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Abstract

This paper discusses effects of high-frequency damping on iterative convergence of an implicit defect-
correction solver for viscous problems. The study targets a finite-volume discretization with a one parameter
family of damped viscous schemes. The parameter α controls high-frequency damping: zero damping with
α = 0, and larger damping for larger α(> 0). Convergence rates are predicted for a model diffusion equation
by a Fourier analysis over a practical range of α. It is shown that the convergence rate attains its minimum
at α = 1 on regular quadrilateral grids, and deteriorates for larger values of α. A similar behavior is observed
for regular triangular grids. In both quadrilateral and triangular grids, the solver is predicted to diverge for
α smaller than approximately 0.5. Numerical results are shown for the diffusion equation and the Navier-
Stokes equations on regular and irregular grids. The study suggests that α = 1 and 4/3 are suitable values
for robust and efficient computations, and α = 4/3 is recommended for the diffusion equation, which achieves
higher-order accuracy on regular quadrilateral grids. Finally, a Jacobian-Free Newton-Krylov solver with
the implicit solver (a low-order Jacobian approximately inverted by a multi-color Gauss-Seidel relaxation
scheme) used as a variable preconditioner is recommended for practical computations, which provides robust
and efficient convergence for a wide range of α.

1 Introduction

Computational Fluid Dynamics (CFD) simulations have been widely used in industrial applications, but
unstructured-grid technologies for practical complex geometries still require improved robustness and efficiency
to meet the ever-increasing demand for accurate and efficient high-fidelity simulations. Improvements are sought
in grid adaptation, solver constructions, and high-performance computing. More fundamentally, improvements
in viscous discretizations have also been recognized as important especially on unstructured grids, not only for
accuracy, but also for robust and efficient solver constructions. For example, improved viscous discretizations
have been found to dramatically improve the performance of iterative solvers [1, 2].

In the recent works [3, 4, 5], two essential components have been emphasized for robust and accurate viscous
discretizations: consistent and damping terms. The consistent term approximates viscous terms consistently:
it approaches the exact viscous terms in the grid refinement. The damping term, on the other hand, does not
approximate the viscous terms (i.e., it vanishes in the grid refinement), but provides a high-frequency damping
property, which has been found critically important for robust and accurate computations on unstructured grids.
In many finite-volume viscous discretizations, however, these two mechanisms are not clearly identified. Thus,
if a scheme fails, e.g., due to convergence difficulties or numerical oscillations, one typically attempts to devise
a new scheme (e.g., Refs.[2, 6, 7]) or resort to a more robust but inconsistent scheme (e.g., Ref.[8]) although
the problem may be resolved by increasing high-frequency damping hidden in the original scheme. See Ref.[3]
(Appendix C) for damping terms identified for the so-called edge-normal and face-tangent diffusion schemes
[2], and see also Ref.[9] for a damping term identified for a finite-difference-type scheme on unstructured grids
proposed by Muppidi and Mahesh [10].
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In Ref.[4], diffusion schemes with adjustable damping terms have been derived for various discretization
methods based on a general principle: extract a diffusion scheme from an upwind discretization of a hyperbolic
diffusion system. Its general applicability has been demonstrated for various methods: finite-volume, residual-
distribution, discontinuous Galerkin, and spectral-volume methods [4]. Extensions to high-order residual-
distribution schemes for the Navier-Stokes equations can be found in Ref.[11]. The diffusion scheme derived
for finite-volume methods, called the alpha-damping scheme, is similar to some existing schemes [12, 13], but
has features not seen typically in other schemes. First, it directly incorporates a grid-skewness measure into
the scheme, which has been found essential for accurate computations on highly-skewed unstructured viscous
grids. Second, it has a non-dimensional parameter α that controls the amount of high-frequency damping.
The parameter α acts on a solution jump at a cell interface, and therefore can be adjusted without affecting
the consistency and the order of accuracy of the scheme (see analyses in Ref.[4]). Ref.[4] has shown that the
damping parameter has also a significant impact on accuracy. For example, a second-order finite-volume dif-
fusion scheme can potentially achieve fourth-order accuracy on Cartesian grids with α = 4/3. Similarly, P1

discontinuous-Galerkin and spectral-volume diffusion schemes achieve fourth-order accuracy with α = 6 and
α = 3, respectively, on uniform grids [4]. The finite-volume scheme with α = 4/3 has been shown to yield accu-
rate solutions also on highly-skewed irregular anisotropic grids [4, 14] even though fourth-order accuracy cannot
be obtained on such grids by α = 4/3. The damping term of this kind also plays a key role in implementing
weak boundary conditions [15, 16].

The alpha-damping scheme has been successfully used in a three-dimensional general-purpose unstructured-
grid code in combination with an implicit solver, and demonstrated its robustness and efficiency on highly-
stretched unstructured grids used in practical viscous simulations [17]. It is also employed in an improved
finite-volume method for diffusion [18] and a high-order finite-volume method for RANS simulations [19]. A
compact Jacobian matrix can be constructed for the implicit solver by the derivative of the damping term, which
is similar to the derivative of the edge-terms-only (or a thin-layer approximation) scheme [2]. The skewness
measure and the damping parameter α in the damping term are expected to play a critical role for an improved
diagonal dominance on highly-skewed grids. However, effects of α on iterative convergence have not received
much attention and were not well understood; although it has been known experimentally that the iterative
convergence of an implicit solver deteriorates as α departs far from 1.0. Refs.[3, 4, 5] consider only explicit
time-stepping schemes and solvers, and do not discuss implicit solvers. The objective of the present work is,
therefore, to analyze the implicit iterative solver for the alpha-damping scheme, and provide a guide for choosing
the parameter α for practical viscous computations. It is also shown that a robust and efficient Jacobian-Free
Newton-Krylov solver can be developed with the implicit solver used as a variable preconditioner, which can
converge for α with which the implicit solver diverges.

The target discretization is taken to be a node-centered edge-based discretization, but results are equally
applicable to other finite-volume methods, e.g., cell-centered methods. The target solver is an implicit defect-
correction solver with a compact Jacobian based on the derivative of the damping term only. A Fourier analysis
is performed to predict the convergence rate of the implicit solver on regular quadrilateral and triangular grids
for the diffusion (Laplace) operator, modeling the viscous term in the incompressible Navier-Stokes equations.
For regular quadrilateral grids, the analysis shows that the convergence rate is zero at α = 1.0, increases towards
1.0 for α larger and smaller than 1.0, and exceeds 1.0 for α ≤ 0.5. A similar behavior is observed for regular
triangular grids. Numerical results are shown for diffusion on regular grids to confirm the predicted behaviors of
the implicit solver, and also on irregular grids to examine how the convergence is affected by mesh irregularities.
Besides the impact of alpha on the convergence rate, we also address its impact on accuracy. To provide
implications on compressible viscous flow solvers, numerical results are shown for two-dimensional compressible
Navier-Stokes equations.

The paper is organized as follows. In Section 2, target discretization and implicit solvers are described. In
Section 3, a Fourier analysis is performed for regular grids and the convergence rate of an implicit iterative solver
is determined. In Section 4, numerical results are presented to confirm the convergence behavior predicted by
the analysis, and to investigate the performance of implicit solvers for more general cases, including irregular
grids and viscous flow simulations. Finally, Section 5 concludes the paper with remarks.
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2 Target Discretization and Solver

2.1 Target Discretization: Edge-Based (Finite-Volume) Method

Consider the diffusion equation (the Poisson equation), which models the viscous term in incompressible
flows:

∂xxu+ ∂yyu = f, (2.1)

where u is a solution variable and f = f(x, y) is a forcing term. To discretize it on unstructured grids, we
consider the node-centered edge-based discretization [17, 20, 21, 22, 23, 24, 25, 26]. The residual equation at a
node j is given by

Resj =
∑

k∈{kj}

φjkAjk − fjVj = 0, (2.2)

where Vj is the measure of the dual control volume around the node j, {kj} is a set of neighbors of the
node j, φjk is a numerical flux defined at the edge midpoint, and Ajk is the magnitude of the directed area
vector njk = Ajkn̂jk. See Figures 1 for a triangular grid and 2 for a quadrilateral grid. In this study, we
focus on arbitrary triangular grids and orthogonal quadrilateral grids. For second-order accuracy, the linear
reconstruction employs the solution gradient computed from the solution values. On regular quadrilateral
and triangular grids, the gradients can be computed by the central difference formula at interior nodes, and
a one-sided second-order finite-difference formula or a quadratic least-squares (LSQ) fit at boundary nodes.
The second-order formulas are necessary to achieve higher-order accuracy for a special value of α on regular
quadrilateral grids as mentioned below. For irregular triangular grids, since there are no special values of α,
a linear LSQ fit is employed to compute the gradients. The alpha-damping scheme is defined by the following
numerical flux:

φjk =
ν

2
[(∇u)j + (∇u)k] · n̂jk +

να

2Lr
(uR − uL) , (2.3)

where (∇u)j and (∇u)k are the gradients at the nodes j and k, respectively, n̂jk is the unit directed area vector,
uL and uR are linearly reconstructed solutions at the edge-midpoint,

uL = uj +
1

2
(∇u)j · ejk, uR = uk − 1

2
(∇u)k · ejk, ejk = (xk − xj , yk − yj), (2.4)

and Lr is the length scale, which incorporates the skewness measure êjk · n̂jk, where êjk = ejk/|ejk| (see Figure
3),

Lr =
1

2
|ejk · n̂jk| . (2.5)

The first term in the numerical flux (2.3) represents the averaged gradients; this is the consistent term that
approximates the true diffusive flux. The second term is the damping term, which does not approximate
the diffusive flux, but provides high-frequency damping [4]. It is important to note that the consistent term
approaches the physical flux and the damping term approaches zero in the grid refinement. The damping term
is a high-order term similar to the dissipation term in the upwind flux for second-order advection schemes, solely
responsible for high-frequency damping. The parameter α is the coefficient that controls the damping: zero
damping with α = 0, and larger damping for larger α(> 0) as shown by a Fourier analysis in Ref.[4] (see Figure
4.2 in Ref.[4]). Note that the parameter can take any non-negative value without losing the consistency of the
scheme since the damping term has the order property of vanishing in the grid refinement. It is known that
α = 4/3 gives fourth-order accuracy on regular quadrilateral grids as demonstrated for a cell-centered method in
Ref.[4]. For the node-centered edge-based scheme considered in this work, however, third-order order accuracy
is observed. Fourth-order accuracy with α = 4/3 is achieved by a special error cancellation on a regular stencil
at interior nodes [4], and it is lost at nodes connected to boundary nodes because of an irregular stencil used
to compute the gradient at the boundary nodes. In Ref.[4], a cell-centered finite-volume method was used, for
which fourth-order accuracy can be obtained with the use of a ghost cell.

Note that the edge-based discretization is equivalent to a cell-centered finite-volume discretization formulated
on a dual polyhedral grid. On Cartesian grids, it is equivalent to a cell-centered finite-volume or a finite-difference
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Figure 2: Quadrilateral stencil and face normals that
define the directed area vector: njk = nℓ
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Figure 3: Vectors that define the skewness measure êjk · n̂jk. The hat indicates a unit vector.

scheme, at least, away from boundaries. Therefore, the analysis presented below should provide useful indications
to these schemes. It is also important to note that the alpha-damping diffusion flux (2.3) can be expressed as

φjk = ν
(
∇u

)
· n̂jk, ∇u =

1

2
[(∇u)j + (∇u)k] +

α

2Lr
(uR − uL) n̂jk, (2.6)

thus suggesting a gradient formula at the face. Hence, it can be immediately applied to the compressible Navier-
Stokes equations: use the damped gradient ∇u to evaluate the density, velocity, and temperature (or pressure)
gradients at the control-volume face. In this work, we consider this simple approach for the compressible Navier-
Stokes equations. See Ref.[5] for more details and an alternative approach to extending the alpha-damping
scheme to the viscous terms.

2.2 Target Solver: Implicit Defect-Correction Solver

The discretized equations (2.2) are solved by an implicit defect-correction solver:

Un+1 = Un +∆U, (2.7)

∂Res

∂U
∆U = −Res(Un), (2.8)

where U is a global vector of nodal solutions, Res is a global vector of nodal residuals, and Res is a global
vector of lower-order residuals, which are defined by the low-order damping-term-only flux:

φjk =
να

2Lr
(uk − uj) . (2.9)
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The diagonal and off-diagonal elements in the j-th row are given by

∂Resj
∂uj

= −
∑

k∈{kj}

να

2Lr
Ajk,

∂Resj
∂uk

=
να

2Lr
Ajk. (2.10)

Therefore, the Jacobian is compact, depending only on the neighbors. For the compressible Navier-Stokes
equations, the same approach has been taken, but the viscosity is not a constant and so the Jacobian involves
the derivative of the viscosity; see Ref.[27] for details on the derivative of the viscous flux. Note that the damping-
term-only flux, if used in the residual, leads to an inconsistent diffusion scheme on non-orthogonal grids [28, 29].
In the case of the compressible Navier-Stokes equations, it is known as the thin-layer approximation [2], which
is an inconsistent scheme on any grid because shear components of the viscous stresses are totally ignored.
However, the damping-term-only scheme is compact and robust with positive coefficients and thus can serve as
a useful scheme for the construction of the Jacobian. In this paper, we analyze the convergence of the implicit
defect-correction solver in relation to the parameter α for the model diffusion equation. In the analysis, we
assume that the linear system is fully solved, but it is relaxed by a multi-color Gauss-Seidel method to a very
low tolerance in actual numerical experiments.

As we will show, the implicit solver can diverge for a certain range of α. To secure robustness for practi-
cal applications, we consider a Jacobian-Free Newton-Krylov (JFNK) solver based the Generalized Conjugate
Residual (GCR) method [30] with the above implicit defect-correction solver employed as a variable precondi-
tioner [31, 32, 33]. More specifically, the damping-term-only Jacobian is used as a preconditioning matrix for
the JFNK solver, and it is approximately inverted by the multi-color Gauss-Seidel relaxation scheme. In this
method, we employ the GCR method to solve the linearized equation:

∂Res

∂U
∆U = −Res(Un), (2.11)

evaluated, without forming the exact Jacobian, as

Res(Un + ϵ∆U)−Res(Un)

ϵ
= −Res(Un), (2.12)

where ϵ is a small parameter as defined in Ref.[34]. The GCR projection is performed to reduce the residual of
the above equation by one order of magnitude or for a specified maximum number of projections, and then the
solution is updated as

Un+1 = Un +∆U. (2.13)

The JFNK solver has the ability to converge even when the preconditioner diverges, which is well known and
will be demonstrated later in the numerical experiments. This is because the multi-color Gauss-Seidel relaxation
scheme is used only for preconditioning with a relatively large tolerance, typically one order magnitude reduction
in the linear-system residual, and the GCR method is guaranteed not to diverge (a monotone convergence
property) [31]. As in Ref.[32], the JFNK solver may be employed with a small number of projections, e.g., 4 or
smaller, which provides robust convergence with a minimal cost of storing the Krylov vectors for practical large-
scale problems. Effects of the number of projections will be investigated numerically later for a two-dimensional
viscous flow problem. In the rest of the paper, the above JFNK solver is referred to as the JFNK-GCR solver.

3 Analysis

3.1 Analysis Method

A Fourier analysis is performed for the implicit defect-correction solver on quadrilateral and triangular grids
with uniform spacing in each coordinate direction. Boundary conditions are not taken into account, but the
analysis provides indications of stability: e.g., if the convergence rate is greater than 1, the solver is expected to
be unstable; a smaller convergence rate indicates a possibility of faster convergence [35, 36]. Numerical results
will be presented later to demonstrate that the analysis accurately predicts the behavior of the solver.

Consider a Fourier mode

uβ = uβ
0 exp (βxx/hx + βyy/hy) , (3.1)
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(a) Uniform quadrilateral grid.
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(b) Uniform triangular grid.

Figure 4: Convergence rate versus the damping parameter α for an isotropic grid.

where uβ
0 is the amplitude, βx and βy are frequencies (phase changes per grid spacing) in the x and y directions,

respectively, and hx and hy are the corresponding grid spacings. Substituting the Fourier mode into Equation
(2.7), we obtain

(u0)
n+1 = ρ(βx,βy) (u0)

n, ρ(βx,βy) = 1− λR

λJ
, (3.2)

where λR is the residual operator and λJ is the Jacobian operator. The convergence rate of the implicit solver
is determined by the maximum of |ρ| taken over all frequencies:

ρmax = max
βx,βy∈(−π,π)

|ρ(βx,βy)| . (3.3)

The solver is stable if ρmax < 1, converges faster for smaller ρmax, and gets unstable if ρmax > 1. The
convergence rate will be evaluated for α = [0.25, 3] to investigate the effect of α on convergence.

3.2 Uniform Grid

For a regular quadrilateral grid as in Figure 6(a), we obtain

ρ(βx,βy) =
(α− 1) {cos(2βx) + cos(2βy)− 2}

4α {cos(βx) + cos(βy)− 2} . (3.4)

Observe that we have ρ = 0 for α = 1, where the scheme reduces to the five-point central finite-difference scheme
and the Jacobian becomes the exact linearization of the right hand side [4]. This is optimal for convergence,
but not for accuracy since higher-order accuracy is achieved not for α = 1 but for α = 4/3. The convergence
rate ρmax was computed numerically as explained earlier, and the result is shown in Figure 4(a). First, it is
observed that the convergence rate deteriorates as α increases from α = 1. Therefore, as expected, the implicit
solver converges faster for α closer to 1. Observe also that the solver diverges for α < 0.5. A lack of damping
leads to failure of the implicit solver.

For a regular triangular grid as illustrated in Figure 6(b), which is constructed by inserting diagonals into
the quadrilateral grid, we obtain

ρ(βx,βy) =
X

4α {5 cos(βx) + 5 cos(βy) + 2 cos(βx + βy)− 12} , (3.5)

where

X = 2(α− 1) {cos(βx + 2βy) + cos(2βx + βy)− cos(βx)− cos(βy)}
− 4 {cos(βx − βy)− cos(βx + βy)}+ (5α− 4) {cos(2βx) + cos(2βy)− 2} . (3.6)
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(a) High-aspect-ratio quadrilateral grid.
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(b) High-aspect-ratio triangular grid.

Figure 5: Convergence rate versus the damping parameter α for a high-aspect-ratio grid.

Figure 4(b) shows the convergence rate for the triangular grid. The minimum convergence rate is achieved
not exactly at α = 1, but the value slightly smaller than α = 1. However, as in the quadrilateral-grid case,
the convergence rate deteriorates for larger values. Also, the solver is predicted to diverge for α smaller than
approximately 0.6.

Overall, the analysis suggests that α = 1 is a reasonable choice. However, α = 4/3 may be chosen for better
accuracy at slightly slower convergence on quadrilateral grids.

3.3 High-Aspect-Ratio Grid

To investigate the effect of high aspect ratio cells, as typically required in high-Reynolds-number simulations,
we consider a grid with uniform but different spacings in the two coordinate directions: hx and hy, in x and y
directions, respectively. For a quadrilateral grid, we obtain

ρ(βx,βy) =
(α− 1)

{
h2
y cos(2βx) + h2

x cos(2βy)− h2
x − h2

y

}

4α
{
h2
y cos(βx) + h2

x cos(βy)− h2
x − h2

y

}

=
(α− 1)

{
cos(2βx) +R2 cos(2βy)−R2 − 1

}

4α {cos(βx) +R2 cos(βy)−R2 − 1} , (3.7)

where R = hx/hy is the aspect ratio. Figure 5(a) shows the convergence rate for R = 103. The result is very
similar to the one for the isotropic grid, showing that the solver is not affected by the high aspect ratio on
quadrilateral grids.

On the other hand, we obtain for a triangular grid

ρ(βx,βy) =
X

4α {(R2 + 1) cos(βx + βy) + (R2 + 4) cos(βx) + (4R2 + 1) cos(βy)− 6(R2 + 1)} , (3.8)

where

X = (R2α+ α− 2R2) cos(βx + 2βy) + (R2α+ α− 2) cos(2βx + βy)− (2R2 + 2) cos(βx − βy)

+ (2R2 + 2) cos(βx + βy) + (R2α+ 4α− 4) cos(2βx) + (4R2α+ α− 4R2) cos(2βy)

− (R2α+ α− 2R2) cos(βx)− (R2α+ α− 2) cos(βy)− (5α− 4)(R2 + 1), (3.9)

and the convergence rate computed for R = 103 is shown in Figure 5(b). The rate is still below 1.0 for a similar
range as in the isotropic case, and thus stable, but much closer to 1.0, indicating slow down on high-aspect-ratio
grids.
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(a) 17×17 quadrilateral grid. (b) 17×17 triangular grid.

Figure 6: Uniform grids with R = 1.

(a) 17×17 quadrilateral grid. (b) 17×17 triangular grid. (c) 17×17 irregular triangular grid.

Figure 7: High-aspect-ratio grids with R = 1000.

4 Numerical Results

4.1 Diffusion Equation

For all cases, the Dirichlet boundary condition is imposed strongly. To be consistent with the analysis, the
linear system is sufficiently relaxed by the sequential Gauss-Seidel relaxation scheme until the linear residual
is reduced by six orders of magnitude. The implicit solver is taken to be converged when the L1 norm of
the residual is reduced by ten orders of magnitude. For regular grids, the solution gradients are computed by
the central-difference formula at interior nodes and an unweighted quadratic LSQ fit at boundary nodes. The
LSQ fit uses neighbors of the neighbors to avoid ill-conditioning. For irregular grids, a linear LSQ fit is used.
An initial solution is set by an exact solution with random perturbations. Three levels of grids with n × n
nodes (n = 17, 33, 65) have been used for all grid types. The coarsest grids are shown in Figures 6 and 7:
uniform quadrilateral grid (Figure 6(a)), uniform triangular grid (Figure 6(b)), high-aspect-ratio quadrilateral
grid (Figure 7(a)), high-aspect-ratio triangular grid (Figure 7(b)), irregular high-aspect-ratio triangular grid
(Figure 7(c)).
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(a) 64×64 quadrilateral grid. (b) 64×64 triangular grid.

Figure 8: Convergence histories of implicit defect-correction solver on a uniform grid with R = 1.

(a) 64×64 quadrilateral grid. (b) 64×64 triangular grid.

Figure 9: Convergence histories of JFNK-GCR on a uniform grid with R = 1.

4.1.1 Uniform Grid

We consider the diffusion equation (2.1) with f = 0 in a square domain (x, y) ∈ (0, 1) × (0, 1). The exact
solution is given by

u(x, y) =
sinh(πx) sin(πy) + sinh(πy) sin(πx)

sinh(π)
. (4.1)

Convergence results are shown for the 64×64 quadrilateral and triangular grids. Figure 8(a) shows the conver-
gence histories for the quadrilateral-grid case. As predicted by the analysis, the convergence deteriorates as α
increases from α = 1 to α = 4. The case α = 1 shows a rapid convergence as expected; the solver becomes
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Figure 10: Error convergence for solutions obtained by the JFNK-GCR solver on uniform grids with R = 1.

Newton’s method in this case. Also, the solver converges for α = 0.55 but diverges for α = 0.45, which agrees
with the analytical result: the solver diverges for α < 0.5.

Similar results have been obtained for the triangular grid. See Figure 8(b). Again, as predicted by the
analysis, the solver slows down for larger values of α. For the triangular grid, we considered cases α = 0.55 and
0.75, and found that the solver diverges α = 0.55 but converges for 0.75. It confirms the analytical prediction
that the solver diverges when α < 0.6, approximately.

It may be possible to stabilize the solver for small values of α by keeping α = 1 in the residual Jacobian for
any value of α in the residual. However, there is no strong reason to take α < 0.5 since it would lead to a lack
of damping and thus of robustness on general unstructured grids. A more practical strategy is to employ the
JFNK-GCR solver, which has the ability to converge the residual even when the implicit solver (preconditioner)
diverges. To demonstrate this, previous computations were repeated with the JFNK-GCR solver as described in
Section 2.2. Results are shown in Figure 9. Clearly, the solver converges for all cases now, including those where
the implicit solver diverges. Note that each iteration involves 10 preconditioner steps and residual evaluations
to compute the Fréchet derivative (2.12). Therefore, the JFNK-GCR solver is not dramatically faster than the
implicit solver.

Error convergence results are shown in Figure 10. The errors are plotted against the effective mesh spacing
defined as the L1 norm of the square root of control volumes around nodes. As shown in Figure 10(a), α = 4/3
gives third-order accuracy while others yield second-order accuracy on uniform quadrilateral grids. Figure
10(b) shows the results for the triangular grids. The lowest error level is obtained with α = 0.75, and the error
increases for larger and smaller values of α. Note that no special values of α is theoretically known that achieves
higher-order accuracy on triangular grids.

4.1.2 High-Aspect-Ratio Grid

We consider a domain (x, y) ∈ (0, 1)× (0, 0.001), and solve the diffusion equation (2.1) with

f = 16000001νπ2 sin(πx) sin(4000πy). (4.2)

The exact solution is given by

u(x, y) = sin(πx) sin(4000πy). (4.3)

Again, convergence results are shown for the high-aspect-ratio 64×64 quadrilateral and triangular grids. The
grid has uniform spacing in each coordinate direction with R = 1000.

Convergence histories are shown in Figure 11. As predicted by the analysis, the solver slows down for larger
values of α for both quadrilateral and triangular grids. Moreover, again in good agreement with the analysis,
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(a) 64×64 quadrilateral grid. (b) 64×64 triangular grid.

Figure 11: Convergence histories of implicit defect-correction solver for a high-aspect-ratio grid with R =
hx/hy = 1000. Symbols are displayed at every four iterations in (b).

(a) 64×64 quadrilateral grid. (b) 64×64 triangular grid.

Figure 12: Convergence histories of JFNK-GCR on a high-aspect-ratio grid with R = hx/hy = 1000.
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(b) High-aspect-ratio triangular grids.

Figure 13: Error convergence results obtained by the JFNK-GCR solver on high-aspect-ratio grids with R =
hx/hy = 1000.

the solver diverges for α < 0.5 on the quadrilateral grid and for α < 0.6 on the triangular grid. Observe, in
particular, that the solver slows down significantly on the high-aspect-ratio triangular grid.

Results obtained by the JFNK-GCR solver are shown in Figure 12. As in the isotropic case, the solver
converges very rapidly for all cases; it is quite powerful especially for the triangular-grid case. It demonstrates
that the implicit solver can serve as an effective preconditioner for the JFNK-GCR solver even on highly stretched
viscous-type grids.

Figure 13 shows the error convergence results. On quadrilateral grids, again, α = 4/3 gives third-order
accuracy while others yield second-order accuracy as shown in Figure 13(a). For triangular grids, α = 4/3 gives
the lowest level of errors, similar to α = 4.0. The results indicate that the damping term has a significant impact
on accuracy for highly-skewed grids.

4.1.3 Irregular High-Aspect-Ratio Grid

To investigate the effect of mesh irregularity and increased skewness, we consider an irregular high-aspect-
ratio grid. The grid is generated from the high-aspect-ratio grid used in the previous section by randomly
perturbing the nodal coordinates (See Figure 7(c)). Note that even a small nodal perturbation has large impact
on the skewness of the triangular grid: the L1 norm of the skewness measure êjk · n̂jk is 0.0326 of the perturbed
grid, which is an order of magnitude worse than 0.336 on the unperturbed grid. Results are shown in Figure 14.
Comparing Figure 14(a) with Figure 11, and Figure 14(b) with Figure 12(b), we see very similar convergence
behaviors between perturbed and unperturbed grids. Therefore, mesh irregularities and high skewness have
very little effects on iterative convergence. Error convergence results in Figure 14(c) indicate that α = 4/3 gives
the lowest level of errors, confirming superior accuracy previously reported in Refs.[4, 14]. Also, the JFNK-GCR
solver converges for all values of α, including α = 0.55 for which the implicit solver diverges, as shown in Figure
17(b).

4.2 Navier-Stokes Equations

To investigate performance of implicit solvers for more practical viscous-flow cases, we consider the com-
pressible Navier-Stokes equations non-dimensionalized by the free stream density, speed of sound, and dynamic
pressure. The discretization is the node-centered edge-based method. The inviscid and viscous fluxes are
computed by the Roe flux [37] and the alpha-damping flux (via the gradient formula) as described in Ref.[5],
respectively. LSQ gradients are computed by an unweighted linear fit. The solutions at a boundary node is
determined by solving a residual equation. The residual at a boundary node is closed by a second-order flux
quadrature [1]. At each quadrature points, which are boundary nodes, the numerical flux is computed with a
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(a) Implicit defect-correction solver. (b) JFNK-GCR.
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(c) Error convergence.

Figure 14: Convergence histories for 64×64 irregular high-aspect-ratio grids with R = hx/hy = 1000. Symbols
are displayed at every four iterations in (a).

current solution as the left state (interior state) and a ghost state specified by a physical boundary condition
as the right state.

The implicit solver uses a Jacobian matrix constructed by exactly differentiating the residual with all LSQ
gradients ignored, i.e., based on the damping-term-only flux. The linear relaxation is performed by a multi-color
Gauss-Seidel method until the linear residual is reduced by half with the maximum of 500. The implicit solver
is considered as converged when the L1 norm of the residual is reduced by ten orders of magnitude or reaches
1.0E−14 for all equations. For the JFNK-GCR solver, the tolerance is set to be 0.1 for the preconditioner, and
0.01 for the GCR solver with the maximum number of projections of 10 as a default.

4.2.1 Viscous Shock Problem

First, we consider a viscous shock problem to study the effects of α on accuracy. For the upstream condition,
M∞ = 3.5, Pr = 3/4, γ = 1.4, Re∞ = 25, and T∞ = 400 [k], an exact shock-structure solution can be obtained
by numerically solving a pair of ordinary differential equations for the velocity and the temperature [38]. The
program used to generate the exact solution in this study can be downloaded at http://www.cfdbooks.com/
cfdcodes.html. A series of four randomly-triangulated grids have been generated with 192, 768, 3072, and
12288 nodes. See Figure 15(a) for the coarsest grid, and the exact x-velocity contours. All results have been
obtained by the JFNK-GCR solver with α = 0.25, 0.75, 1.0, 4/3, and 2.0. Note that the implicit solver diverges
for α = 0.25, but the JFNK-GCR solver converges as we will discuss in the next section. Error convergence
results for the pressure are given in Figure 15(b); results are very similar for other variables, and therefore not
shown. The effective mesh spacing is, again, defined as the L1 norm of the square root of control volumes around
nodes. Second-order order convergence is observed for all values of α, and the error levels are very similar except
α = 2.0 and 0.25, which result in larger errors. These results indicate that the value of α should not be too far
from 1; α ∈ [0.75, 4/3] yields very similar levels of errors. Note that the special high-order property of α = 4/3
for diffusion (Laplacian) is not observed even on Cartesian grids because of the nonlinearity and non-Laplacian
nature of the viscous terms, and also of effects of the inviscid terms.

4.2.2 Laminar Flow over a Flat Plate

The implicit defect-correction solver has been tested for a laminar flow over a flat plate at zero incidence
with the free stream condition: M∞ = 0.15, Pr = 3/4, γ = 1.4, Re∞ = 104/(unit grid length), and T∞ = 300
[K]. The domain is taken to be a square and the right half of the bottom boundary is taken as a flat plate. The
length of the flat plate is 2.0 in the grid, and the Reynolds number based on the flat plate length is, therefore,
2 × 104. The domain is randomly triangulated with 137×97 nodes as shown in Figure 16. At the inflow and
top boundaries, the ghost state is set to be a free stream condition. At the outflow boundary, the ghost state
is a copy of the interior state except that the pressure is fixed by a free stream value. At the viscous wall, the
density is copied from the interior state, the velocity is reflected (i.e., the interior velocity with a negative sign),
and the temperature is set to be a free stream value [39].

13



(a) Coarsest grid the exact x-velocity contours.
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(b) Error convergence for the pressure.

Figure 15: Coarsest grid and error convergence for the pressure in the viscous shock problem.

x

y

Figure 16: Irregular triangular grid for the flat-plate problem. A flat plate has a length 2.0, and it is
located at the bottom of the domain starting at x = 0 and ending at x = 2.0. A vertical grid line has been
introduced precisely at x = 0.9 to sample the solution for comparison.

Convergence histories are shown in Figure 17. As can be seen in Figure 17(a), the value of α has a very
minor impact on the iterative convergence, seemingly due to a large impact of the inviscid terms, except that
the solver diverges for α = 0.55 just like the diffusion equation case on irregular high-aspect-ratio triangular
grids (see Figures 11(b) and 14(a)). It indicates an important implication that a lack of viscous damping can
lead to instability even for convection-dominated flows. As expected, however, the JFNK-GCR solver converges
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for all values of α, even for α = 0.55, demonstrating its robustness for a wider range of α. For the solutions
obtained by the JFNK-GCR solver, velocity profiles sampled along a vertical line at x = 0.9 are plotted in
Figure 18. The profiles are very similar, and therefore they are not greatly influenced by the choice of α.

To investigate the efficiency of the JFNK-GCR solver, we performed the same computation for α = 4/3
with various numbers of GCR projections: JFNK-GCR(n), where n is the number of GCR projections, n =
0, 1, 4, 8, 16, 32. JFNK-GCR(0) corresponds to the implicit defect-correction solver. Results are shown in Figure
19. As can be seen, the JFNK-GCR(n) solver with n > 0 converged faster in CPU time than JFNK-GCR(0).
Further details of the JFNK-GCR(n) solver are shown in Figure 20. Figure 20(a) shows the actual GCR
projections performed to reduce the GCR residual by two orders of magnitude. In most cases, the tolerance
is not met within the specified number of projections. For n = 32, the tolerance is met before it reaches the
maximum 32. Figure 20(b) shows the number of linear relaxations in the variable-preconditioner step. It is
noted that n = 1 took less numbers of linear relaxations than n = 0, and this explains (with a less number
of iterations) a significant speed-up in CPU time as observed in Figure 19(b). These results indicate that
even a very small number of GCR projections can yield robust and efficient computations over the implicit
defect-correction solver. In Ref.[32], n = 4 is demonstrated to provide robust and efficient three-dimensional
computations for practical turbulent-flow problems.
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Figure 17: Convergence histories for the flat plate case.
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Figure 18: Solution profiles at x = 0.9. Values are plotted at every other node along the line x = 0.9. The
vertical axis is taken as the boundary-layer coordinate, η = y

√
Rex/x, where Rex is the Reynolds number based

on the distance along the plate from the leading edge, which has been used also to scale the transverse velocity.
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Figure 20: GCR projections and linear relaxations per iteration (α = 4/3).

5 Concluding Remarks

A Fourier analysis was performed to investigate effects of a damping parameter α in a damped viscous
scheme on iterative convergence of an implicit defect-correction solver on quadrilateral and triangular grids. For
regular quadrilateral grids, the analysis shows that the best convergence is achieved for α = 1, the solver slows
down for larger values of α, and diverges for α < 0.5. Also, it has been shown that α = 4/3 provides third-
order accuracy on isotropic as well as high-aspect-ratio quadrilateral grids for the node-centered edge-based
method. A similar convergence behavior was predicted for regular triangular grids; the implicit solver diverges
for α < 0.6. These findings have been confirmed by numerical experiments. For irregular high-aspect-ratio grids,
a similar convergence behavior has been observed, and α = 4/3 gives the lowest level of errors. The implicit
solver has been shown to serve as an effective preconditioner for a Jacobian-Free Newton-Krylov solver based
on the GCR method. The Newton-Krylov solver has been shown to converge in all cases considered, including
those for which the implicit solver diverges. For diffusion problems, the Jacobian-Free Newton-Krylov solver
with α = 4/3 is recommended for very accurate, efficient, and robust computations. For the Navier-Stokes
equations, the implicit solver does not show large variation among α for a flat plate test case, but it has been
found to diverge for α = 0.55. The Jacobian-Free Newton-Krylov solver, however, converges for all values of
α considered, and converges faster than the implicit solver in CPU time by a factor of 4, at least. The study
indicates that the damping coefficient α = 4/3 or close to 1 and the GCR-based Jacobian-Free Newton-Krylov
solver with the implicit defect-correction solver used as a variable preconditioner can be a robust and accurate
combination for practical viscous flow problems.
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