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Viscous Active Flux method

1D heat conduction equation
For simplicity, let’s consider active flux method for 1D heat conduction equation
first. The heat conduction equation is,

Ju o*u
ou_.,.ou 1
ot ox’ (1)
where « is the heat conduction coefficient. Now rewrite this formula into the
conservative form as:
du 0 Ju
ot ax( ax) (2)

In this way, the term —xu_ is regarded as the flux term and Finite Volume method

could be applied to update the cell averages.

1.1. Reconstruction and flux term
Consider the stencil shown, where

u,,u, are cell averages and

. )
u, ,U,, Uy are pointvalues. Now let’s

u LL u L u 0

reconstruct u(x) separately in each

cell as
_ X _ X,
u, (x)=uy,+2Q2u,—3u, +uu)z+ 3(u, —2u, +uu)(z) (1.1.1)
1, (x) = 1y — 2(2u, — 3T, + uRR)% +3(u, — 20, + MRR)(%)Z (1.1.2)

The key feature of this reconstruction it that it keeps the conservative quality within

each cell. Now let's find out the formula for flux term. Since F =-xu_, and from

Taylor’s expansion, we know

F(r>=—:<[ux<0>+rum(0)+%u (0)+--]

xtt

(1.1.3)

2.2

<0>+K2’ i, (0)+--]

=—klu (0)+xtu_ S~

In order to find a third-order scheme, the last term in (1.1.3) could be neglected
here. There are so many ways to find the first and third derivatives of u with respect
to x. We use Taylor’s expansion to find the first derivative term. First, expand any
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value u with respectto u, as

ou x*du x°u x*du

= +x—F 1.1.4
o Ty T 29 Bl 4l ox (1.1.4)
So the point values are

ou h*d*u h du h'o'u
=u,—h—+——-——+——+ 1.1.5
= o T o 3lox | 4lox (1.1.5)

ou h*d’u h’du h*o'u
=uyth—+——S+—-—5+— + 1.1.6
Yre = o TS T S 0 3lox | 41 ox (1.1.6)

The average values could be found as taking the integral then divide by the space
interval h, so

1 1 ou x*du xu x*du
u, =— |udx=— +tx—+— +— +— +-+)dx
e h_J;” ) h_J-h( R A TF T TR TR 1
hou h*d*°u h’d’u h*d'u
SUp— ot s st o s
210x 3!dx” 4!9dx° 5!dx
h h 2 12 3 133 4 4
ﬁRzlJudx:lj( o xa—u+x—aZ+x—af+x—a?+m)dx
hy, hy ox 2!'9x° 3!dx’ 4!0x (1.1.8)

L +ﬁa_u+h_282u+h_383u+h_484u+
O 219x  3'ox®> 4!'ox® 5!ox?

Firstly, let’s find the first term (—xu (0)) of the flux. Giving different coefficients to

these formulas and let the second, third and forth derivative terms cancel out, we
could get
Ju _ A, —it, ) — (e — ;)
ox 2h

+0(h") (1.1.9)

To the part of finding —x’fu__(0), use the reconstruction polynomial functions and
take the second derivative terms of each part, then we get

um:%(uO—ZLTLJruLL) (1.1.10)

um:%(uo—ZﬁRwLuRR) (1.1.11)
In this way, the third derivatives could be expressed as

3 —
gxﬁ‘ = D . oo %(2@ — Dl + thgy — )+ O(h?) (1.1.12)




Now let’s check out the order of the scheme. Since

F(t)=—x[u (0)+xmu_(0)+--] (1.1.13)
Then

O(F)=0(u,0))+O0(tu,_(0)) (1.1.14)

Time is chosen proportionally to 4°, so

O(F)=0(h*)+0(th*)=0(h*) (1.1.15)

Forward Euler method in time is used here and then the order of the discretization
scheme turns out to be:

U  OF

Jdu  oJF oh*)
> + . =0@)+

O(h)

+.=0@)+ O )+ (1.1.16)
So the scheme is first order in time and third order in space.

1.2. Point value updating
We use a different strategy to update the point value. From Taylor’s expansion, we
have

du t*d*u tdu

u)=uQ)+t—+——+—— 1.2.1
(1) =u(®) ot 219> 3ot (121)
Recall the heat conduction equation
ou Jdu
—=K— 1.2.2
ot ox’ ( )
So the second derivative of u with respect to t is
2 4
ou_a0u (1.2.3)

—_— =K —

ot ox*

Now the time derivatives in (1.2.1) are related to spatial derivatives so that the
strategy we used in finding the flux term could also be used here and finally we

could get
ou K—3(uRR +u,, )—24u,+15(u, +u,)

+0(n* 1.2.4
. ot ) (12:4)
2 A
aati‘=:<2 30(”’*“”“:4”“ =3 | o (1.2.5)

Substitute formula (1.2.4) and (1.2.5) in (1.2.1) we could update the value of the



point, of which the orderis O(h*).

1.3. Stability analysis
From Finite Volume Method, the cell averages are updated conservatively from the
flux functions

At = -
—n+l —n
i =iy = (F = F) (1.3.1)
The formation of flux term on the interface at the right side of a certain cell is
[ 0= =110, 00, O ]

:—K‘{ [2(u;,, —u .)——(u ;—u 1)]+K't[—(u j+l)+%(u‘:’+3—u:'1)]} (1.3.2)

6
:__[(2 121<t) ]H _n) (_ K't)( ,_%)]

From Simpson’s law, we take the average flux on the right interface as

_ 1 A
Fo=lfa@+af, (j)+ £ (0]

3KAt 1 3kAt (13.3)
K —n —n n n
= _2[2(1 - 7)(uj+l —U; )~ (E - h2 )(Ltﬂ; - l/tj_%)]
Letu = % , then formula (1.3.3) yields to
7 =—Ea- 3w, -t - G- 3w, —u” 1.3.4
fj%—_z[ ( - u)(ujﬂ_uj)_(a_ ‘I,L)(Ltﬁ;—uj_%)] ( I )

By changing the subscript in formula (1.3.4), we could easily get the average flux
term on the left interface as

T K —n —n 1 n n
f_,-_% = —2[2(1 =3u)u; —u;,)- (5 - 3/.1)(uj+% —u )] (1.3.5)
Subtract formula (1 3.5) from (1.3.4), we get
]_‘j , f ) :_Z [2(1-3u)u}, —2u; +u;,)— ( — ,u)(u, s —u;’_% +u;'_;;)] (1.3.6)
Substitute (1.3.6) into (1.3.1), we have

I URE

+2ud=3u) ), —2u; +u;,)- u(——3u)(u’%—j —u”,_ﬁuj_;)]

2 2 2

= [1—4u(l = 31! +2p(1 = 3u)(@", + &)~ ‘u(——3‘u)(u3 w' —u )]

(1.3.7)
For the point value updating process, recall from formula (1.2.4) and (1.2.5), We



have

KAt
n+l _ n _ n noy_ n —n —n
u#% = uﬂ% + I ( 3(uj+% + uj_%) 24u/_+% +15@u},, +u}))

MI n n n —n —n
+ 15(7)2 (u#g + uj% + 4uj+% =3y, +u;)) (1.3.8)

J+l

:(1—12,u+60,u2)u/'_’+l +(15u° _%U)(”Zg+”7_1)+(g#_45ﬂ2)(7‘n +1))

Jj+l

Now let’s find the amplification factor of the method from a Fourier analysis. This
time it should be a 2x2 matrix.
For the average value

—n+l

—n —n —n 1 n n n n
)" = 1= 44201 = 3400 + 2000 300+ 7)) = (5 = 300~ —u? )
=[1-4u-3u)+2u-3u)(e’ +e ) - u(% —3u)e’ —1—e ™+ W
= (14001~ 30)(1 - cosO)IT) — = 340 ™ = 1=,

(1.3.9)
For the point value

n+l

n 3 n n 15 —n —n
wi'= (1-12u+ 60/42)uj+% +(15u° _E'u)(uf*% +u/__%)+(7u— A5u) ), +itl)
=(1-12u+60u>+(15u’ —%u)(e""’ +e u, +(%u— 45u7)(1+¢* )i
=(1-12u+60u> +(30u* - 3,u)cos¢)u7+% +(gu— 45u7)(1+ €

(1.3.10)
Rewrite the amplification factor matrix in the form,

_ n+l _ n _ n
U; U, 8 82 u;

=G = (1.3.11)
Yl “ s g 8n N\

g, =1-4ud-3u)1--cosg)

Where

1 —2i i
gn = —u(g— 3u)(e?® —1)(1—e?)
s (1.3.12)
' :(7,1—45;12)(1%“’)

gy, =1—12u+60u” + (30> — 31)cos ¢
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Fig. 1.3.1 Eigenvalues of amplification matrix
In Fig. 1.3.1, four plots of eigenvalues of the amplification factor matrix with respect

to phase angle ¢ are shown with different choices of . The blue line shows the

physical eigenvalue and the black dashed line is the approximated solution, from the
similarity degree we could approximately know the order of the scheme. The red
line is the spurious mode.

Now let’s exactly analyze the order of the scheme. The way to do so is to find

Taylor’s expansion of the physical eigenvalue with respectto ¢ =0, i.e.

oA S W R o N
A=A ¢—0+£‘¢—0¢+W‘¢_OE+W|¢_O§+... (1.3.13)
And the eigenvalues could be calculated as
Ay, = 8ut8xn i\/(gn +85)" —4(8185 — 81281) (1.3.14)

2

After some arrangement we could finally find,



) 1— gt + o gt 12 0

‘physical = 2 360 ¢6 +0[¢]7 (1315)

The physical eigenvalue should approximate ¢ of which the Taylor expansion is

2 3
e =1-po+ ' - L6t voror (13.16)

So we see the scheme is of 4th order but because of the influence from spurious
mode it’s actually less than 4t order.

1.4. Test case: 1D heat conduction
The initial condition is chosen at time t=0.1s of the temperature distribution

1 x>
utnt) = prexp

The solution time is chosen at time t=0.5s so the exact solution is easily known.

) (14.1)

Time step is chosen as dtzﬂhz,where u=0.1,x=0.1.
K

introduce ghost cells and ghost
interfaces to insist that the cell values
o . are symmetric and the interface

values antisymmetric, ie.

u(,D)=u(3,2),u(2,1)=u(2,2). For the

U{3.1) u(3.2)

U{i1) U{1.2) U{1.3) U{3.3)

) ] value of u(3,1), we aim to keep the
Fig. 1.4.1 Stencil on the left boundary

curvature of the reconstruction

Take the boundary condition far away polynomial formula, SO
as g_u =0 . On the left boundary, u(3,1)=(4u(3,2)—u(2,2))/3.

X
Results

Solutions of cell averages with different grid numbers (N=20, 40, 80) are shown
here. The figures on the right side show the details of the left boundary area. The AF
method gives quite good accuracy that the solution is approximately to be the exact
one.



1D Heat conduction (N=20)

1D Heat conduction (N=20)
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Error

Number of h HSH
grid points '
N=20 5.000000000000000e-02 2.671748213469982E-003
N=40 2.500000000000000e-02 5.252468865364790E-004
N=80 1.250000000000000e-02 7.074975292198360E-005
N=160 6.250000000000000e-03 8.365114626940341E-006
Emor
10k - - === 2nd-order
,,/ - ==~ 3rd order
—#— AFmethod
IUJ | ///,/ -
R

¥

h

Fig. 1.4.3 Error
From the error shown above, the scheme is of 31 order.




