the stencil at
node j has a symmetric edge with respect to the node j, having the same |njk|. For such a pair of symmetric
edges, these terms will have the same magnitude with the opposite signs. Therefore, the leading error in the
dissipation term vanishes when summed over all edges in the stencil. As a result, the Taylor expansion of the
edge-based scheme for the conservation law is given by

∑

k∈{kj}

φjk(njk) =
∑

k∈{kj}

fj · njk +
∑

k∈{kj}

1

2
∂jkfj · njk −

∑

k∈{kj}

1

24
∂3
jkfj · njk +O(h3+D). (A.8)
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The first term vanishes because
∑

k∈{kj} njk = 0. The second term simplifies to (divfj)Vj by the identity that
holds on arbitrary simplex grids:

1

2

∑

k∈{kj}

∆xjk⊗njk = Vj I, (A.9)

where⊗ denotes the dyadic product, and I is the D ×D identity matrix. Therefore, we obtain

1

Vj

∑

k∈{kj}

φjk(njk) = divfj −
∑

k∈{kj}

1

24Vj
∂3
jkfj · njk +O(h3), (A.10)

for general simplex grids. The second term on the right hand side is the second-order truncation error, and it
vanishes for exact solutions satisfying divf = 0. To see this, we first consider a regular triangular grid. The
second-order truncation error term, denoted by T , is given by

T = − 1

24Vj

∑

k∈{kj}

[
∆x3∂xxx + 3∆x2∆y∂xxy + 3∆x∆y2∂xyy +∆y3∂yyy

]
(fj · njk) , (A.11)

where ∆xjk = (∆x,∆y). On regular triangular grids, the following identities hold:
∑

k∈{kj}

nx∆y3 =
∑

k∈{kj}

ny∆x3 = 0,
∑

k∈{kj}

nx∆x2∆y =
∑

k∈{kj}

ny∆x∆y2 (A.12)

∑

k∈{kj}

ny∆y3 = 3
∑

k∈{kj}

nx∆x∆y2,
∑

k∈{kj}

nx∆x3 = 3
∑

k∈{kj}

ny∆x2∆y, (A.13)

where njk = (nx, ny), by which the second-order truncation error can be factored as

T = − 1

24Vj

∑

k∈{kj}

[
nx∆x3∂xx + 3nx∆x2∆y∂xy + ny∆y3∂yy

]
(divf)j . (A.14)

It is expressed in Equation (3.2) as

T = − 1

24Vj
[Qxx +Qyy +Qxy] (div f)j , (A.15)

where Qxx, Qyy, and Qxy are defined as

Qxx =
∑

k∈{kj}

nx∆x3∂xx, Qyy =
∑

k∈{kj}

ny∆y3∂yy, Qxy =
∑

k∈{kj}

3nx∆x2∆y ∂xy. (A.16)

Therefore, the second-order truncation error vanishes for exact solutions satisfying divf = 0, and the leading
truncation error becomes O(h3). For a regular grid with right isosceles triangles as in Figure 3, the second-order
truncation error T reduces to the one in Equation (3.4); and for a regular grid with equilateral triangles as in
Figure 18(a), it reduces to

T = −h2

16
(∂xx + ∂yy)(div f)j , (A.17)

where h is the side length of the equilateral triangles.
In three dimensions, the second-order truncation error in Equation (A.10) is given by

T = − 1

24Vj

∑

k∈{kj}

[∆x∂x +∆y∂y +∆z∂z]
3 (fj · njk) , (A.18)

where ∆xjk = (∆x,∆y,∆z). On regular tetrahedral grids, the following identities hold:
∑

k∈{kj}

ny∆x3 =
∑

k∈{kj}

nz∆x3 = 0, (A.19)

∑

k∈{kj}

nz∆y3 =
∑

k∈{kj}

nx∆y3 = 0, (A.20)

∑

k∈{kj}

nx∆z3 =
∑

k∈{kj}

ny∆z3 = 0, (A.21)
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3
∑

k∈{kj}

nx∆y2∆z = 3
∑

k∈{kj}

∆y∆z2nx = 0, (A.22)

3
∑

k∈{kj}

ny∆z2∆x = 3
∑

k∈{kj}

ny∆z∆x2 = 0, (A.23)

3
∑

k∈{kj}

nz∆x2∆y = 3
∑

k∈{kj}

nz∆x∆y2 = 0, (A.24)

∑

k∈{kj}

nx∆x3 = 3
∑

k∈{kj}

ny∆x2∆y = 3
∑

k∈{kj}

nz∆x2∆z, (A.25)

∑

k∈{kj}

ny∆y3 = 3
∑

k∈{kj}

nz∆y2∆z = 3
∑

k∈{kj}

nx∆y2∆x, (A.26)

∑

k∈{kj}

nz∆z3 = 3
∑

k∈{kj}

nx∆z2∆x = 3
∑

k∈{kj}

ny∆z2∆y, (A.27)

3
∑

k∈{kj}

ny∆y2∆z = 3
∑

k∈{kj}

nz∆y∆z2 = 6
∑

k∈{kj}

nx∆x∆y∆z, (A.28)

3
∑

k∈{kj}

nz∆z2∆x = 3
∑

k∈{kj}

nx∆z∆x2 = 6
∑

k∈{kj}

ny∆x∆y∆z, (A.29)

3
∑

k∈{kj}

nx∆x2∆y = 3
∑

k∈{kj}

ny∆x∆y2 = 6
∑

k∈{kj}

nz∆x∆y∆z, (A.30)

where njk = (nx, ny, nz), by which the truncation error can be factored as

T = − 1

24Vj

∑

k∈{kj}

[
nx∆x3∂xx + ny∆y3∂yy + nz∆z3∂zz + 6(nx∂yz + ny∂zx + nz∂xy)∆x∆y∆z

]
(divf)j . (A.31)

It is expressed in Equation (3.6) as

T = − 1

24Vj
[Qxx+Qyy+Qzz+Qxy+Qyz+Qzx] (div f)j +O(h3), (A.32)

where

Qxx =
∑

k∈{kj}

nx∆x3∂xx, Qyy =
∑

k∈{kj}

ny∆y3∂yy, Qzz =
∑

k∈{kj}

nz∆z3∂zz, (A.33)

Qxy =
∑

k∈{kj}

6nz∆x∆y∆z ∂xy, Qyz =
∑

k∈{kj}

6nx∆x∆y∆z ∂yz, Qzx =
∑

k∈{kj}

6ny∆x∆y∆z∂zx. (A.34)

Therefore, the second-order truncation error vanishes for exact solutions satisfying divf = 0, and the leading
truncation error becomes O(h3). For a regular tetrahedral grid in Figure 4, the second-order truncation error
T reduces to the one in Equation (3.9).

A.2 Truncation error for the source term

Consider the Taylor expansion of the source term discretization (5.12) on arbitrary grids:

∑

k∈{kj}

1

2
(sL + sR)Vjk =

∑

k∈{kj}

(
aL + aR

2
sj +

aR + bL + bR
2

∂jksj +
2(bR + cR + cL) + aR

4
∂2
jksj

)
Vjk. (A.35)
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On regular simplex grids, the second term in the parenthesis vanishes identically. In two dimensions, for example,
we have

∑

k∈{kj}

∂jksjVjk =
1

4

∑

k∈{kj}

(∆xjk · njk∆x∂x +∆xjk · njk∆y∂y) sj

=
1

4

∑

k∈{kj}

(
nx∆x2∂x + ny∆x∆y∂x + nx∆x∆y∂x + ny∆y2∂y

)
sj . (A.36)

The following identities hold on regular triangular grids:
∑

k∈{kj}

nx∆x2 =
∑

k∈{kj}

nx∆x∆y =
∑

k∈{kj}

ny∆x∆y =
∑

k∈{kj}

ny∆y2 = 0, (A.37)

and therefore

aR + bL + bR
2

∑

k∈{kj}

∂jksjVjk = 0, (A.38)

This implies that the second condition in Equation (5.20) is redundant for regular grids.
Similarly, in three dimensions, we have

∑

k∈{kj}

∂jksjVjk =
1

6

∑

k∈{kj}

(∆xjk · njk∆x∂x +∆xjk · njk∆y∂y +∆xjk · njk∆z∂z) sj

=
1

6

∑

k∈{kj}

(
nx∆x2∂x + ny∆y∆x∂x + nz∆z∆x∂x + nx∆x∆y∂y + ny∆y2∂y + nz∆z∆y∂y

+ nx∆x∆z∂z + ny∆y∆z∂z + nz∆z2∂z
)
sj . (A.39)

On regular tetrahedral grids, the following identities hold:
∑

k∈{kj}

nx∆x2 =
∑

k∈{kj}

ny∆y2 =
∑

k∈{kj}

nz∆z2 = 0, (A.40)

∑

k∈{kj}

nx∆x∆y =
∑

k∈{kj}

ny∆y∆x = 0, (A.41)

∑

k∈{kj}

ny∆y∆z =
∑

k∈{kj}

nz∆z∆y = 0, (A.42)

∑

k∈{kj}

nz∆z∆x =
∑

k∈{kj}

nx∆x∆z = 0, (A.43)

and therefore

aR + bL + bR
2

∑

k∈{kj}

∂jksjVjk = 0. (A.44)

The third term in the parenthesis of Equation (A.35), which is a second-order error term and denoted by Ts:

Ts =
2(bR + cR + cL) + aR

4Vj

∑

k∈{kj}

∂2
jksjVjk, (A.45)

does not vanish, but can be simplified on regular simplex grids. In two dimensions, we have

∑

k∈{kj}

∂2
jksjVjk =

1

4

∑

k∈{kj}

[(
nx∆x3 + ny∆x2∆y

)
∂xx +

(
ny∆y3 + nx∆y2∆x

)
∂yy + 2

(
nx∆x2∆y + ny∆x∆y2

)
∂xy

]
sj ,

32



which can be simplified on regular grids, by the identities (A.12-A.13), as

∑

k∈{kj}

∂2
jksjVjk =

1

3

∑

k∈{kj}

[
nx∆x3∂xx + 3nx∆x2∆y∂xy + ny∆y3∂yy

]
sj , (A.46)

and thus,

Ts =
2(bR + cR + cL) + aR

4Vj

(
1

3

) ∑

k∈{kj}

[Qxx +Qyy +Qxy] sj . (A.47)

In three dimensions, we have

∑

k∈{kj}

∂2
jksjVjk =

1

6

∑

k∈{kj}

[(
nx∆x3 + ny∆x2∆y + nz∆x2∆z

)
∂xx +

(
ny∆y3 + nz∆y2∆z + nx∆y2∆x

)
∂yy

+
(
nz∆z3 + nx∆z2∆x+ ny∆z2∆y

)
∂zz + 2

(
nx∆x2∆y + ny∆x∆y2 + nz∆x∆y∆z

)
∂xy

+ 2
(
ny∆y2∆z + nz∆y∆z2 + nx∆x∆y∆z

)
∂yz + 2

(
nx∆x2∆z + nz∆x∆z2 + ny∆x∆y∆z

)
∂zx

]
sj ,

which can be simplified on regular tetrahedral grids, by the identities (A.19-A.30), as

∑

k∈{kj}

∂2
jksjVjk =

5

18

∑

k∈{kj}

[
nx∆x3∂xx + ny∆y3∂yy + nz∆z3∂zz + 6(nx∂yz + ny∂zx + nz∂xy)∆x∆y∆z

]
sj .

Hence, the second-order truncation error is given by

Ts =
2(bR + cR + cL) + aR

4Vj

(
5

18

) ∑

k∈{kj}

[Qxx+Qyy+Qzz+Qxy+Qyz+Qzx] sj . (A.48)

The coefficients 1/3 in Equation (A.47) and 5/18 in Equation (A.48) can be expressed in terms of the dimension
constant D:

D + 2

6D
. (A.49)

Therefore, the second-order truncation error can be written as in Equation (5.15). Comparing the second-order
truncation error Ts with that for the conservation law, Equations (A.15) and (A.32), we find the compatibility
condition:

2(bR + cR + cL) + aR
4

(
D + 2

6D

)
= − 1

24
, (A.50)

which leads to the equation (5.18).

Appendix B: Non-Regular Grid That Admits Regular Formula

There exist non-regular grids, on which the second-order truncation error cannot be factored as described
above, but the regular formula (’Regular’ in Table 1) yields third-order accuracy. An example shown in Figure
B.1(a) is constructed from a Cartesian grid by inserting alternating diagonals. The grid is not regular because
the stencil is not the same at all nodes; some nodes have four neighbors and others have eight neighbors. It is
straightforward to show that the identities (A.13) do not hold on this grid. Therefore, the third-order accuracy
has to rely on vanishing coefficient of the first-order error term: aR + bL + bR = 0. However, the first-order
error in the source discretization (A.38) vanishes for any aR + bL + bR because the identities (A.37) still hold
on such a grid. Hence, the condition aR + bL + bR = 0 is redundant, and so the regular formula can provide
third-order accuracy. To verify this, numerical experiments were performed for the linear advection problem
used in Section 7.2. The source term was discretized by the regular formula. Two grids are considered: (G1)
the regular grid in Figure 10(a), and (G2) the irregular grid in Figure B.1(a). Truncation and discretization
error convergence results obtained for n× n grids with n = 17, 33, 65, 129, 257, 513 are shown in Figure B.1(b).
As can be observed, the discretization error is O(h3) on both grids, but the truncation error is O(h2) on G2
while O(h3) on G1. The results confirm that the grid in Figure B.1(b) is an irregular grid but allows the regular
formula to achieve third-order accuracy.
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(a) Irregular right-isosceles triangular grid generated from
a Cartesian grid by inserting alternating diagonals (G2).
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(b) Error convergence results for interior nodes obtained
with the regular formula on two types of grids, G1 (Figure
10(a)) and G2 (Left).

Figure B.1: Grid and error convergence results for regular and irregular right-isosceles triangular grids.
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